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Abstract
Selected Reaction Monitoring (SRM) is a method of choice for accurate quantitation of low-
abundance proteins in complex backgrounds. This strategy is, however, sensitive to interference
from other components in the sample that have the same precursor and fragment masses as the
monitored transitions. We present here an approach to detect interference by using the expected
relative intensity of SRM transitions. We also designed an algorithm to automatically detect the
linear range of calibration curves. These approaches were applied to the experimental data of
Clinical Proteomic Tumor Analysis Consortium (CPTAC) Verification Work Group Study 7 and
show that the corrected measurements provide more accurate quantitation than the uncorrected
data.

1. Introduction
Selected Reaction Monitoring (SRM) mass spectrometry has increasingly been used to
develop assays for precise quantitation of low-abundance proteins in complex biological
matrices [1], [2]. The technique was introduced in the late 1970s [3] for analyzing small
molecules [4], and its application for protein quantitation has been an active research topic
during the past decade. Figure 1 below shows the schematic work-flow of SRM-MS assays
for protein quantitation. Proteins are extracted from biological samples and enzymatically
digested. Heavy-isotope versions of the peptides of interest are added to the samples, and the
mixture is analyzed by Liquid Chromatography Mass Spectrometry (LC-MS). Most
typically a triple quadrupole mass spectrometer [5] is used for SRM assays. In a triple
quadrupole mass spectrometer, quadrupole 1 (Q1) and quadrupole 3 (Q3) serve as mass
filters for selecting precursor ions and fragment ions with m/z values that define the
transitions that are monitored and quadrupole 2 (Q2) is used as a collision cell for
fragmenting the peptides. Because only the selected transitions are monitored instead of
acquiring the entire tandem mass spectra, the speed of analysis is very fast. During the
sample preparation and measurement, there is always variation in the experimental
conditions that is difficult to control. Therefore, isotopically labeled reference peptides [6],
[7] are often used as internal standards in SRM assays in order to reduce the effects of this
variation [8]. These isotopically labeled reference peptides are created by replacing a 4-10
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atoms of 12C and 14N in a selected amino acid (e.g. Arginine, Lysine, Valine, Isoleucine)
with 13C and 15N, respectively. The isotopically labeled version of the analyte (Figure 1)
behaves identically to the analyte peptides in the different experimental steps except that in
the mass spectrometer they are distinguishable based on the masses of the precursor and
fragment ions [9–14].

Over the past decade, SRM has been the technology of choice for accurate quantitation of
selected peptides in complex biological samples. However, the frequent occurrence of
interferences is a significant problem which causes inaccurate quantitation of peptides [15],
[16]. The key factor contributing to this problem is that other components in a sample may
have the same precursor and fragment masses as the monitored transitions. The interference
problem only gets worse with some of the newer strategies that attempt to collect
fragmentation information on all peptides simultaneously by using wider isolation windows
that allow scanning of the mass range of interest in a data independent fashion [17–20].
With the current generation of AB Sciex time-of-flight instruments, the smallest size of
isolation window that can be accommodated in these data independent fragmentation
strategies is approximately 20-25 Da [18] – in most such cases many peptides will be
isolated and fragmented together, and new software is needed for effective analysis of these
mixed spectra. The Thermo Scientific Orbitrap-based Q Exactive now allows the use of
discontinuous isolation windows (e.g. 5 × 4 Da windows). If the these 5 discontinuous
windows are selected at random, each window will be grouped with different windows each
time, and this makes it is possible to deconvolute the mixed spectra [21] more easily. The
advantage of these data independent acquisition methods that use wide isolation windows is
that they enable data collection without making decisions during data acquisition, thus
making the measurements more versatile. However, the price paid for this versatility is an
increase in potential interferences.

Currently, manual inspection is typically used to identify the interferences. To address the
time-intensive and error-prone nature of manual inspection, we have developed an algorithm
to automatically detect and correct the interference using the expected relative intensity of
SRM transitions. Previous studies [11], [15], [22], [23] have devised methods to detect
interferences in SRM assays. In one of these methods, AuDIT [15], the relative ratio of the
analyte and the relative ratio of stable isotope-labeled internal standard are compared to
detect interference, and the method requires the use of a stable isotope-labeled internal
standard. The novel aspects of the present approach include that it can be applied to
experiments where stable isotope standards are not used. Our method detects outliers in the
relative intensity of SRM transitions and automatically detect the linear range of the
measurements to detect inferences, which can be easily understood and implemented
compared with using multiple properties of SRM in the algorithm. The threshold for the
outliers were determined by computational simulation.

2. Materials and methods
2. 1 Experimental Data

The experimental data were taken from CPTAC Verification Work Group Study 7 [16]
(http://cptac.tranche.proteomecommons.org/study7.html). This data set contains results from
a multi-laboratory study designed to assess the performance of SRM assays. Eight
laboratories measured 10 peptides in human plasma in the concentration range of 1-500
fmol/μl, and corresponding stable isotope labeled internal standard peptides were added to
each sample. Three SRM transitions for each peptide were monitored. Each analysis was
repeated 4 times at each laboratory. Figure 2 shows examples of experimental data for two
peptides: (A) a peptide with no apparent interference (i.e. for all transitions the measured
and actual concentrations are close), and (B) a peptide with interference in one of its
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monitored transitions (i.e. the measured concentrations are higher than the actual
concentrations, especially for low concentrations).

