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The formation of liver zones is modeled by a system of two integropartial differential equations. In this research, we introduce the
mathematical formulation of these integro-partial differential equations obtained by Bass et al. in 1987. For better understanding of
this mathematical formulation, we present a medical introduction for the liver in order tomake the formulation as clear as possible.
In appliedmathematics, the Adomian decompositionmethod is an effective procedure to obtain analytic and approximate solutions
for different types of operator equations. This Adomian decomposition method is used in this work to solve the proposed model
analytically. The stationary solutions (as time tends to infinity) are also obtained through it, which are in full agreement with those
obtained by Bass et al. in 1987.

1. Introduction

The dark-red liver is the body’s largest single gland (1 to
1.5 kg). It is a metabolic middleman because it takes up
and secretes more than 500 different kinds of molecules.
The liver stores and releases glucose, keeping blood glucose
levels relatively constant. The location of the liver reflects
its middleman’s role (Figure 1). The gland lies between the
diaphragm above and the stomach and intestines below
(Figure 2). Glucose and many other molecules enter the liver
through the hepatic portal vein, and their products go directly
through the inferior vena cava to the heart and lungs and then
into the systemic circulation. The liver takes its dome-like
shape from the diaphragm, which covers its superior surface,
called diaphragmatic surface. The sagittal fossa divides the
liver into two great lobes, right and left. The right lobe is
larger and displays two smaller quadrate and caudate lobes on
its visceral surface, defined by gallbladder and inferior vena
cava, respectively [1].The hepatic veins drain into the inferior
vena cava arising from the posterior part of diaphragmatic
surface of the liver. Visceral peritoneum binds the liver to the
diaphragm and to the posterior wall of the abdomen.

Although there is an extensive bare area on the diaphrag-
matic surface of the liver where the peritoneum does not
reach, the connective tissue attaches this area directly to the

diaphragm. Most of the blood to the liver (70–80%) comes
from the portal vein, and the smaller percentage is supplied
by the hepatic artery (Figure 3). All the materials absorbed
via the intestines reach the liver through the portal vein,
except the complex lipids which are transported mainly by
lymph vessels. The position of the liver in the circulatory
system is optimal for gathering, transforming, and accumu-
lating metabolites and for neutralizing and eliminating toxic
substances. This elimination occurs in the form of bile, an
exocrine secretion of the liver which is important in lipid
digestion. The basic structural component of the liver is the
liver cell or hepatocyte. In light microscope, structural units
called classic liver lobules can be seen. The liver lobule is
formed of a polygonal mass of tissue about 0.7 × 2mm in size
(Figure 4).

In certain animals (e.g., the pig), lobules are separated
from each other by a layer of connective tissue. In humans,
it is difficult to establish the exact limits between different
lobules since they are in close contact in most of their extent
(Figure 5). In some regions, the lobules are demarcated by
connective tissue containing bile ducts, lymphatic vessels,
nerves, and blood vessels. These regions, located at the cor-
ners of the lobules and occupied by portal triads, are called
portal spaces. The human liver contains 3–6 portal triads
per lobule, each with a venule (a branch of the portal vein);
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an arteriole (a branch of the hepatic artery); a duct (part
of the bile duct system); and lymphatic vessels. The venule
is usually the largest of these structures, containing blood
from the superior and inferior mesenteric and splenic veins.
An arteriole contains blood from the celiac trunk of the
abdominal aorta.

The hepatocytes in the liver lobule are radially disposed
and arranged like the bricks of a wall. These cellular plates
are directed from the periphery of the lobule to its center and
anastomose freely, forming a labyrinthine and sponge-like
structure.The space between these plates contains capillaries,
the liver sinusoids [2]. Portal and arterial blood mixes in
the sinusoids and flows past hepatocytes, draining through

Aorta

Vena cava

Hepatic
 vein

Liver

Small intestine

Hepatic artery

Portal 
vein

Figure 3

Hepatic lobule

Hepatic cells

Hepatic vein

Bile ducts
Hepatic arteries

Figure 4

a central vein from each lobule that leads ultimately to
the hepatic veins. Bile from the lobules drains into the
interlobular branches of the bile duct byway of bile canaliculi.
The hepatic lobules act as endocrine and exocrine glands.
In endocrine secretion, hepatocytes take up and secrete
molecules into the sinusoids [1].

