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Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter
of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone
and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory
nerves are integrated with endothelium-derived signals to produce vasodilation or
vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic
neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or
other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell
layers are connected directly to each other through GJs at discrete sites via MEJs projecting
through holes in the IEL. Whereas studies of intercellular communication in the vascular wall
have centered on endothelium-derived signals that govern SMC relaxation, attention has
increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from
PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this
emerging area of investigation in light of vasomotor control, the present review synthesizes
current understanding of signaling events that originate within SMCs in response to perivascular
neurotransmission in light of EC feedback. Though often ignored in studies of the resistance
vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for
myoendothelial communication. Greater understanding of these underlying signaling events and
how they may be affected by aging and disease will provide new approaches for selective
therapeutic interventions.
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INTRODUCTION
The local control of blood flow is integral to homeostasis of tissues and organ systems
throughout the body. The entire vasculature is lined by ECs with vessels controlling blood
flow magnitude and distribution (the focus of our present discussion) encircled by SMCs
that are surrounded by an adventitia that often contains a meshwork of PVNs. These nerve
fibers typically consist of sympathetic efferent axons that may be complemented by sensory
(and in some cases parasympathetic) axons (33, 111) (Table 1, Figure 1). Each source of
innervation can modulate vasomotor function through multiple signaling pathways that we
explore in this review. While our discussion centers on events occurring within the blood
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vessel wall, it should be recognized that neural control of the circulation (primarily via the
SNS) is integral to regulating systemic blood pressure and cardiac output (224).

Typically, the activation of sympathetic PVNs causes vasoconstriction whereas activation of
sensory or parasympathetic PVNs causes vasodilation. In addition to classical
neurotransmitters such as NE and ACh, concomitant release of co-transmitters and
neuromodulator substances can further influence vascular function (Figure 2). Respective
compounds are first packaged into synaptic vesicles. As action potentials propagate along
the efferent axon, depolarization of the presynaptic membrane leads to Ca2+ influx, vesicular
fusion and neurotransmitter exocytosis en passant from varicosities (174). Once released at
the vascular neuroeffector junction, these agents diffuse to receptors located on SMCs, ECs
and other PVNs (38, 60, 136) (Figures 2 and 3). The primary goal of this review is to
examine PVNs in light of these signaling events as they pertain to vasomotor control.
Aspects of this comprehensive literature are based on particular vascular beds (e.g., brain,
gut, skeletal muscle, skin). While our goal is to develop functional relationships that can be
applied to resistance networks throughout the body, current knowledge is often based upon
particular experimental models and protocols. Thus, regional variations are considered in
light of tissue specificity.

Heterocellular communication through MEJs as mediators of vasomotor control was
introduced ~50 years ago based upon exquisite ultrastructural studies of microvessels within
the fascia of rabbit skeletal muscle (223). In addition to documenting perivascular
innervation of resistance networks, these classic experiments illustrated that cellular
projections through the IEL provide discrete sites of contact positioned to enable direct
signaling between ECs and SMCs, particularly as arteries branched into progressively
smaller arterioles. Some 20 years later, heterocellular signaling through GJs in arterioles was
proposed to coordinate vasodilation along arterioles in the hamster cheek pouch (238). Such
behavior was later confirmed using electrophysiological measurements in pressurized feed
arteries of the cheek pouch retractor muscle (70). Following classic studies identifying the
essential role of the endothelium in promoting SMC relaxation of the rabbit aorta (83),
studies of heterocellular communication in the vascular wall have centered on the nature and
actions of signals originating within ECs that are transmitted to SMCs, e.g., NO- and EDH-
mediated relaxation [see Reviews (8, 61, 85, 246)] (Figure 3). However, from a holistic
perspective, it is essential to recognize that heterocellular signaling in the wall of resistance
microvessels is bi-directional in nature. Indeed, a growing body of evidence points to
myoendothelial coupling through GJs as being integral to neuroeffector signaling (Figure 3).