2.2 Interference Detection
In the absence of interference, the relative intensity of different transitions for a peptide is a
property of the peptide sequence and the mass spectrometric method (the energy and method
of fragmentation and the analysis time), and it is independent of peptide concentration.
Therefore, we use the relative intensities of transition to detect interference. In Figure 3 the
relative intensities are shown for the two peptides in Figure 2. In the absence of interference,
the ratios are constant, with increasing noise at lower amounts. In contrast, when there is
interference for one transition, the corresponding ratios deviate from the expected (constant)
ratios. Based on these observations, an approach was developed to detect the interference by
comparing the ratio of the intensity of pairs of transitions with the expected ratio from which
a Z-score for the deviation is calculated:

(1)

where Ij is the measured log intensity of transition j, Ii is the measured log intensity of
transition i, rji is the expected transition ratio, which is equal to the median of transition
ratios from the measurements of all different concentrations of one peptide and σji is the
standard deviation of relative intensities calculated from the four repeated analyses for each
concentration of samples of each peptide. Zji represents the number of standard deviations
that the ratio between the intensities of transitions j and i deviate from the expected
transition ratio. If interference occurs to transition i, it will cause an increase in Ii. Hence, the
worse interference is, the larger Zji is. The maximum function guarantees that the transition
which has the largest interference is detected. A transition is considered to have no
interference only when it does not have outliers of intensity ratios, i.e. Zi is smaller than a
threshold Zth.

2.3 Threshold Estimation
To maximize the accuracy of quantitation, a threshold, Zth, needs to be selected which
balances the need for removal of interference with the need for retaining data to obtain
sufficient statistics. Computer simulations were used to investigate the effect on the
quantitation of the noise and the interference detection threshold. It was assumed that the
data set had no interference but did have noise. The expected relative intensity of the
transitions for the sample was set to be 1:1:1 and the relative noise was assumed to be 0.2
and normally distributed. 10,000 simulations were executed by adding noise to transitions
randomly based on the noise rate. Interference detection was performed on the simulated
data (even though there was no interference but only noise). Figure 4 below shows the
results of computer simulations using the approach from section 2.2 above that detects
interference by measuring the deviation of the intensity ratios of transitions from the
expected ratios. Zth equal to infinity corresponds to no interference detection (black curve
with centroid equal to zero since there is only noise and no interference). If a low threshold
(e.g. Zth=0) is applied, the distribution will be distorted since high intensity values are
selectively removed. As the value of Zth is increased from 0 to larger numbers, the distortion
of the distribution decreases (Figure 4A) and the centroid (Figure 4B) moves closer to zero.
In Supplementary Figure 1.1 (http://fenyolab.org/data/12_bao_methods/
12_bao_methods_suppl_fig1.pdf), more noise ratios and relative intensities are simulated.
The three noise ratios: 0.2, 0.4 and 0.6 are colored and shaped differently. The simulation
shows the centroid and width of corrected relative error distributions as different thresholds
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are selected under the assumption that there is no interference. The result is consistent with
Figure 4. Supplementary Figures 1.2-1.7 show the effect of selecting different interference
removal thresholds when there is both noise and interference. Based on these simulations, an
interference detection threshold corresponding to two standard deviations of the noise was
selected as a reasonable trade-off between interference detection sensitivity and specificity.

2.4 Linear Range Detection
In cases when a calibration curve has been obtained for an SRM assay it is useful to
automatically find the linear range of the assay. Deviation from linear dependence at low
amounts is usually caused by increase in the uncertainty of the measurements when the limit
of quantitation is approached, or that the peptide studied is already present in the matrix at
low amounts. At high amounts, saturation can cause deviation from linear behavior. Figure
5A shows an example where the measurements at low amounts deviate from the actual
concentrations, probably because of the presence of the peptide in the matrix at low
amounts. In this case the measurements of all three transitions shift from the diagonal, and
Figure 5B shows that the relative intensities of transitions are almost constant on the low
concentrations side. Hence, it is a different type of interference that cannot be detected using
the method described in section 2.2. To address this problem, we developed an algorithm to
automatically detect the linear range of a calibration curve.

It is assumed that a data set Θ = {(x, y) | x ∈ actual _ conc, y ∈ measured _ conc} where
actual _ conc represents the set of log base 2 of actual concentrations, and measured _ conc
represents the set of log base 2 of measured concentrations. First, three elements are selected
from Θ and fitted to a linear function f(x) = kx+; b to determine the slope, k. Second, the
errors for all the three which represents the deviation between the slope of linear range and
the expected line x = y are calculated using formula (2) below.