The liver has an extraordinary capacity for regeneration.
Hence, the loss of hepatic tissue by surgical removal or
from the action of toxic substances is restored. The liver
performs its metabolic functions with the aid of various
enzymes fixed inside liver cells. These liver cells line many
capillaries (hepatic sinusoids) throughwhich the total hepatic
blood flow is manifolded, whereby exchange of substances
between blood flow and cells is facilitated.The interplay of the
unidirectional blood flow with local metabolism generates
concentration gradients of blood-borne substances (such as
oxygen) between the inlet and the outlet of the liver. The
unidirectionality of that blood, that is, the blood flows form
the portal triads to the central vein (Figure 5), has a major
influence on the mathematical structure of the model, which
appears to be capable of describing the formation of zones
with a jump discontinuity at a certain distance along a
capillary [3].

Several metabolic functions of the liver have been found
to be organized in spatial zones arranged in relation to the
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direction of hepatic blood flow, in such a way that some
enzymes act almost wholly upstream others [3]. Bass et al.
[3] attributed such distributions of enzymes activities to dis-
tributions of cell types. For the simplest case of two enzymes,
there are two corresponding cell types, each containing only
one of the enzymes; separate metabolic zones occur when all
cells of one type are located upstream all cells of the other
type. Furthermore, it was reported in [3] that each cell type
reproduces itself by division. The mathematical model was
discussed in [3], but for convenience the main steps in its
derivation are repeated in the next section.Themathematical
model describing the formation of liver zones is a system of
nonlinear integropartial differential equations. The objective
of this paper is to apply Adomian’s decomposition method to
the system in order to find its stationary solutions (as the time
tends to infinity) and the general solutions (at any position 𝑥
and any time 𝑡) for arbitrary initial conditions.

2. Mathematical Modelling and Solutions

2.1. Mathematical Formulation. About 1100 milliliters of
blood flows from the portal vein into the liver sinusoids
(Figure 6) each minute, and approximately an additional 350
milliliters flows into the sinusoids from the hepatic artery, the
total averaging is about 1450mL/min. This amounts to about
29% of the resting cardiac output. As the many capillaries
comprising the liver are similar and act essentially in parallel,
Bass et al. [3] modelled a representative capillary lined with
cells of two kinds. It was suggested to put the 𝑥-axis along
the blood flow, with inlet at 𝑥 = 0 and outlet at 𝑥 = 𝐿

[3]. The density of cells of the first kind is defined by 𝜌
1
(𝑥, 𝑡)

as a continuous representation of the number of cells of the
first kind per unit length of capillary at time 𝑡 at the position
𝑥. The density 𝜌

2
(𝑥, 𝑡) of cells of the second kind is defined

analogously. The total cell density 𝜌
1
+ 𝜌
2
cannot exceed

some fixed maximum density 𝜎 of cell sites, as division of
the cell is limited by the familiar phenomenon of contact
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inhibition. The local rate of change 𝜕𝜌
1
/𝜕𝑡 of the density of

cells of the first kind is assumed to consist of a growth rate
term proportional to 𝜌

1
(self-generation) and to the density

of sites available, 𝜎 − 𝜌
1
− 𝜌
2
, and of a death rate term

proportional to 𝜌
1
, with a coefficient 𝛽

1
(𝑐) > 0 dependent

on the local concentration 𝑐 of a controlling blood-borne
substance. In what follows, for definiteness, oxygen is taken
as that substance. Then

𝜕𝜌
1

𝜕𝑡
= 𝐾
1
𝜌
1
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝛽
1
(𝑐) 𝜌
1
, (1)

with a constant coefficient 𝐾
1
> 0. A similar equation for 𝜌

2

is obtained from (1) by interchanging the suffices 1, 2. So

𝜕𝜌
2

𝜕𝑡
= 𝐾
2
𝜌
2
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝛽
2
(𝑐) 𝜌
2
. (2)

Let 𝑓 be the steady rate of blood flow through the capillary.
If oxygen is transported in the 𝑥-direction predominantly by
convectionwith the blood and used up by the two cell types at
the rates 𝑘

1
𝜌
1
and 𝑘

2
𝜌
2
(with positive constants 𝑘

1
, 𝑘
2
), then

changes in 𝑐 caused by changes in 𝜌
1
and 𝜌
2
are quasisteady.

