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SUMMARY
The extremely thermoacidophilic archaea are a particularly intriguing group of microorganisms
that must simultaneously cope with biologically extreme pHs (≤ 4) and temperatures (Topt ≥ 60°C)
in their natural environments. Their expandi ng biotechnological significance relates to their role
in biomining of base and precious metals and their unique mechanisms of survival in hot acid, at
both the cellular and biomolecular levels. Recent developments, such as advances in
understanding of heavy metal tolerance mechanisms, implementation of a genetic system, and
discovery of a new carbon fixation pathway, have been facilitated by availability of genome
sequence data and molecular genetic systems. As a result, new insights into the metabolic
pathways and physiological features that define extreme thermoacidophily have been obtained, in
some cases suggesting prospects for biotechnological opportunities.
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INTRODUCTION
Over the past 20 years much has been written about the biotechnological potential of
microorganisms from extreme environments, primarily focusing on individual enzymes
capable of withstanding the otherwise harsh conditions required for long-term efficacy in
bioprocessing environments [1–5]. However, as genome sequence data have become
available for extremophiles (The UCSC Archaeal Genome Browser; http://archaea.ucsc.edu)
and molecular genetics tools have begun to emerge [6,7], there exists the possibility to go
beyond single biocatalytic steps to take advantage of the novel pathways and physiological
characteristics that are intrinsic to these unique microorganisms. By incorporating these
features into less extreme organisms and cells and by metabolically engineering
extremophiles directly, a new horizon in microbial biotechnology can emerge. Here, we
consider the extremely thermoacidophilic archaea, microorganisms that thrive in hot acid.
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Extremely thermoacidophilic archaea and their physiological characteristics
For the purposes of this review, an “extreme thermoacidophile” is a microorganism with
both an optimal growth temperature ≥ 60°C and an optimal pH of ≤ 4.0. A majority of the
extremely thermoacidophilic species studied to date [8] belong to the archaeal orders
Sulfolobales and Thermoplasmatales (Figure 1). From what is currently known, it is
interesting that the most heat-tolerant extreme thermoacidophiles are not the most acid-
tolerant and vice versa. The most thermophilic of the extreme thermoacidophiles,
crenarcheon Acidianus infernus, grows at temperatures up to 95°C (Topt of 85–90°C) but at
pHs only as low as 1.0 (pHopt 2.0) [9]. In contrast, Picrophilus species of the euryarchaeal
order Thermoplasmatales are the most acidophilic, growing at pHs as low as 0 (pHopt 0.7),
but at temperatures up to only 65°C (Topt of 60°C) [10]. Insights into life in hot acid may be
soon forthcoming, since genome sequences exist or are underway for many extreme
thermoacidophiles (see Figure 1, Table 1) (www.genomesonline.org). Furthermore, several
new species in known genera of Sulfolobales (Acidianus, Metallosphaera) have been
reported, as well as a new member of the Thermoplasmatales, Thermogymnomonas
acidicola [11–14]. We may have only scratched the surface with respect to extreme
thermoacidophile diversity, because new environments not previously known to harbor these
microorganisms have recently been identified. For example, mathematical modeling and
16S rRNA data suggest that conditions conducive to thermoacidophilic growth exist in
deep-sea hydrothermal vents, a hypothesis supported by reports of the first euryarchaeon
from the order Deep-sea Hydrothermal Vent Euryarchaeotic 2 (DHVE2), Aciduliprofundum
boonei [15••]. Although A. boonei (Topt 70°C) grows best at a pH slightly above 4.0, 16S
rRNA indicates that this microorganism comprises 10–15% of selected vent-associated
archaeal populations, suggesting that there are extreme thermoacidophiles from these sites
yet to be isolated [15].

Mechanisms of resistance to and survival in hot acid
The mechanisms by which microbial life thrives in hot acid have been investigated in some
detail in recent years, triggered by the availability of genome sequence data, functional
genomics tools, and molecular genetics. While the intrinsic basis for this novel growth
physiology is not clear, clues are emerging as to how these microorganisms survive in the
face of hot, acidic, and often metal-laden conditions which are typically associated with
DNA damage, protein denaturation, and other disruptions in cellular processes.