The ability of SMCs to evoke responses in underlying ECs originally focused on [Ca2+]i
dynamics in arterioles isolated from the hamster cheek pouch (62) and cremaster muscle
(62, 125, 285). Complementary studies using cell culture and arterial preparations
implicated concomitant heterocellular (myoendothelial) diffusion of IP3 (121, 156). In turn,
the rise in EC [Ca2+]i can stimulate NO production and hyperpolarization (42) to thereby
attenuate SMC contraction (260) (Figure 3). Thus, as investigators have focused on the
functional microdomain of MEJs (121, 164, 253), it has become evident that EDH may
serve both as a signal originating in ECs that initiates SMC relaxation and as a mechanism
for providing negative feedback in response to the activation of SMCs (62, 125, 156, 260,
261). Remarkably, these studies have routinely been performed using a pharmacological
approach; e.g., applying phenylephrine to activate α1ARs on SMCs. While these ARs are
activated physiologically by NE released from sympathetic PVNs (184, 267), there is a
paucity of information relating the physiological activation of SMCs (e.g., via PVNs) to EC
Ca2+ signaling. Recent findings from isolated rat mesenteric arteries have identified EC
Ca2+ signals (pulsars) in response to electrical stimulation of sympathetic nerves (198) with
evidence supporting EDH in attenuating SMC contraction. In light of this emerging area of

Westcott and Segal Page 2

Microcirculation. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



investigation, a complementary goal of this review is to consider the role of SMCs in
effecting EC feedback subsequent to the activation of PVNs.

INNERVATION OF BLOOD VESSELS
Histochemical and immunolabeling techniques have enabled identification of the presence
and origin of PVN fibers. While appropriate markers identify respective sources of
innervation (Figure 1), the density, pattern and composition of PVNs can vary with vascular
bed, vessel diameter and animal species (Table 1); representative examples are given in
context throughout this discussion. Most studies have not quantified nerve density and -
even where it has been measured - differences in immunological markers, preparation and
analytical techniques between laboratories make quantitative comparisons difficult. It should
be recognized that, in addition to variations in the density and origins of innervation,
differences in the size and location of NMJs relative to the vessel wall can also impact
vasomotor responses to the activation of PVNs. For example, when compared to diffusion
distances for neurotransmission in smaller resistance vessels (e.g., ~100 nm for vessels with
diameter < 150 μm), large arteries have up to ten-fold greater distances (e.g., several
hundred nm) between sites of neurotransmitter release and adjacent SMCs (14, 45, 174),
thereby increasing diffusion time while reducing the effective chemical concentration at
receptors. Nevertheless, such regional heterogeneity in the anatomy and composition of
PVNs (Table 1), along with variations in receptor expression and effector signaling
pathways, contribute towards tuning vasomotor control according to the particular needs of
specific vessels and vascular beds.

Sympathetic Innervation
Sympathetic nerves account for the largest proportion of innervation in the resistance
vasculature and have been associated with nearly every vascular bed studied across animal
species (Table 1). Reaction of glutaraldehyde with catecholamines or immunostaining for
TH or NPY has been most commonly used for their identification. Perivascular sympathetic
nerves arise from postganglionic efferent axons, with their cell bodies located in the
paravertebral ganglia (186). Efferent sympathetic axons form a plexus within the adventitia
(84) and typically follow the arterial supply, entering the tissue along feed arteries, coursing
along arterioles and terminating along the precapillary arterioles (223). Regional differences
in the pattern of sympathetic PVNs are consistent with corresponding differences in the role
of respective vascular beds. For example, in skeletal muscle, only precapillary vessels are
innervated (78, 95, 184) whereas in the mesentery, the veins are innervated as well (84,
172). From a physiological perspective, whereas the regulation of tissue blood flow and
perfusion pressure occur via precapillary resistance vessels in both vascular beds, veins in
the splanchnic circulation serve as a reservoir of blood that can be mobilized by SNA in
times of physical stress (225). Although arteries and resistance vessels of the brain are
innervated by noradrenergic axons originating in the superior cervical ganglia of the SNS,
SNA typically has little effect on cerebral blood flow. However, during hypertension,
sympathetic vasoconstriction may serve as a protective mechanism to preserve the integrity
of the blood brain barrier, protect capillary and venous pressures, and to thereby prevent
edema formation (reviewed in (47)).