Therefore, 𝑐 satisfies

𝑓
𝜕𝑐

𝜕𝑥
= −𝑘
1
𝜌
1
− 𝑘
2
𝜌
2
. (3)

If (3) is integrated, then

𝑐 (𝑥, 𝑡) = 𝑐
0
−
1

𝑓
∫

𝑥

0

[𝑘
1
𝜌
1
(𝜉, 𝑡) + 𝑘

2
𝜌
2
(𝜉, 𝑡)] 𝑑𝜉, (4)

where 𝑐
0
is the steady oxygen concentration in the blood

entering the liver. It is assumed that as oxygen concentra-
tion falls, the death rate of cells increases (𝑑𝛽

1
(𝑐)/𝑑𝑐 ≤

0, 𝑑𝛽
2
(𝑐)/𝑑𝑐 ≤ 0), though not necessarily equally for both

cell types. It is assumed that 𝛽
1
(𝑐) has the following form

(similarly for 𝛽
2
(𝑐)):

𝛽
1
(𝑐) = 𝜇

1
+ ]
1
(𝑐
0
− 𝑐) , (5)

where

𝜇
1
= 𝛽
1
(𝑐
0
) ≥ 0, ]

1
= −

𝑑𝛽
1

𝑑𝑐

𝑐0

≥ 0. (6)
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Introducing (4) and (5) into (1) and (2), we arrive at the pair
of equations

𝜕𝜌
1

𝜕𝑡
= 𝜌
1
[𝐾
1
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝜇
1
−
]
1

𝑓
∫

𝑥

0

(𝑘
1
𝜌
1
+ 𝑘
2
𝜌
2
) 𝑑𝜉] ,

𝜕𝜌
2

𝜕𝑡
= 𝜌
2
[𝐾
2
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝜇
2
−
]
2

𝑓
∫

𝑥

0

(𝑘
1
𝜌
1
+ 𝑘
2
𝜌
2
) 𝑑𝜉] .

(7)

If 𝐾
1
𝜎 ≤ 𝜇

1
, then 𝜌

1
(𝑥, 𝑡) → 0 as 𝑡 → ∞ for all 𝑥, and

similarly for 𝜌
2
. Therefore, it is assumed that 𝐾

1
𝜎 > 𝜇

1
and

𝐾
2
𝜎 > 𝜇

2
. For similar reasons, it is assumed that at least one

of ]
1
and ]
2
is positive (say ]

1
). It is noted at once that unless

the first cell type is inevitably to die out, its greatest possible
specific growth rate𝐾

1
𝜎must exceed its least possible specific

death rate 𝜇
1
. Similar remarks apply for the second cell type,

and accordingly it is assumed in [3] that

𝐾
1
𝜎 > 𝜇
1
, 𝐾

2
𝜎 > 𝜇
2
. (8)

To obtain some preliminary heuristic ideas about the forma-
tion of zones in their model, Bass et al. [3] supposed that
(7) admits solutions which at all finite times are everywhere
positive and satisfy (𝜌

1
+ 𝜌
2
) < 𝜎. For such solutions, (7) can

be written in the form
𝜕

𝜕𝑡
ln 𝜌
1
= 𝐾
1
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝜇
1
−
]
1

𝑓
∫

𝑥

0

(𝑘
1
𝜌
1
+ 𝑘
2
𝜌
2
) 𝑑𝜉,

𝜕

𝜕𝑡
ln 𝜌
2
= 𝐾
2
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝜇
2
−
]
2

𝑓
∫

𝑥

0

(𝑘
1
𝜌
1
+ 𝑘
2
𝜌
2
) 𝑑𝜉.

(9)

Multiplying the first equation in (9) by 𝐾
2
and the second by

𝐾
1
, we have

𝜕

𝜕𝑡
ln 𝜌𝐾2
1
= 𝐾
1
𝐾
2
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝜇
1
𝐾
1

−
]
1
𝐾
1

𝑓
∫

𝑥

0

(𝑘
1
𝜌
1
+ 𝑘
2
𝜌
2
) 𝑑𝜉,

𝜕

𝜕𝑡
ln 𝜌𝐾1
2
= 𝐾
1
𝐾
2
(𝜎 − 𝜌

1
− 𝜌
2
) − 𝜇
2
𝐾
2

−
]
2
𝐾
2

𝑓
∫

𝑥

0

(𝑘
1
𝜌
1
+ 𝑘
2
𝜌
2
) 𝑑𝜉.