DNA damage and repair—High temperatures and the potential for cytosol acidification
heighten the possibility of DNA damage or modification in extreme thermoacidophiles
relative to mesophilic neutrophiles. Thus, clues to DNA damage repair may emerge from
examination of this cellular function in hot acid biotopes. It is surprising that basal mutation
rates for extreme thermoacidophiles are not particularly high. For example, Sulfolobus
acidocaldarius has a spontaneous mutation rate similar to that of E. coli [16]. Furthermore,
when Sulfolobus solfataricus and S. acidocaldarius were exposed to UV-irradiation, no
significant increase in transcription of known DNA repair proteins was noted [17•,18];
however, it is possible that these genes are constitutively transcribed at higher levels than in
mesophiles. Following irradiation, aggregates resembling those formed during plasmid-
mediated conjugation were found, spurring speculation that Sulfolobus species may use
conjugational DNA exchange and homologous recombination to repair mutated DNA [17].
In a related study, S. solfataricus infected with the Sulfolobus spindle-shaped virus (SSV1)
exhibited a similar, but heightened, response to UV-induced DNA damage, suggesting that
viruses may be an evolutionary component of stress management systems [19]. Another
spindle-shaped virus, SSV2 from native host “Sulfolobus islandicus” REY15/4, sent
infected “S. islandicus” REY15A cells into a metabolically inactive state upon encountering
unfavorable environmental conditions and then played a role in re-starting metabolic activity
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once favorable growth conditions emerged [20]. Up-regulation of two S. solfataricus recA/
rad51 homologs (radA, SSO0250; radA-like, SSO0777) in response to a DNA-damaging
antibiotic led to discovery of the first regulatory protein involved in archaeal DNA damage
repair (Sta1, SSO0048) [21]. Neither the radA-like SSO0777, its sta1 activator, nor radA
itself were induced by UV-irradiation, indicating that the nature of DNA damage may drive
the specific type of repair response [21].

Heat shock—Though extreme thermoacidophiles thrive at temperatures up to 95°C, they
are still susceptible to thermal stresses such that they exhibit both cold shock and heat shock
responses. Extremely thermoacidophilic archaea react to supraoptimal temperatures in much
the same way as other microorganisms [22–24]. Most work to date has focused on the
archaeal thermosome, or rosettasome, a heat-shock responsive HSP60-like molecular
chaperone that has been implicated in many cellular roles [25]. However, recent efforts have
shown that heat shock response in extreme thermoacidophiles is extensive, involving much
more than chaperones or other proteins involved in protein refolding. When exponentially
growing S. solfataricus was shifted from its growth temperature optimum (80°C) to 90°C,
approximately 1/3 of the transcriptome responded within 5 minutes [26]. Included in this set
of genes were many insertion elements and chromosomally encoded toxin-antitoxin (TA)
loci - 22 TA pairs and 1 solitary toxin – all from the VapBC family [26]. Chromosomally-
encoded TA loci in bacteria are thought to be stress response elements [27], although the
role of these tandem protein complexes in archaea has not been examined. Since PIN
domain-containing VapCs, the “toxin” component of TA loci, are putative ribonucleases
[28,29], these proteins could play an important role in post-transcriptional regulation in
archaea, especially during heat shock.