Individual axons rarely make direct contact with SMCs (125) and do not penetrate the vessel
wall irrespective of the number of SMC layers present (14, 112, 174). Unlike classical
synapses (e.g., at the NMJ of skeletal muscle), there is not a single site of neurotransmitter
release from sympathetic nerves. Instead, neurotransmitter is released ‘en passant’ from
varicosities along the efferent axons (Figure 2). While many of these varicosities are not
directly associated with SMCs, sympathetic NMJs (when present) typically occur within 100
nm from SMCs (174, 175). In contrast to discrete activation of individual cells (e.g., at the
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NMJs of skeletal muscle), this functional anatomy results in dispersed actions of
neurotransmitter molecules as they diffuse to their receptors. In arteries and arterioles
(Figure 2), activation of ARs on SMCs typically (e.g., in skeletal muscle) results in
vasoconstriction however the onset and duration of action are variable (111). With increased
thickness of the media, neurotransmitter is unable to reach deeper layers of SMCs thus
homocellular coupling though GJs plays an important role in coordinating SMC activation
throughout the vessel wall (14, 187). In addition to NE, SNA releases two cotransmitters,
ATP and NPY (35), and the proportion of cotransmitter release relative to that of NE can
modulate the time course and magnitude of vasoconstriction (278). Vascular responses to
SNA can also vary with the content and composition of vesicles released from specific axon
varicosities (21, 250), the frequency and firing pattern of action potentials [i.e., single versus
bursts (26)], and according to the size and location of vessel branches within resistance
networks (184, 267, 289).

Adrenergic neuroeffector signaling—NE is the primary neurotransmitter released by
sympathetic PVNs (17). NE is synthesized in nerve fibers from its tyrosine precursor
through the actions of the enzyme TH and stored in vesicles along with its co-transmitters
(112). ARs are subtypes of GPCRs. Upon release, NE binds to postsynaptic αARs and βARs
on SMCs, where it activates signaling until it is removed. The majority of NE released
undergoes reuptake into presynaptic nerve terminals by the NE transporter with a fraction
undergoing degradation (e.g., by monoamine oxidase) (112, 266). The activation of αARs
causes constriction, whereas βAR activation evokes vasodilation (33, 99, 191). Activating
the α1 subtype of ARs on the postjunctional membrane of SMCs stimulates PLC through Gq
with ensuing production of IP3 leading to the intracellular release of Ca2+ from IP3 receptors
in the SR (189). The actions of Gq are also linked to receptor operated Ca2+ channels,
thereby leading to Ca2+ entry through TRPC3 and TRPC6 channels (110). In contrast,
α2ARs are expressed both on pre- and postjunctional membranes. Postjunctionally, α2ARs
are coupled to Gi protein-mediated signaling leading to diminished adenylyl cyclase activity,
with a fall in [cAMP] (43) leading to increased [Ca2+]i via a reduction in PKA-mediated
phosphorylation of Ca2+ channels (IP3Rs) in the SR (254) and of L-type Ca2+ channels in
the plasma membrane (281). Contraction of SMCs is also increased through cAMP-
mediated increases in the activity of myosin light chain kinase and through Ca2+

sensitization (215). The activation of prejunctional α2ARs on nerve fibers (98, 99) provides
negative feedback by stimulating reuptake of NE released during sympathetic
neurotransmission along with reducing transmitter release (99, 266).

Functional heterogeneity of αAR responses—Whereas α1ARs often predominate in
mediating sympathetic vasoconstriction (211), the expression and relative contributions of
α1ARs versus α2ARs to sympathetic vasoconstriction can vary with vascular bed, vessel
branch order and animal species. For example, using selective AR agonists and antagonists
in rat (75, 205) and mouse (191) cremaster muscle preparations, α1ARs were found to
dominate sympathetic constriction of proximal (first-order) arterioles, while α2ARs
contributed more to constriction of second- and third-order arterioles. This functional pattern
of αAR subtype distribution is reversed in the mouse gluteus maximus muscle, where
constriction mediated by α2ARs predominates in first-order arterioles while constriction
mediated by α1ARs predominates in third-order arterioles (191). α1ARs are also dominant
in constriction of multiple branches of mouse mesenteric arteries in vivo (275). Intra-arterial
infusion of subtype-selective agents into the human forearm revealed that α2ARs contribute
more to basal vasomotor tone than do α1ARs (57). However, in response to regional
activation of α1ARs, increases in vascular resistance were greater in the calf than in the
forearm (208). Separate studies in human thigh muscles suggest that α1ARs but not α2ARs
are critical for sympathetic constriction of conduit arteries (280). While the functional
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expression of AR subtypes can vary between vascular beds, the ability of smaller
downstream arterioles to consistently “escape” from sympathetic constriction while the
larger upstream vessels do not (4, 23, 184, 205, 267) may have more to do with local actions
of vasodilator metabolites than with AR subtype distribution.