(10)

2.2. The Stationary Solutions. For such solutions, we can
combine (10) in the form

𝜕

𝜕𝑡
[ln(

𝜌
𝐾2

1

𝜌
𝐾1

2

)] = 𝐴 −
𝐵

𝑓
∫

𝑥

0

(𝑘
1
𝜌
1
+ 𝑘
2
𝜌
2
) 𝑑𝜉, (11)

where

𝐴 = 𝜇
2
𝐾
1
− 𝜇
1
𝐾
2
, 𝐵 = ]

1
𝐾
2
− ]
2
𝐾
1
. (12)

Suppose that 𝜇
2
𝐾
1
> 𝜇
1
𝐾
2
, ]
1
𝐾
2
> ]
2
𝐾
1
, or

𝜇
2

𝐾
2

>
𝜇
1

𝐾
1

,
]
2

𝐾
2

<
]
1

𝐾
1

, (13)

so that the constants 𝐴 and 𝐵 are positive. Since the integral
in (11) is bounded above by (𝑘

1
+ 𝑘
2
)𝑥𝜎, the right-hand side

of (11) is positive at all times for sufficiently small 𝑥, where

𝑥 <
𝐴𝑓

(𝑘
1
+ 𝑘
2
) 𝜎𝐵

. (14)

Volterra’s argument [3] then applies: as 𝑡 → ∞, 𝜌𝐾2
1
/𝜌
𝐾1

2
→

∞, and with 𝜌
1
bounded above by 𝜎, 𝜌

2
must tends to zero.

It is then plausible that for these values of 𝑥 in (14), 𝜌
1

will approach a stationary form determined from the first
equations of (7) with 𝜌

2
= 0, namely [3, 4],

𝐾
1
(𝜎 − 𝜌

1
) − 𝜇
1
−
]
1

𝑓
∫

𝑥

0

𝑘
1
𝜌
1
𝑑𝜉 = 0. (15)

In order to solve this equation by Adomian’s decomposition
method [5–13], we put the equation in the form

𝜌
1
=
𝑐
1

𝐾
1

− (
]
1
𝑘
1

𝑓𝐾
1

)∫

𝑥

0

𝜌
1
𝑑𝜉, (16)

where

𝑐
𝑖
= 𝐾
𝑖
𝜎 − 𝜇
1
, 𝑖 = 1, 2. (17)

According to Adomian’s method, 𝜌
1
is assumed as

𝜌
1
=

∞

∑

𝑛=0

𝜌
1𝑛
. (18)

Substituting (18) into (16), we obtain
∞

∑

𝑛=0

𝜌
1𝑛
=
𝑐
1

𝐾
1

− (
]
1
𝑘
1

𝑓𝐾
1

)

∞

∑

𝑛=0

∫

𝑥

0

𝜌
1𝑛
𝑑𝜉. (19)

Let

𝜌
10
=
𝑐
1

𝐾
1

. (20)

Then the solution can be elegantly computed by using the
recurrence relation

𝜌
1(𝑛+1)

= −
]
1
𝑘
1

𝑓𝐾
1

∫

𝑥

0

𝜌
1𝑛
𝑑𝜉, 𝑛 ≥ 0. (21)

This gives

𝜌
11
(𝑥) = (

−]
1
𝑘
1

𝑓𝐾
1

)
𝑐
1

𝐾
1

𝑥,

𝜌
12
(𝑥) = (−

]
1
𝑘
1

𝑓𝐾
1

)

2
𝑐
1

𝐾
1

𝑥
2

2!
,

𝜌
13
(𝑥) = (−

]
1
𝑘
1

𝑓𝐾
1

)

3
𝑐
1

𝐾
1

𝑥
3

3!
,

...

𝜌
1𝑛
(𝑥) = (−

]
1
𝑘
1

𝑓𝐾
1

)

𝑛
𝑐
1

𝐾
1

𝑥
𝑛

𝑛!
, 𝑛 ≥ 0.

(22)
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According to (18), we obtain 𝜌
1
in the form

𝜌
1
(𝑥) = 𝜌

∗

1
(𝑥) =

𝑐
1

𝐾
1

exp[−]1𝑘1
𝑓𝐾
1

𝑥] . (23)

Set 𝜌
2
equal to zero and 𝜌

1
equal to 𝜌∗

1
, then (11) becomes

𝜕

𝜕𝑡
[ln(

𝜌
𝐾2

1

𝜌
𝐾1

2

)] = 𝐴 −
𝐵𝑐
1

]
1

[1 − exp(−]1𝑘1
𝑓𝐾
1

𝑥)] . (24)