Metal resistance—Extreme thermoacidophiles have developed mechanisms for tolerating
heavy metals that are physiologically toxic to most microorganisms (Figure 2). These
mechanisms involve their capacity to recover from metal-induced damage (similar to
oxidative stress) [30] and to limit the effective concentration of the toxic metal itself. In
some cases, enzymes reduce or oxidize metals to less toxic forms - for example, the
mercuric reductase in S. solfataricus reduces soluble intracellular Hg2+ to volatile elemental
Hg0 [31••]. In other cases, metal chelation or complexation can accomplish the same
objective. In Sulfolobus metallicus, a polyphosphate (polyP)-based mechanism is believed
to underlie cellular tolerance to high levels of copper; greater accumulation of polyP
granules was observed in S. metallicus (considered to have higher levels of Cu tolerance)
compared to S. solfataricus, and granule size was noted to decrease as Cu levels were
increased [32•]. Other strategies, however, do not involve metal transformation, direct or
indirect, and instead are based on exporting toxic metal ions via P-type ATPases [33].
Evidence to date suggests that multiple systems can operate in parallel in extreme
thermoacidophiles to provide cumulative tolerance, with particular strategies useful for
multiple metals [31–33]. For example, copper tolerance in Sulfolobus species involves
efflux ATPases in addition to the polyP pathway, but the same ATPases also contribute to
cadmium tolerance [32,33]. There may also be some intrinsic redundancy in protecting
against heavy metal toxicity. Disruption mutants lacking mercuric reductase and its
regulator (merAR) were found to still exhibit some mer operon transcription [31]. In fact,
creation of a mutant with a disrupted regulator resulted in increased merA expression and
consequently increased Hg2+ tolerance [31], underscoring the importance of understanding
the regulation of resistance mechanisms with respect to engineering characteristics for
bioprocesses. While traditional acclimation and/or spontaneous mutant generation
approaches are still useful, direct genetic manipulation offers the possibility of conferring
similar levels of metal tolerance increase in a systematic manner.
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Molecular genetics of extreme thermoacidophiles
Versatile genetic systems for extreme thermoacidophiles are a critical need for many
reasons. Recombinant expression of genes encoding extreme thermoacidophile proteins in
commonly used bacterial hosts can be problematic [34,35], likely reflecting intrinsic
differences between archaea and bacteria. Also, molecular genetic systems could provide the
basis for investigating biological mechanisms enabling life in hot acid. Fortunately,
promising developments along these lines have been reported, including successful efforts
with gene disruption [36,37] and protein tagging [6]. For a comprehensive review of the
development of molecular genetics for archaea see [7].

Viruses and plasmids—Virus-based plasmids have been tailored for specific needs to
support development of genetics systems in extreme thermoacidophiles. The first virus from
an extreme thermoacidophile, SSV1, was isolated over 20 years ago from Sulolobus
shibatae (B12) [38] and is the one most developed for use in studying Sulfolobus species
[7]. There are some useful features of this virus for molecular genetics. For example,
removal of the integrase gene from SSV1 demonstrated that the integrase protein is essential
only for integration into the host genome, and not for virus infection and replication [39].
This characteristic could be exploited for novel vector development, where non-homologous
recombination of the vector into the host genome is undesirable. Recently constructed
Sulfolobus-E. coli fusion vectors have potential as easily modifiable genetic elements for
extreme thermoacidophiles. The fusion shuttle vector pSSVrt, based on “S. islandicus”
REY15/4 pSSVx and E. coli pUC19, accommodated insertion of foreign sequences up to
~11 Kb with efficient propagation and vector stability at high-copy numbers with no
integration [40]. Furthermore, the pRN1-E. coli transposon fusion, noted for its relatively
small size (5.4 Kb) and stable copy numbers of 10–20 in mid-log phase, is stable in S.
acidocaldarius and S. solfataricus, as well as in E. coli. [41]. By adding the pyrE gene to this
plasmid and using pyrE mutants, a selectable marker could be introduced into the host. An
SSV1-E. coli pUC18 reporter gene system was developed with selectable marker genes
pyrEF, both heat- and arabinose-inducible promoters, and convenient restriction sites [42].
The improved vector (modified from pMJ03) was used for heterologous and homologous
production of tagged proteins in S. solfataricus. All of these developments are exciting and
offer promise for expanding molecular genetics capabilities in extreme thermoacidophiles.

Gene disruption—Construction of directed gene deletion mutants in extremely
thermoacidophilic archaea is a significant challenge, but progress is being made on this
front. The focus has been on S. solfataricus PBL2025, a constructed mutant of S.
solfataricus 98/2, which lacks about 50 genes, including lacS [43]. Thus, the inability to
grow on lactose-based minimal media provides a selectable marker. A protocol for efficient
integration of exogenous DNA into the S. solfataricus PBL2025 genome has been described
[36]. A similar method was used to construct a deficient mutant to study α-amylase function
and regulation in S. solfataricus [37]. Markerless exchange using a plasmid that encodes a
cloned copy of a modified DNA sequence and a selectable marker gene, again lacS for
natural deletion mutant PBL2025, has also been used for development of mercury reductase
(merA) deficient Sulfolobus solfataricus [31].