Variability in the expression and/or role of α1AR and α2AR subtypes further contributes to
the functional heterogeneity in adrenergic signaling. In rat and human skeletal muscle
arteries (128, 288) and rat hindlimb arteries (291), α1AARs appear to be the predominant
isoform mediating sympathetic vasoconstriction. In contrast, α1DARs appear more
important in hamster cremaster muscle arterioles (125), rat mesenteric arteries (51, 118), rat
thoracic aorta (118) and rat pulmonary arteries (118). However, both α1AR subtypes appear
equally important in mediating sympathetic constriction of rat retinal arterioles (192).
Elucidating the functional role of α2ARs is more complex because in addition to variations
in activity based on subtype expression, the role of prejunctional α2ARs in modulating
neuroeffector signaling through the NE transporter can vary with the level of SNA (111).
Because of these challenges along with a lack of more specific pharmacological agents, the
characterization of different α2AR subtypes relies largely upon the molecular expression of
mRNA rather than functional studies. An earlier review (99) provides a comprehensive
analysis of studies characterizing the expression and function of both α1AR and α2AR
subtypes in a wide variety of vascular beds. More recent studies have defined the expression
of α1AR subtypes in SMCs of hamster arterioles while confirming the lack of α1AR
expression in ECs (125). In light of such methods to isolate respective cell types from
individual microvessels, definitive studies of receptor subtype expression can now be
extended to SMCs and ECs in microvessels from other vascular beds.

βARs promote vasodilation—Whereas αARs typically function as the predominant
effectors of sympathetic control, βARs may also contribute to the regulation of blood flow
(99, 214). In contrast to the αARs, activation of βARs leads to vasodilation (81, 85, 191).
This action provides the potential for βARs to play an important role in the regulation of
tone in many blood vessels, although the exact role of βARs in resistance vessels remains
unclear. The βARs (primarily β1 and β2 in the peripheral vasculature (32, 99)) are located on
SMCs, where agonist binding leads to activation of adenylyl cyclase through Gs, increased
cAMP and, ultimately, SMC relaxation through reductions in intracellular Ca2+ (148, 209).
βAR activation also lead to vasodilation through SMC hyperpolarization, likely via
activation of KATP channels (82, 86). Though it remains controversial, expression of β2ARs
on ECs may also contribute to vasodilation (119) through NO-dependent mechanisms (214).
Thus, whereas removal of endothelium has been shown to reduce vessel relaxation to βAR
agonists (31, 94, 97, 131, 259), others have found no role for endothelial βARs (49, 64, 190,
233). Unfortunately, variable experimental conditions, species differences and the diversity
of vessels used in respective experiments make direct comparisons between studies difficult.
Further, because the majority of these studies were performed using larger conduit arteries,
their findings may not apply to βARs in the regulation of small arteries and arterioles; e.g.,
where myoendothelial signaling is paramount (70, 107, 260). For example, even though
arterioles are exquisitely sensitive to βAR activation (81, 191), the predominant action of
NE released from PVNs of resistance vessels during SNA is consistently constriction that
increases with stimulation frequency (106, 184, 267) and this relationship is maintained
when βARs are inhibited with propranolol (191). Thus, the physiological role of βARs in
governing the resistance vasculature remains to be established.