We note that the right-hand side of (24) decreases with
increasing 𝑥 and reaches zero at a value 𝑥 = 𝑥∗ determined
by

exp(]1𝑘1𝑥
∗

𝑓𝐾
1

) =
𝐵𝑐
1

𝐾
1
(]
1
𝑐
2
− ]
2
𝑐
1
)
. (25)

Provided that

]
1
𝑐
2
> ]
2
𝑐
1
. (26)

The point 𝑥 = 𝑥∗ determined by (25) lies in the interval (0, 𝐿)
of interest provided that

exp(]1𝑘1𝐿
𝑓𝐾
1

) >
𝐵𝑐
1

𝐾
1
(]
1
𝑐
2
− ]
2
𝑐
1
)
. (27)

Under these conditions, it is then reasonable to suppose that,
for 𝑥 > 𝑥∗, the right-hand side of (11) will in fact be negative
for sufficiently large values of 𝑡 [3]. Volterra’s argument then
indicates that we can expect to find 𝜌

1
→ 0 as 𝑡 → ∞ for

𝑥 > 𝑥
∗. Furthermore, we may also expect that, for 𝑥 > 𝑥∗, 𝜌

2

will approach a stationary form determined from the second
equation of (7) by

𝐾
2
(𝜎 − 𝜌

2
) − 𝜇
2
−
]
2

𝑓
[∫

𝑥
∗

0

𝑘
1
𝜌
∗

1
𝑑𝜉 + ∫

𝑥

𝑥
∗

𝑘
2
𝜌
2
𝑑𝜉] = 0.

(28)

This equation can be solved by Adomian’smethod; we rewrite
the equation in the form

𝜌
2
+
]
2
𝑘
2

𝑓𝐾
2

∫

𝑥

𝑥
∗

𝜌
2
𝑑𝜉 = 𝐷, (29)

where

𝐷 =
]
1
𝑐
2
− ]
2
𝑐
1

𝐵
. (30)

We assume that

𝜌
2
=

∞

∑

𝑛=0

𝜌
2𝑛
. (31)

Let 𝜌
20
= 𝐷, then the solution can be computed by using the

recurrence relation

𝜌
2(𝑛+1)

= −
]
2
𝑘
2

𝑓𝐾
2

∫

𝑥

𝑥
∗

𝜌
2𝑛
𝑑𝜉, 𝑛 ≥ 0. (32)

This gives

𝜌
21
= −

−]
2
𝑘
2

𝑓𝐾
2

𝐷(𝑥 − 𝑥
∗
) ,

𝜌
22
= (−

]
2
𝑘
2

𝑓𝐾
2

)

2

𝐷
(𝑥 − 𝑥

∗
)
2

2!
,

...

𝜌
2𝑛
= (−

]
2
𝑘
2

𝑓𝐾
2

)

𝑛

𝐷
(𝑥 − 𝑥

∗
)
𝑛

𝑛!
, 𝑛 ≥ 0.

(33)

Therefore

𝜌
2
= 𝜌
∗

2
(𝑥) = 𝐷 exp [−]2𝑘2

𝑓𝐾
2

(𝑥 − 𝑥
∗
)] , 𝑥 > 𝑥

∗
. (34)

So, as 𝑡 → ∞, the formation of liver zones can be described
as follows:

𝜌
1
= 𝜌
∗

1
(𝑥) , 𝜌

2
= 0, 0 ≤ 𝑥 < 𝑥

∗
,

𝜌
1
= 0, 𝜌

2
= 𝜌
∗

2
(𝑥) , 𝑥

∗
< 𝑥 ≤ 𝐿.

(35)

3. Analytical Solutions

In applied mathematics, Adomian’s decomposition method
is an effective procedure to obtain analytic and approximate
solutions for different types of equations.Thismethod is used
here to obtain a general solution for the system (7). Following
Bass et al. [3], we define new variables

𝑡

= 𝑐
1
𝑡, 𝑥


=
]
1
𝑘
1

𝑓𝐾
1

𝑥, V
𝑖
(𝑡

, 𝑥

) =

𝐾
1

𝑐
1

𝜌
𝑖
(𝑡, 𝑥)

(36)

and new parameters

𝜃 =
𝑘
2

𝑘
1

, 𝛾 =
𝐾
2

𝐾
1

, 𝜆 =
𝐾
1
𝑐
2

𝐾
2
𝑐
1

, 𝜂 =
]
2
𝐾
1

]
1
𝐾
2

.