Recombinant production of extremely thermoacidophilic proteins—Production
of extremely thermoacidophilic proteins in mesophilic hosts (e.g., E. coli) can take
advantage of overexpression and simplified purification methods (e.g., heat treatment), but
codon usage and inclusion body problems often temper the enthusiasm for this approach
[34,35]. Some solutions to existing problems have been recently proposed. S. solfataricus
genes have rare (compared to E. coli) codon clustering at the 5′ transcript end which
specifically inhibits target translation. But, this can be relieved by adding rare codon tRNAs
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(utilizing strains like BL21(DE3) CodonPlus-RIL or Rosetta(DE3)) or by changing rare
codons (via primer design) to those more frequently translated by the host [34]. Yields of
active S. tokodaii and P. torridus proteins produced in E. coli (Rosetta(DE3)) were increased
by growth and expression at elevated temperatures up to 46°C, where it was hypothesized
that protein synthesis was slowed, contributing to an increase in rate of proper folding [35].

Bioleaching
The biomining industry has a longstanding interest in the use of extreme thermoacidophiles
for metals recovery from ores [44,45]. These organisms, as is the case with certain
mesophilic chemolithotrophic bacteria such as Acidothiobacillus ferrooxidans [46•], can
liberate precious (e.g., gold) and base (e.g., copper) metals trapped in, and as, metal sulfides
(e.g., iron pyrite and chalcopyrite) through dissimilatory oxidative processes. Biological
regeneration of Fe3+ from Fe2+ is key to chemical attack of metal sulfides. However,
biooxidation of reduced inorganic sulfur compounds (RISCs) is also important to prevent
the accumulation of passivating sulfur compounds on metal surfaces that can limit metal
mobilization rates. Extreme thermoacidophiles grow at temperatures where mesoacidophilic
biocatalysts (or contaminants from non-sterile substrates) cannot, and where passivation
from RISCs is nearly eliminated, leading to higher effective leaching rates [46]. Efficacy in
biomining environments also requires tolerance of high levels of toxic heavy metals as well
as the ability to assimilate inorganic carbon, as organic sources can be scarce in this
environment. A full complement of the aforementioned desirable traits is not typically
resident in a single native microorganism, but may be in a consortium [46]. Alternatively,
extreme thermoacidophile genomes [47–49], including that of a biomining organism [50•],
can be examined for pathways responsible for conferring these desirable biomining traits.
Taken together with the emerging molecular genetic tools for extreme thermoacidophiles,
metabolic engineering of biomining organisms with enhanced properties may soon be a
reality.

Iron-sulfur oxidation—Several terminal components of respiratory electron transport
chains (ETC) in extreme thermoacidophiles have been known for years [51–54]. However, it
was recently shown that the relative membrane concentration of these components depends
on the electron donating substrate [55], suggesting involvement in dissimilatory Fe2+ and
RISC oxidation. Substrate-dependent ETC expression led to identification of a Fe2+

oxidation- (fox) induced gene cluster in the autotrophic biominer, S. metallicus [56••].
Comparative genomics subsequently revealed that homologs to this gene cluster are also
present in Metallosphaera sedula [50] and Sulfolobus tokodaii, the latter of which was not
previously shown to have iron-oxidizing capabilities [56]. This cluster contains not only
ORFs similar to previously recognized terminal components (foxABCD), but also
ferredoxins and other putative iron-sulfur binding proteins typically involved in electron
transfer (foxFGHJ). This implies that more than terminal components, possibly entire ETCs,
are differentially expressed in response to certain substrates. Although the sulfur oxygenase
reductase (SOR) does not appear to be directly connected to an ETC [57•], it was also up-
regulated in S° compared to Fe2+ grown cells [56]. SOR is believed to participate in the
early steps of cytoplasmic sulfur oxidation in extremely thermoacidophilic archaea.
Surprisingly, M. sedula, a putative sulfur oxidizer [58•], does not encode SOR [50],
indicating that either some extremely thermoacidophilic archaea have alternative (yet
unknown) sulfur oxidation enzymes, or that M. sedula has lost (or never possessed) the
capacity to oxidize sulfur (similar to S. solfataricus and S. acidocaldarius) [58].

