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Abstract
The apparent diffusion coefficient (ADC) is analyzed for the case of oscillating diffusion
sensitizing gradients. Exact analytical expressions are obtained in the high-frequency expansion of
the ADC for an arbitrary number of oscillations N. These expressions are universal and valid for
arbitrary system geometry. The validity conditions of the high-frequency expansion of ADC are
obtained in the framework of a simple 1D model of restricted diffusion. These conditions are
shown to be substantially different for cos- and sin-type gradients: for the cos-type gradients, the
high-frequency expansion is valid when the period of a single oscillation is smaller than the
characteristic diffusion time, the frequency dependence of ADC being practically the same for any
N. In contrast, for the sin-type gradients, the high-frequency regime can be achieved only when
the total diffusion time is smaller than the characteristic diffusion time, the frequency dependence
of ADC being different for different N.
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1. Introduction
Diffusion MRI studies of short-length scales provide a powerful tool for obtaining
information on microstructural parameters of porous media and biological systems (e.g.,
water in the brain, hyperpolarized gases in lung airspaces). It is usually based on measuring
the apparent diffusion coefficient (ADC) and calculating the surface-to-volume ratio S/V of
restrictions (e.g., [1-3]) by means of the short-time expression [4]

(1)

wherein D0 is the free diffusion coefficient, , d is the system's dimensionality.
Importantly, the quantity D(t) in Eq. (1) is not exactly the ADC measured in MRI
experiments but a time-dependent (in the general case) effective diffusion coefficient
relating the mean square displacement of diffusing particles < (δx)2 > and diffusion time t:
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(2)

In the case of free (unrestricted) diffusion, D(t) = D0, and Eq. (2) reduces to Einstein's
relationship < (δx)2 >t = 2dD0·t. On the other hand, the ADC measured in diffusion MRI
experiments, D̃G(t), is related to the MR signal S(t) by

(3)

where S0 is the signal in the absence of diffusion-sensitizing gradients and b is the b-value.
The subscript index “G” is used to emphasize that the quantity D̃G(t) depends, in general,
not only on diffusion time t but on a time-course of the diffusion sensitizing gradient as well.

In the case of narrow gradient pulses (NP), the ADC defined by Eq. (3), D̃NP(t), coincides
with D(t) [4] and, therefore, can also be written as in Eq. (1). More generally, the quantities
D(t) and D̃G(t) do not coincide. However, in the Gaussian phase approximation, D̃G(t) can
also be expressed in the form similar to Eq. (1) (e.g., [5-11]):

(4)

where the coefficient cG depends on the time-course of diffusion sensitizing gradient. In the
case of Hahn echo pulse sequence, the coefficient cG was obtained in [5]. In [8], a general
scheme for calculating the coefficient cG was applied to the Stejskal-Tanner pulse sequence.
The method of calculating the coefficient cG for the periodic CPMG pulse sequence with an
arbitrary number of gradient pairs was proposed in [7] (see also [9, 10, 12]).

It is important to note that Eqs. (1) and (4) are valid under condition that the diffusion time t
is much smaller than the characteristic diffusion time tD,

(5)

On the other hand, reliable MR measurements require a sufficient dynamic range of the MR
signal, i.e., sufficiently high b-values. Achieving high b in the short-time regime is a
technically challenging problem. A promising way to get into the short-time limit is to apply
high-frequency oscillating gradients (OG) [13-15], which are now intensively used for
studying short-length scales (e.g., [11, 16-18]). For OG experiments, diffusion time t in Eq.
(4) can be effectively substituted (at least, in some cases, see below) by the period of a
single oscillation T which can be chosen to be short enough to satisfy the inequality .
At the same time, the b value is proportional to a number of oscillations N and, therefore,
can be made high enough to achieve a sufficient dynamic range of the MR signal.

Despite rather intensive use of OG in recent MR studies, analytical expressions for the
coefficient cG in Eq. (4), corresponding to the OG with a finite number of oscillations N,
have not been reported yet. Numerically, the coefficient cG for cos- and sin-type gradients
was considered in [11]; an analytical expression for this coefficient was found only in the
limiting case N → ∞ [19].