(37)

Then (7) becomes, on dropping at once the primes from the
new independent variables,

𝜕V
1

𝜕𝑡
= V
1
[1 − V

1
− V
2
− ∫

𝑥

0

[V
1
(𝑡, 𝜉) + 𝜃V

2
(𝑡, 𝜉)] 𝑑𝜉] ,

𝜕V
2

𝜕𝑡
= 𝛾V
2
[𝜆 − V

1
− V
2
− 𝜂∫

𝑥

0

[V
1
(𝑡, 𝜉) + 𝜃V

2
(𝑡, 𝜉)] 𝑑𝜉] ,

(38)

with constant parameters

𝜃 > 0, 𝛾 > 0, 𝜆 > 0, 𝜂 ≥ 0. (39)

The spatial interval of interest is now [0, Λ], where Λ =

(]
1
𝑘
1
/𝑓𝐾
1
)𝐿, and then we have [3]

𝜂 < 𝜆 < 1, ln(
1 − 𝜂

𝜆 − 𝜂
) < Λ. (40)
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The stationary solutions become

V
1
= 𝑒
−𝑥
, V
2
= 0, 0 ≤ 𝑥 < 𝑥

∗
,

V
1
= 0, V

2
= (

𝜆 − 𝜂

1 − 𝜂
) 𝑒
−𝜂𝜃(𝑥−𝑥

∗
)
, 𝑥
∗
< 𝑥 ≤ Λ,

(41)

where now

𝑥
∗
= ln(

1 − 𝜂

𝜆 − 𝜂
) . (42)

For searching analytical solutions, we firstly rewrite the
system we want to solve as two separate integro-partial
differential equations:

𝜕V
1

𝜕𝑡
= V
1
[1 − V

1
− V
2
− ∫

𝑥

0

(V
1
+ 𝜃V
2
) 𝑑𝜉] , (43)

𝜕V
2

𝜕𝑡
= 𝛾V
2
[𝜆 − V

1
− V
2
− 𝜂∫

𝑥

0

(V
1
+ 𝜃V
2
) 𝑑𝜉] . (44)

According to the decomposition method, we assume that

V
1
=

∞

∑

𝑛=0

V
1𝑛
, V

2
=

∞

∑

𝑛=0

V
2𝑛
. (45)

Equation (43) can be put in the following operator form:

𝐿
𝑡
V
1
= V
1
− V2
1
− V
1
V
2
− V
1
∫

𝑥

0

(V
1
(𝑡, 𝜉) + 𝜃V

2
(𝑡, 𝜉)) 𝑑𝜉,

𝐿
𝑡
=
𝜕

𝜕𝑡
.

(46)

Applying the inverse operator 𝐿−1
𝑡
[⋅] = ∫

𝑡

0
[⋅]𝑑𝑡, on both sides

of this equation, yields

V
1
− V
1
(𝑥, 0) = 𝐿

−1

𝑡
V
1
− 𝐿
−1

𝑡
V2
1
− 𝐿
−1

𝑡
V
1
V
2

− 𝐿
−1

𝑡
V
1
∫

𝑥

0

(V
1
+ 𝜃V
2
) 𝑑𝜉.

(47)

Substituting (45) into (47), we obtain

V
1
= V
1
(𝑥, 0) + 𝐿

−1

𝑡

∞

∑

𝑛=0

V
1𝑛

− 𝐿
−1

𝑡

∞

∑

𝑛=0

𝑛

∑

𝑘=0

V
1𝑘
V
1(𝑛−𝑘)

− 𝐿
−1

𝑡

∞

∑

𝑛=0

𝑛

∑

𝑘=0

V
1𝑘
V
2(𝑛−𝑘)

− 𝐿
−1

𝑡

∞

∑

𝑛=0

V
1𝑛
∫

𝑥

0

∞

∑

𝑛=0

(V
1𝑛
+ 𝜃V
2𝑛
) 𝑑𝜉.

(48)

Now, the solution V
1
can be evaluated through the recursive

scheme:

V
10
(𝑥, 𝑡) = V

1
(𝑥, 0) ,

V
1(𝑛+1)

(𝑥, 𝑡) = 𝐿
−1

𝑡
V
1𝑛
− 𝐿
−1

𝑡
(

𝑛

∑

𝑘=0

V
1𝑘
V
1(𝑛−𝑘)

)

− 𝐿
−1

𝑡
(

𝑛

∑

𝑘=0

V
1𝑘
V
2(𝑛−𝑘)

) − 𝐿
−1

𝑡

𝑛

∑

𝑘=0

V
1𝑘

× ∫

𝑥

0

(V
1(𝑛−𝑘)

+ 𝜃V
2(𝑛−𝑘)

) 𝑑𝜉, 𝑛 ≥ 0.