CO2 fixation—With the identification of a 5th pathway for inorganic carbon fixation
[59••], new perspectives on autotrophy have emerged. The new cycle model starts with a 2-
carbon acetyl-CoA molecule and assimilates two bicarbonates. The key bicarbonate-
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incorporating enzyme is a heterotrimeric acetyl-/propionyl-CoA carboxylase [60]. One way
in which this new pathway is distinguished from the 3-hydroxypropionate cycle is by a
putative homotetrameric 4-hydroxybutyryl-CoA dehydratase (Figure 3). While activities
have been detected for all steps in this pathway [59], only a few enzymes have been
characterized biochemically [59–62]. Comparative genomics suggests multiple candidates
(all having similar sequences) for the final enzymatic reactions of the cycle; experimental
work is required to identify which of these candidates supports the function of the final three
steps of the pathway, involving re-arrangement of a 4-carbon molecule (crotonyl-CoA) prior
to splitting into two molecules of acetyl-CoA. Understanding and controlling regulation of
this new inorganic carbon fixation pathway could lead to improvements in bioleaching
through enhanced biomass/biocalatyst levels, and even new CO2 sequestration strategies.

OTHER DEVELOPMENTS
ncRNA

Non-coding RNAs (ncRNAs) in extremely thermoacidophilic archaea, particularly in
Sulfolobus species [63–66], could be used for transient control of biocatalytic steps in a
bioprocess via dosing of small interfering RNA (siRNA). While many ncRNAs are also
small RNAs (sRNA) of 60 nucleotides or less, ncRNAs as long as 500 nucleotides have
been reported [63]. Most ncRNAs are characterized by a K-turn motif and appear to possess
a post-transcriptional modification or regulation (“silencing”) function. Many ncRNAs
recognize their targets via full (“anti-sense”) or partial (“antisense-box motif”)
complementarity to transposons, other ORFs, or non-coding RNA (rRNA, tRNA, sRNA,
etc.) [63,64]. ncRNAs are thought to interact with proteins to influence structure and
function. For example, in S. solfataricus, the Rbp18 protein of the 30S ribosomal subunit has
been shown to bind free sRNA (in vitro and in vivo) with some degree of selectivity [65]. In
S. acidocaldarius, the anti-sense-box motifs (and their location) in sRNA are important for
both proper structural complexation with ribosomal core proteins and complex activity [64].
sRNA produced from clustered regularly interspaced short palindromic repeats (CRISPRs)
are believed to interact with catalytically active CRISPR-associated sequences (Cas
proteins), which are often encoded immediately up- (crenarchaea) or downstream
(euryarchaea) of CRISPRs [63,66]. Some CRISPRs contain non-repetitive spacer sequences
with similarity to viruses or genomic ORFs. The Cas proteins may be involved with adding/
removing spacer sequences to/from CRISPR regions (i.e. Cas1, Cas2), processing of long
ncRNA to sRNA form (i.e. Cas3, Cas5), and possibly complexing with resulting sRNAs to
form a microbial equivalent of the eukaryotic RNA-induced silencing (RISC) complex (i.e.
Cas4) [66,67].

S-layers and extreme thermoacidophile membranes
S-layers of extremely thermoacidophilic archaea are of interest in nanobiotechnology,
because their self-assembled periodicity and uniform properties, as well as thermoacid
stability, make them attractive for use in ultrafiltration, immobilization matrix, and coating
capacities [68]. Most work to date with these S-layers has focused on structure and
properties of the purified self-assembled proteins [69]. Models suggest that archaeal S-
layers, with their membrane anchors, help maintain cell shape and stabilize the membrane
against environment-induced osmotic pressure changes [70]. Study and use of
tetraetherlipids themselves have been somewhat hampered due to high costs/low purification
yields. However, recent efforts to defray bioleaching costs by processing by-products have
resulted in a lower-cost, higher yield purification process for extremely thermoacidophilic
tetraetherlipid, calditoglycerocaldarchaeol [71]. The next significant advances in functional
understanding may come from studies of the natural environment of S-layers, in which they
are bound to the tetraetherlipid cell membrane [69]. A search through GenBank (July 2008)
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shows that although S-layer domain proteins are annotated in sequenced extreme
thermoacidophiles (COG 1361), genes related to their modification and assembly are not
well known/annotated. Future work in this area will most likely begin with analysis of gene
neighborhoods (many containing transporters and/or transcriptional regulators).
Manipulation via genetic tools will be invaluable in study of the formation and regulation of
these proton influx barriers with long-term potential to produce tunable acid stability.