In the present paper, we derive exact analytical expressions for the coefficient cG for an
arbitrary number of oscillations (Section 2). Besides, we will consider the time dependence
of ADC beyond the short-time regime in a simple one-dimensional (1D) model (Section 3)
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and find the interval of validity of the short-time (high-frequency) expansion of ADC. As we
will see, there is a considerable difference between the OG of cos- and sin- types. The
calculations are based on the Gaussian phase approximation and widely accepted
understanding that the ensemble-averaged phase accumulated by diffusing particles is equal
to 0 (the last assumption is under discussion for confined diffusion in [20]). The validity of
the results is confirmed by numerical solution of Bloch-Torrey equations in the framework
of the multi-propagator approach [21, 22] and by Monte-Carlo simulations.

2. Short diffusion time. Arbitrary geometry
First, we remind a general scheme for calculating the coefficient cG for an arbitrary
waveform for diffusion sensitizing gradients (e.g., [5, 6]).

In the Gaussian phase approximation (valid at sufficiently low b values), the time-dependent
ADC, D̃G(t), can be expressed in terms of the mean square displacement and, consequently,
according to Eq. (2), via D(t):

(6)

where γ is the gyromagnetic ratio, g(τ) is the time–dependent diffusion sensitizing field

gradient (the condition  and a homogeneous initial spin distribution are
assumed; note that if at least one of these assumptions is not fulfilled, Eq. (6) should be
modified to take into account the mean value of phase accumulated by diffusing particles
[14]). Substituting Eq. (1) into Eq. (6), the quantity D̃G(t) can be rewritten as

(7)

It is easy to verify that the first term in the expression is identically equal to the standard
representation of the b value,

(8)

The coefficient cG appearing in Eq. (4) can then be expressed as

(9)

where

(10)

(notations are slightly modified from those in [6]). Equation (10) makes it possible to
calculate the coefficient cG for an arbitrary gradient time-course g(τ).

Let us consider the diffusion sensitizing oscillating gradient of the form:

(11)

where g0 is an amplitude, ω is the frequency of oscillations, and φ is an arbitrary phase. The
particular cases of the cos- and sin-type gradients correspond to φ = 0 and φ = π/2,
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respectively. The total diffusion sensitizing gradient waveform consists of N full periods of
oscillations, applied for duration t = N·T = N·2π/ω. The gradient waveform is preceded by
the 90° RF pulse and the signal is acquired at τ > t = NT (actually, the signal can be acquired
at intermediate time points τm = mT, m = 1,2,...,N at which the condition G(tm) = 0 is
fulfilled).

The b value corresponding to the gradient waveform (11), bN, is a sum of b values
corresponding to a single oscillation, b1:

(12)

It is convenient to rewrite the expansion of ADC, Eq. (4), in terms of oscillation frequency ω
and a number of oscillations N:

(13)

where the dimensionless frequency Ω = ωtD is introduced.

The coefficient c′ (hereafter we will omit the subscript G) depends on N and the phase φ, c′
= c′(φ, N). It can be found by means of direct evaluation of the double-integrals (10):

(14)

where C(x) and S(x) are the Fresnel functions.

In the particular case of the cos-type gradient (φ = 0),

(15)

For the sin-type gradient (φ = π/2),

(16)

The dependence of the coefficient c′ on the number of oscillations N is shown in Fig. 1 for
different values of φ (shown by the lines).

Importantly, for any φ ≠ 0 (including sin-type gradient), the coefficient c′(φ, N)
monotonically increases at large N (as ), whereas for φ = 0 (cos-type gradient), the
coefficient c′(0, N) monotonically decreases with N increases and tends to a finite value:

(17)
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The limiting value of  exactly coincides with the result obtained in [19]

in the framework of the frequency domain approach. Note also the coefficient  tends
to its limiting value rather fast and varies in a rather narrow interval (from 0.81 for N = 1 to

0.71 at N → ∞; the relative difference between  and  does not
exceed 3%).

The divergence of the coefficient c′(φ ≠ 0, N) at large N imposes a restriction on the
oscillation number N because the expansion (13) is valid only under condition

. Using the second line in Eq. (17), this condition can be re-written as

, or . Thus, for any φ not too close to 0 (including the sin-type
gradient), the total duration of the diffusion-sensitizing waveform must be smaller than the
characteristic time tD.