(2)

If the error of the three elements are all smaller than a set threshold (here selected to be
30%), an attempt is made to elongate the linear range by moving one element forward in the
set Θ and calculate the linear regression for the next three elements. The linear range will be
extended until no more elements can be added and all the data in Θ have been tested.
Finally, the algorithm returns the longest linear range.

2.5 Implementation
Data preprocessing, interference detection, and linear range detection were programmed in
Perl (perldoc.perl.org) on a Windows platform. Statements of R [24] (a statistical
programming language) were called from Perl in order to plot the data. After obtaining the
necessary data and the required data format from the preprocessing step, the transition ratios
for the measurements of each peptide from each laboratory were calculated. Based on the
algorithm of section 2.2, outliers of the transitions ratios were found. The measurements
were corrected by removing the transitions with interference and the peptide quantity was
calculated using only the transitions without interference, and subsequently the linear range
detection algorithm was applied to the data.
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3. Results and Discussion
3.1 Results of the interference detection and correction approach applied to experimental
data

The method was applied to the CPTAC study Verification Work Group Study 7 data to
detect and correct interference (Figure 6 and Supplementary Figure 2 http://fenyolab.org/
data/12_bao_methods/12_bao_methods_suppl_fig2.pdf). Figure 6 shows three examples of
the performance of our interference detection and correction method with regard to three
aspects: measurements without interference are not distorted and are left uncorrected (Figure
6A) interference can be detected and corrected (Figure 6B); and the linear range can be
detected (Figure 6C).

3.2 Overcorrection when the estimated standard deviation is low
Because the standard deviation, σ, in Equation 1 is estimated using technical replicates, this
estimation can sometimes be too low, and lead to overcorrection and rejection of good
measurements. Figure 7A shows an example in which the measurements at the highest
concentrations were all flagged as incorrect by our interference detection method, because
the estimation of the standard deviation of the measurements for the highest concentration
was too low; hence, the Z-score was bigger than the threshold, and all transitions were
rejected. To overcome this problem of underestimating the standard deviation, we introduce
a minimum allowable value for the standard deviation, which is a property of the
instrumentation used and the experimental design. To find an appropriate minimum value
for these experiments, the standard deviations of the four technical replicates were studied.
Figure 7B shows the frequency distribution for the standard deviation, and the minimum
was selected to be 0.02 so that 95% of the standard deviation measurements were higher.
This choice of minimum removed the false corrections due to underestimation of the
standard deviation for the whole data set, but it did not affect the capability of the algorithm
to detect interference.

4 Conclusions
In conclusion, we presented a straight-forward method for detection and correction of
interference that uses the expected relative intensity of SRM transitions, and an estimation
of the noise from measurements of technical replicates. Computer simulations were used to
select the optimal interference detection threshold. In addition, an algorithm to automatically
detect the linear range of a calibration curve was developed and combined with the method
for interference detection. Information about the interferences can be used either to correct
or to reject measurements, yielding a straightforward strategy that improves SRM
quantitation. The tool for detecting and correcting interference in SRM analysis is freely
available http://fenyolab.org/tools/srm-interference/.
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Figure 1.
Schematic work flow of quantitation by SRM coupled with stable isotope dilution (SID).
The heavy labeled peptides are shown in red and the light ones in blue.
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Figure 2. Experimental data
The measured concentration as a function of the actual concentration for two different
peptides with three transitions and 4 technical replicates. The three transitions are shown as
blue circles, black squares, and red triangle for transitions tr1, tr2, and tr3, respectively. (A)
Example of a peptide with no interference. (B) Example of peptide with interference in
transition one.
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Figure 3. Relative intensities of transitions
The relative intensity as a function of the actual concentration for two different peptides
with three transitions and 4 technical replicates (same peptides as in Figure 2). The three
ratios are shown as yellow circles, blue squares, and red diamonds for transitions tr2/tr1, tr3/
t1, and tr2/tr3, respectively. (A) In the absence of interference, the ratios are constant, with
increasing noise at lower concentrations. (B) With interference in one transition, the
corresponding ratios deviate from the expected constant ratios.
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Figure 4. Simulation for interference detection threshold
(A) Relative error distributions for threshold Zth=∞, Zth=0, Zth=1 and Zth=2 respectively.
(B) The distribution centroid as a function of threshold.
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Figure 5. Example of peptide where the concentration dependence deviates from linear for low
concentrations
(A) Intensities of transitions. (B) Relative intensities of transitions.
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Figure 6. Correction of interference and linear range detection
Uncorrected (blue circles) and corrected (red triangles) measurements, calculated by
averaging over the transitions and the technical replicates for the three example peptides
from Figure 2A, Figure 2B and Figure 5A. In the corrected data, the transitions with
interference were removed and the peptide quantity was calculated using only the transitions
without interference. The blue dotted line and the red solid line show the linear range of
uncorrected and corrected measurements, respectively.
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Figure 7.
(A) Example of a peptide where the variation of relative transitions is very small between
the technical replicates at high concentrations. (B)The frequency of standard deviation
values for an example of peptide.
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