SUMMARY
Recently available extreme thermoacidophile genome sequences are revealing novel
pathways and strategies that contribute to survival in hot, acidic environments. With the
emerging availability of molecular genetics for these microorganisms, metabolic
engineering efforts to realize biotechnological opportunities are within reach. Also
promising is the prospect of finding novel extreme thermoacidophiles in yet untapped acidic
niches, such as deep sea hydrothermal biotopes.
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Figure 1.
Unrooted 16S phylogenentic tree (constructed using ClustalW and Phylip 3.5c available on
http://mobyle.pasteur.fr) of extremely thermoacidophilic archaea (Topt ≥60°C, pHopt <4),
compiled from [8,9,11,14,72,73]. Genomes are denoted as Ssequenced or Sipsequencing in
progress, according to www.genomesonline.org. Organisms denoted in “ ” have not yet been
described in full detail. Accession numbers for 16S rRNA are listed in parentheses. Sso = S.
solfataricus (SSOr03), “Sis”=”S. islandicus” strain M14A (AY247895), Ssh=S. shibatae
(M32504), Sto=S. tokodaii (ABO22438), “Syang”= ”Sulfolobus yangmingensis”
(AB010957), Sowh= Sulfurisphaera ohwakuensis (D85507), Saci= S. acidocaldarius
(D14876), “Sthur” = “Sulfolobus thuringensis” (X90485), Sazo=Stygiolobus azoricus
(D85520), Smet= S. metallicus (U40813), Msed=M. sedula (Msed_R0026), Mpru=
Metallosphaera prunae (X90482), Mhak=Metallosphaera hakonensis (D86414),
Abr=Acidianus brierleyi (X90477), “Aten”= ”Acidianus tengchongensis” (AF226987),
Ainf=A. infernus (X89852), Aam=Acidianus ambivalens (D85506), Asuf=Acidianus
sulfidivorans (AY907891), Aac=Acidolobus aceticus (AF191225), Cmaq=Caldivirga
maquilingensis (ABO13926), Posh=Picrophilus oshimae (X84901), Pto=Picrophilus torridus
(PTOr02), Taci=Thermogymnomonas acidicola (AB269873), Tvn=Thermoplasma
volcanium (Tvnr04), DHVE2 represented by 16S of A. boonei (DQ451875). No 16S
sequences are available for extreme thermoacidophiles Sulfurococcus yellowsonensis and
Sulfurococcus mirabilis.
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Figure 2.
Metal resistance mechanisms in extreme thermoacidophiles. CopA is the P-type ATPase
shown to be involved in copper and cadmium cation efflux in S. solfataricus [33]. MerA is
the mercuric reductase which reduces soluble Hg2+ to volatile elemental Hg and is
constitutively expressed in S. solfataricus [31]. Ppk (polyphosphate kinase) and Ppx
(exopolyphosphatase) which comprise the polyP system described in S. metallicus [32].
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Figure 3.
The recently proposed 5th cycle of autotrophic carbon fixation, adapted from[59]. 1. acetyl-
CoA/propionyl-CoA carboxylase, 2. malonyl-CoA/succinyl-CoA reductase, 3. malonate
semialdehyde reductase, 4. 3-hydroxypropionyl-CoA synthetase, 5. 3-hydroxypropionyl-
CoA dehydratase, 6. acryloyl-CoA reductase 7. methylmalonyl-CoA epimerase, 8.
metylmalonyl-CoA mutase, 9. succinate semialdehyde reductase, 10. 4-hydroxybutyryl-CoA
synthetase, 11. 4-hydroxybutyryl-CoA dehydratase, 12. crotonyl-CoA hydratase, 13. 3-
hydroxybutaryl-CoA dehydrogenase, 14. acetoacetyl-CoA β-keothiolase. ORFs encoding
enzymes with (?) have not been finalized in the extreme thermoacidophile in which the
cycle was studied. Many of the intermediates of this cycle are the same as found in the 3-
hydroxypropionate cycle (left side and base of triangle). The right side of triangle represents
rearrangement after the second carbon addition, concluding with a split into two molecules
of acetyl-CoA, which distinguishes the 3-hydroxpropionate/4-hydroxybutyrate cycle from
the 3-hydroxypropionate cycle.
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