Although there is no such a restriction for the cos-type gradient (  for any N), and the
expansion (13) is formally valid under condition , we should remind that all the
expressions in Eqs. (14)-(17) are derived based on Eq. (1) which is valid only at short total
diffusion time , Eq. (5). In the next section, however, we demonstrate that
expressions similar to Eq. (13) can be obtained without using the short-time expansion of
D(t), Eq. (1). For this purpose, we will explore a simple 1D model of restricted geometry,
for which an exact solution to the diffusion problem (diffusion propagator, means square
displacement, etc.) are available for arbitrary time t.

3. Arbitrary diffusion time. 1D geometry
Consider particles diffusing within the segment x = [0, a] and restricted by impermeable
boundaries. The propagator for this model, determining the probability for diffusion from x0
to x during time t, is well known (e.g., [23]):

(18)

where the eigenvalues λn = D0(πn / a)2. Using Eq. (18), the mean square displacement <
(δx)2 > and , correspondingly, the time-dependent diffusion coefficient D(t), Eq. (2), can be
readily calculated:

(19)

It can be verified that the short-time behavior of D(t), at , is given by Eq. (1)
with S / V = 2 / a. Note that for this purpose, it is convenient to use another well-known
representation of the propagator (e.g., [23]),

(20)

In what follows, we consider the cos-type and sin-type oscillating gradients separately.
Substituting Eq. (19) into Eq. (6) and using Eq. (12) for the b value, we get

Sukstanskii Page 5

J Magn Reson. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(21)

(22)

The dependence of D̃cos on the dimensionless frequency Ω at different N (calculated
numerically from Eq. (21)) is shown in Fig. 2a. Importantly, the quantity D̃cos depends only
on Ω and is practically independent of the number of oscillations for N > 5. This property of
the quantity D̃cos can be readily understood by noticing that the second term in the
numerator in Eq. (21) is small as compared to the first one. Neglecting this small term, the
sum in Eq. (21) can be obtained in a closed analytical form:

(23)

As expected, the number of oscillations N does not enter Eq. (23).

The asymptotic behavior of the function F(Ω) at low and high frequency is:

(24)

Hence, the high-frequency behavior of D ̃cos in Eqs. (23)-(24) exactly coincides with the

result of the previous section, Eq. (13), with the limiting value of . Importantly, Eq.
(23) is derived without the assumption  (as assumed when deriving Eq. (13)).
This means that the high-frequency asymptotic behavior of D̃cos is valid under the much
softer condition , or  : the period of a single oscillation T (rather than the total
duration t of the oscillating-gradient waveform) should be small as compared to the
characteristic time tD.

The situation with the sin-type gradient is substantially different: the quantity D̃sin strongly
depends not only on Ω but on the number of oscillations N, as illustrated in Fig. 2b. It is easy

to verify from Eq. (22) that in the interval , , as demonstrated in Fig.
3b by the line corresponding to N = 100. And only in the case , the quantity D̃sin is
described by the expression as in Eq. (13):

(25)

where the coefficient  is given by Eq. (16).

In Figure 3 the dependences of D̃cos (a) and D̃sin (b, c, d) on Ω for different N, calculated
from Eq. (21)-(22) (solid lines), are shown. The dashed lines illustrate the high-frequency
asymptotic described by Eqs. (23)-(25) (with the corresponding values of the coefficient c′).
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The vertical dotted lines show the approximate thresholds after which two lines are
practically indistinguishable and the high-frequency approximation can be used.

As we see in Fig. 3a, the exact frequency dependence D̃cos and its high-frequency
asymptotic practically coincide at Ω > 5. Importantly, this result is valid for any total
number of oscillation N, meaning that the high-frequency asymptotic behavior of D̃cos takes
place under condition T < tD / 5 regardless of N. In contrast, the range of validity of the
high-frequency behavior of D̃sin, Eq. (25), strongly depends on N and is achieved when
(roughly) Ω > 5N, as demonstrated in Fig. 3b-d. Thus, the high-frequency approximation of
D̃sin takes place under condition t = NT < tD / 5, i.e. when the total diffusion time t is small
enough as compared to the characteristic diffusion time tD.