(49)

By similar analysis, we can get the solution V
2
by the recursive

scheme:

V
20
(𝑥, 𝑡) = V

2
(𝑥, 0) ,

V
2(𝑛+1)

(𝑥, 𝑡) = 𝛾𝜆𝐿
−1

𝑡
V
2𝑛
− 𝛾𝐿
−1

𝑡
(

𝑛

∑

𝑘=0

V
1𝑘
V
2(𝑛−𝑘)

)

− 𝛾𝐿
−1

𝑡
(

𝑛

∑

𝑘=0

V
2𝑘
V
2(𝑛−𝑘)

) − 𝛾𝜆𝐿
−1

𝑡

𝑛

∑

𝑘=0

V
2𝑘

× ∫

𝑥

0

(V
1(𝑛−𝑘)

+ 𝜃V
2(𝑛−𝑘)

) 𝑑𝜉, 𝑛 ≥ 0.

(50)

For simplicity, we assume that the two types of the liver cells
have the same distribution along the hepatic capillary at 𝑡 = 0;
that is,

V
1
(𝑥, 0) = V

2
(𝑥, 0) ;

that is, V
10
(𝑥) = V

20
(𝑥) = V

0
(𝑥) (say) .

(51)

By this, we can get the first few terms of Adomian’s series from
the recurrence relations (49) and (50) as follows:

V
11
(𝑥, 𝑡) = V

0
[1 − 2V

0
− (1 + 𝜃) 𝐼

1
(𝑥)] 𝑡,

V
21
(𝑥, 𝑡) = 𝛾V

0
(𝜆 − 2V

0
− 𝜂 (1 + 𝜃) 𝐼

1
(𝑥)) 𝑡,

V
12
= V
0
{[1 − 3V

0
− (1 + 𝜃) 𝐼

1
(𝑥)] [1 − 2V

0
− (1 + 𝜃) 𝐼

1
(𝑥)]

− 𝛾V
0
[𝜆 − 2V

0
− 𝜂 (1 + 𝜃) 𝐼

1
(𝑥)] − (1 + 𝛾𝜃𝜆) 𝐼

1
(𝑥)

+ 2 (1 + 𝛾𝜃) 𝐼
2
(𝑥) (1 + 𝛾𝜂𝜃) (1 + 𝜃) 𝐼

3
(𝑥)}

𝑡
2

2!
,

V
22
= {[𝛾𝜆 − 3𝛾V

0
− 𝛾𝜂 (1 + 𝜃) 𝐼

1
(𝑥)]

× [𝛾𝜆V
0
− 2𝛾V2
0
− 𝛾𝜂 (1 + 𝜃) V

0
𝐼
1
(𝑥)]

− [𝛾V2
0
− 2𝛾V3
0
− 𝛾 (1 + 𝜃) V2

0
𝐼
1
(𝑥)]

− 𝛾𝜂 (1 + 𝛾𝜃𝜆) V
0
𝐼
1
(𝑥) + 2𝛾𝜂 (1 + 𝛾𝜃) V

0
𝐼
2
(𝑥)

+ 𝛾𝜂 (1 + 𝜃) (1 + 𝛾𝜂𝜃) V
0
𝐼
3
(𝑥)}

𝑡
2

2!
,

(52)
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where

𝐼
1
(𝑥) = ∫

𝑥

0

V
0
𝑑𝜉, 𝐼

2
(𝑥) = ∫

𝑥

0

V2
0
𝑑𝜉,

𝐼
3
(𝑥) = ∫

𝑥

0

𝐼
1
(𝜉) V
0
𝑑𝜉.