Although the results of this section are obtained for the 1D diffusion model, they can be
readily generalized for an arbitrary model with known eigenfunction representation of the
diffusion propagator P(r, r0, t), e.g., for diffusion within a cylinder or sphere.

Discussion
Diffusion sensitizing oscillating gradients are usually used to probe diffusion in the short-
time regime, Eq.(1), in which diffusion time t is effectively substituted by oscillation period
T = 2π / ω, Eq. (13) (e.g., for obtaining information on the surface-to-volume ratio).
Although T can be chosen short enough (the high-frequency range), the b value,
accumulated over many periods of oscillations, leads to a sufficient signal dynamic range (as
b ∝ N, Eq. (12)). Obviously, this main idea of utilizing the oscillation gradients “works”
under condition that D̃ can be described by Eq. (13). As shown above, this approach holds
for the cos-type gradient but fails for the sin-type gradient. For the latter, the short-time
(high-frequency) expansion, Eq. (13), is valid only when the total duration of the diffusion-
sensitizing gradient waveform, t, is smaller than the characteristic diffusion time tD.
Consequently, although the sin-type gradient leads to a 3-times higher b value than the cos-
type gradient (given ω and N, see Eq. (12)), its application to short-time experiments
becomes rather questionable.

MR signals obtained with oscillating gradients are usually analyzed in the frequency domain
(e.g., [13, 14, 17, 19, 24]). However, such an approach becomes problematic when
analyzing the sin-type gradient (more generally, oscillating gradients with arbitrary phase φ
in Eq. (11)). The problem is related to the presence of the δ-function peculiarity at ν = 0 in
the gradient modulation spectrum, FG(ν),

(26)

For the gradients in Eq. (11), this spectrum is a combination of the δ-functions [13-15, 17]:

(27)

The MR signal as a function of frequency ω is given by

(28)

where U(ν) is the Fourier transform of the velocity autocorrelation function. The gradient
modulation spectrum, Eq. (27), “cut out” the ω-component and zero-frequency component
from the correlation function U. The substantial difference between so called “ac” pulse
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sequences (sequences without the zero-frequency component) and “dc” pulse sequences
(with zero-component) was demonstrated in [14, 15] by the example of CPMG pulse
sequences with different positions of RF pulses with respect to gradient pulses.

The cos-type gradient is an analog of the CPMG pulse sequence with 180° RF pulses
“correctly” positioned at T / 4, 3T / 4, ... that leads to the “ideal” frequency sampling
function with a single “cut-out” component (effectively, the CPMG pulse sequence is a box-
type oscillating gradient obtained by applying a constant gradient and a series of 180° RF

pulses, Fig. 4a). As demonstrated in [19], the limiting value  is very

close to that obtained for the CPMG pulse sequence:  at N → ∞. Our

calculations revealed a rather similar behavior of the coefficients  and  for arbitrary

N. The dependence of the coefficients  and  on N is illustrated in Fig.4 (the

coefficient  is re-calculated from the function C(N) given in Table in [12]:

; details of elegant calculations of C(N) for the CPMG
sequence can be found in [7]). For large sufficiently N (N > 20), both the coefficients are
very similar and can be described by the first line of Eq. (17).

As demonstrated in [14, 15], slightly different positioning of the RF pulses leads to “a
dramatic change”, namely, to the appearance of a dominant zero-frequency component
which hinders the sampling of the spectral density. In our case, such a “different
positioning” is an analog of the non-zero phase φ (180° RF pulses positioned at T / 2, T, 3T /
2, ... correspond to φ = π / 2, i.e., to the sin-type gradient, Fig. 4b).

For sufficiently high frequency, the ω-component of the function U in Eq. (28), can be found
as the Fourier transform of the short-time expansion of the diffusion coefficient D(t), Eq. (1)
[19]. As properly mentioned in [19], the expansion (1) has finite or even zero radius of
convergence and, consequently, its frequency counterpart should be used only within certain
boundaries. However, the latter have not been established. Importantly, the dc component,
i.e. U(ν → 0), requires knowledge of D(t) in the long-time regime (note that for any
restricted geometry, D(t) → 0 at t → ∞). That is why the frequency-domain approach based
on Eqs. (26)-(28) cannot provide an adequate expression for ADC for the gradients with φ ≠
0 (including the sin-type gradient as a particular case).

Our approach based on calculations in the time domain lacks such problems. More
importantly, it allows calculations of ADC not only in the limiting case N → ∞ but for
arbitrary number of oscillation N.

Conclusion
In the present paper we analyze the ADC corresponding to the oscillating diffusion
sensitizing gradients. First, starting from the short-time expansion of the diffusion
coefficient D(t), Eq.(1), the exact analytical expressions for the coefficient c′ in the high-
frequency expansion of the ADC, Eq. (13), were found for an arbitrary number of
oscillations N. These expressions are universal and valid for arbitrary system geometry.
Secondly, in the framework of the simple 1D model of restricted diffusion, the ADC was
analyzed for an arbitrary frequency ω and oscillation number N. It was shown that the
validity condition of the high-frequency expansion of the ADC is substantially different for
the cos- and sin-type gradients. For the cos-type gradients, this high-frequency regime is
reached when the period of a single oscillation is smaller than the characteristic diffusion

time tD, the coefficient  monotonically decreasing to its limiting value. Besides, the
frequency dependence of the ADC is practically the same for any N > 5. In contrast, for the
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sin-type gradient, the high-frequency regime can be achieved only when the total duration of

the oscillating gradient waveform is smaller than tD, the coefficient  monotonically
increasing with N and the frequency dependence of the ADC being different for different N.
These results should be taken into consideration for correct interpretation of experimental
data in MR experiments utilizing oscillating gradients.

Acknowledgments
The author is grateful to Drs. D. A. Yablonskiy, J. J. H. Ackerman and W. M. Spees for helpful discussions and
comments. The work is supported by NIH grants R01 HL 70037 and R01-EB002083.

References
1. Latour LL, Mitra PP, Kleinberg RL, Sotak CH. Time-dependent diffusion coefficient of fluids in

porous media as a probe of surface-to-volume ratio. J. Magn. Reson. Ser. A. 1993; 101:342–346.

2. Latour LL, Svoboda K, Mitra PP, Sotak CH. Time-dependent diffusion of water in a biological
model system. Proc Natl Acad Sci U S A. 1994; 91:1229–1233. [PubMed: 8108392]

3. Mair RW, Wong GP, Hoffmann MD, et al. Probing porous media with gas diffusion NMR. Phys.
Rev. Lett. 1999; 83:3324. [PubMed: 11543587]

4. Mitra PP, Sen PN, Schwartz LM. Short-time behavior of the diffusion coefficient as a geometrical
probe of porous media. Phys Rev B Condens Matter. 1993; 47:8565–8574. [PubMed: 10004895]

5. de Swiet TM, Sen PN. Decay of nuclear magnetization by bounded diffusion in a constant field
gradient. J. Chem. Phys. 1994; 100:5597–5604.

6. Fordham EJ, Mitra PP, Latour LL. Effective diffusion times in multiple-pulse PFG diffusion
measurements in porous media. J Magn Reson., Ser. A. 1996; 121:187–192.

7. Axelrod S, Sen PN. Nuclear magnetic resonance spin echoes for restricted diffusion in an
inhomogeneous field: Methods and asymptotic regimes. J. Chem. Phys. 2001; 114:6878–6895.

8. Zielinski LJ, Sen PN. Effects of finite-width pulses in the pulsed-field gradient measurement of the
diffusion coefficient in connected porous media. J Magn Reson. 2003; 165:153–161. [PubMed:
14568525]

9. Zielinski LJ, Hurlimann MD. Probing short length scales with restricted diffusion in a static gradient
using the CPMG sequence. J Magn Reson. 2005; 172:161–167. [PubMed: 15589419]

10. Stepisnik J, Lasic S, Mohoric A, Sersa I, Sepe A. Spectral characterization of diffusion in porous
media by the modulated gradient spin echo with CPMG sequence. J Magn Reson. 2006; 182:195–
199. [PubMed: 16844392]

11. Parsons EC Jr. Does MD, Gore JC. Temporal diffusion spectroscopy: theory and implementation
in restricted systems using oscillating gradients. Magn Reson Med. 2006; 55:75–84. [PubMed:
16342147]

12. Sen PN, Andre A, Axelrod S. Spin echoes of nuclear magnetization diffusing in a constant
magnetic field gradient and in a restricted geometry. J Chem Phys. 1999; 111:6548–6555.