(53)

4. Remarks

Here, we indicate that at particular values of the parameters
𝛾, 𝜆, and 𝜂, the solutions V

1
and V
2
are equivalent. In order to

do this, we prefer to put the solutions V
1
and V
2
in the form

V
1
(𝑥, 𝑡) = 𝛼

0
(𝑥) + 𝛼

1
(𝑥) 𝑡 + 𝛼

2
(𝑥) 𝑡
2
+ ⋅ ⋅ ⋅ ,

V
2
(𝑥, 𝑡) = 𝛽

0
(𝑥) + 𝛽

1
(𝑥) 𝑡 + 𝛽

2
(𝑥) 𝑡
2
+ ⋅ ⋅ ⋅ ,

(54)

where

𝛼
0
(𝑥) = 𝛽

0
(𝑥) = V

0
(𝑥) ,

𝛼
1
(𝑥) = V

0
[1 − 2V

0
− (1 + 𝜃) 𝐼

1
(𝑥)] ,

𝛼
2
(𝑥) =

1

2!
V
0
[1 − 3V

0
− (1 + 𝜃) 𝐼

1
(𝑥)]

× [1 − 2V
0
− (1 + 𝜃) 𝐼

1
(𝑥)]

− 𝛾V
0
[𝜆 − 2V

0
− 𝜂 (1 + 𝜃) 𝐼

1
(𝑥)] − (1 + 𝛾𝜃𝜆) 𝐼

1
(𝑥)

+ 2 (1 + 𝛾𝜃) 𝐼
2
(𝑥) + (1 + 𝛾𝜂𝜃) (1 + 𝜃) 𝐼

3
(𝑥) ,

𝛽
1
(𝑥) = 𝛾V

0
[𝜆 − 2V

0
− (1 + 𝜃) 𝐼

1
(𝑥)] ,

𝛽
2
(𝑥) =

1

2!
{[𝛾𝜆 − 3𝛾V

0
− 𝛾𝜂 (1 + 𝜃) 𝐼

1
(𝑥)]

× [𝛾𝜆V
0
− 2𝛾V2
0
− 𝛾𝜂 (1 + 𝜃) V

0
𝐼
1
(𝑥)]

− [𝛾V2
0
− 2𝛾V3
0
− 𝛾 (1 + 𝜃) V2

0
𝐼
1
(𝑥)]

− 𝜂 (1 + 𝛾𝜃𝜆) V
0
𝐼
1
(𝑥) + 2𝛾𝜂 (1 + 𝛾𝜃) V

0
𝐼
2
(𝑥)

+ 𝛾𝜂 (1 + 𝜃) (1 + 𝛾𝜂𝜃) V
0
𝐼
3
(𝑥)} .

(55)

Firstly, substituting 𝛾 = 𝜆 = 𝜂 = 1 into the original equations
(38), we obtain

1

V
1

𝜕V
1

𝜕𝑡
= 1 − V

1
− V
2
− ∫

𝑥

0

(V
1
+ 𝜃V
2
) 𝑑𝜉,

1

V
2

𝜕V
2

𝜕𝑡
= 1 − V

1
− V
2
− ∫

𝑥

0

(V
1
+ 𝜃V
2
) 𝑑𝜉.

(56)

We can combine these equations in the form

𝜕

𝜕𝑡
[ln V
1
(𝑥, 𝑡)] =

𝜕

𝜕𝑡
[ln V
2
(𝑥, 𝑡)] . (57)

By integrating both sides with respect to 𝑡 from 0 to 𝑡, we get

ln [V1 (𝑥, 𝑡)
V
0
(𝑥)

] = ln [V2 (𝑥, 𝑡)
V
0
(𝑥)

] , (58)

where we used the relation V
1
(𝑥, 0) = V

2
(𝑥, 0) = V

0
(𝑥). Thus,

V
1
(𝑥, 𝑡) = V

2
(𝑥, 𝑡). Now, substituting 𝛾 = 𝜆 = 𝜂 = 1 into (55),

we can easily observe that

𝛼
0
(𝑥) = 𝛽

0
(𝑥) , 𝛼

1
(𝑥) = 𝛽

1
(𝑥) , 𝛼

2
(𝑥) = 𝛽

2
(𝑥) ,

(59)

which leads also to V
1
(𝑥, 𝑡) = V

2
(𝑥, 𝑡).

5. Conclusion

In this paper, the Adomian decomposition method has been
applied successfully to a system of nonlinear integro-partial
differential equations describing the formation of liver zones.
As time tends to infinity, the stationary solutions are obtained
in exact forms by using Adomian’s method, where full
agreement with those obtained in the literature has been
achieved. Also, at any time of the liver regeneration process,
the analytical solutions are obtained explicitly in series form.
Finally, the current solutions may shed some light on the
mathematical aspects of the formation of liver zones and also
on describing the distribution of the two types of the liver
cells.
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