13. Stepisnik J. Analysis of NMR delf-diffusion measurements by a density matrix calculation.
Physica B. 1981; 104:350–464.

14. Callaghan PT, Stepisnik J. Frequency-Domain Analysis of Spin Motion Using Modulated-Gradient
NMR. J.Magn.Res., Series A. 1995; 117:118–122.

15. Callaghan PT, Stepisnik J. Generalized analysis of motion using magnetic field gradients. Adv
Magn Opt Res. 1996; 19:325–388.

16. Schachter M, Does MD, Anderson AW, Gore JC. Measurements of restricted diffusion using an
oscillating gradient spin-echo sequence. J Magn Reson. 2000; 147:232–237. [PubMed: 11097814]

17. Does MD, Parsons EC, Gore JC. Oscillating gradient measurements of water diffusion in normal
and globally ischemic rat brain. Magn Reson Med. 2003; 49:206–215. [PubMed: 12541239]

18. Xu J, Does MD, Gore JC. Dependence of temporal diffusion spectra on microstructural properties
of biological tissues. Magn Reson Imaging. 2011; 29:380–390. [PubMed: 21129880]

Sukstanskii Page 9

J Magn Reson. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Novikov DS, Kiselev VG. Surface-to-volume ratio with oscillating gradients. J Magn Reson. 2011;
210:141–145. [PubMed: 21393035]

20. Stepisnik J. Averaged propagator of restricted motion from the Gaussian approximation of spin
echo. Physica B. 2004; 344:214–223.

21. Callaghan PT. A Simple Matrix Formalism for Spin Echo Analysis of Restricted Diffusion under
Generalized Gradient Waveform. J. Magn. Reson. 1997; 129:74–84. [PubMed: 9405218]

22. Sukstanskii AL, Yablonskiy DA. Effects of restricted diffusion on MR signal formation. J Magn
Reson. 2002; 157:92–105. [PubMed: 12202137]

23. Carslaw, HS.; Jaeger, JC. Conduction of Heat in Solids. Claredon Press; Oxford: 1959.

24. Xu J, Xie J, Jourquin J, et al. Influence of cell cycle phase on apparent diffusion coefficient in
synchronized cells detected using temporal diffusion spectroscopy. Magn Reson Med. 2011;
65:920–926. [PubMed: 21413058]

Sukstanskii Page 10

J Magn Reson. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

• Apparent diffusion coefficient is analyzed for the case of oscillating diffusion
gradients.

• Exact analytical expressions are found in the high-frequency expansion of ADC.

• For the 1D model, the validity conditions of the high-frequency expansion of
ADC are obtained.

• These conditions are shown to be substantially different for cos- and sin-type
gradients.
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Figure 1.
The dependence of the coefficient c′(φ, N) on oscillation number N for different phase φ
(shown by numbers by the line).
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Figure 2.
The frequency dependence of ADCs D̃cos (a) and D̃sin (b) for different number oscillation N.
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Figure 3.
Comparison of the ADCs D̃cos (a) and D̃sin (b-d) (solid lines) with the high-frequency
approximation (dashed lines), Eq. 13, for different number oscillation N. As the quantity
D̃cos is practically independent of N, only one line (corresponding to N = 20) is shown in
Fig. 3a.
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Figure 4.
(a) The cos-type gradient (solid line) and the effective CPMG pulse sequence of the same
gradient amplitude (dashed line); the 180° RF pulses in the CPMG (shown by arrows)
“correctly” positioned at T / 4, 3T / 4, .... (b) the sin-type gradient (solid line) and the
effective “shifted” CPMG-like pulse sequence (dashed line); the 180° RF pulses positioned
at T / 2, T, ....
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Figure 5.
The comparison of the coefficients c′ for the cos-type oscillating gradient (squares) and
CPMG pulse sequence (circles).
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