Role of NPY as an adrenergic co-transmitter—In addition to ATP (discussed below,
see Purinergic Signaling), NPY is the second major neurotransmitter co-released from
sympathetic nerve terminals (33). In the rat cremaster muscle, NPY immunoreactivity often
appeared to be co-localized with that of TH throughout the arteriolar network (78). As
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shown in cutaneous vessels of the ear in developing Guinea pigs, NPY is expressed in
subpopulations of sympathetic (TH-immunoreactive) neurons prior to innervation of target
tissue (195), thus NPY expression is not dependent upon contact of nerve fibers with the
vasculature. NPY is synthesized in sympathetic neurons, transported along the axon (80) and
may be stored within and released from vesicles separate from those containing NE (142,
178). During SNA, evidence suggests that NPY can be packaged and coreleased with ATP
from a single pool of “dense cored” vesicles (53). As with ATP, the corelease of NPY
depends upon the intensity of SNA. Thus under experimental conditions, NPY is released
during higher stimulation frequencies (180); e.g., those associated with cardiovascular stress
and/or dysfunction (115) and vasoconstriction. Once released, NPY binds to one of six
receptor subtypes (Y1-Y6) (162), with Y1 being the primary post-junctional receptor
expressed on vascular SMCs (154) (Figure 3). Nevertheless, Y2 receptors on SMCs have
been implicated in mediating vasoconstriction in mouse cutaneous microvessels (46).
Binding of NPY to Gα-coupled Y1 or Y2 receptors on SMCs [(and ventricular myocytes
(109)] increases PLC activity, thereby increasing IP3 production and intracellular Ca2+ (29).
In cultured SMCs, NPY increased the phosphorylation of myosin light chain (169). Whereas
these actions alone produce vasoconstriction, a key role of NPY is to potentiate the
vasoconstrictor effects of αAR activation by NE (65, 270).

The actions of NPY are terminated upon its enzymatic degradation (115). Thus
vasoconstrictions induced solely by NPY are of longer duration than those induced by NE
(115), attributable to the slower degradation of NPY when compared to the active reuptake
of catecholamines (177). While these signaling pathways have been defined under
experimental conditions, it remains unclear whether NPY contributes significantly to
vasomotor control under resting physiological conditions (115). Through suppressing
neurotransmitter release, the activation of prejunctional Y2 receptors (Figure 2) may also
attenuate sympathetic vasoconstriction, as shown in canine (283) and porcine (181) splenic
arteries and guinea pig submucosal arterioles (149). However, because there have been few
studies using specific receptor antagonists (2, 179, 182), the relative contribution of Y1-
versus Y2-mediated signaling events towards modulating sympathetic vasoconstriction
remains unclear. As the role of NPY appears to vary with vascular bed, animal species and
gender (50, 54, 123, 124), defining the precise actions of NPY in vasomotor control in vivo
remains complicated by its synergistic effects on adrenergic vasoconstriction.

Parasympathetic, cholinergic and nitrergic innervation
Parasympathetic PVNs originate in the CNS with most cell bodies located in ganglia (17,
102). While the terminals of these PVNs release ACh as neurotransmitter, the presence and
functional role of parasympathetic PVNs is poorly-defined relative to those of sympathetic
or sensory PVNs (111, 251, 265). In part, this is attributable to the difficulty in interpreting
immunological studies of parasympathetic innervation, as VIP, the most commonly-used
marker for parasympathetic nerves (Table 1), can also be associated with non-cholinergic
nerves (66, 188). As shown in cats, VIP is distributed widely throughout the cephalic arterial
supply, where it mediates atropine-resistant relaxation of SMCs in responses to
parasympathetic nerve stimulation (89). In the brain, activation of parasympathetic nerves
evokes vasodilation and increases cerebral blood flow (47). In some vascular beds,
parasympathetic nerves may play a minor role in vasomotor function (15, 25, 111, 204),
with no presence or functional role in other vessels (193, 251).

An intriguing example of the multiplicity of vascular innervation is cholinergic vasodilation
mediated by the sympathetic nervous system. Using pharmacological interventions while
evoking SNA, atropine-sensitive (i.e., muscarinic receptor-mediated) vasodilation has been
most clearly associated with the vascular supply to skeletal muscle in dogs and cats (264).
Comparative studies indicated similar responses in related species (e.g., fox and jackal),
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however, there was no evidence for their presence or function in humans or primates (264).
Where it is present, sympathetic cholinergic vasodilation in skeletal muscle may serve as a
feed forward mechanism for directing blood flow in anticipation of exercise, e.g., as a
component of the autonomic fight-or-flight reflex. It is also possible that ACh (or CGRP)
released at the motor endplate of skeletal muscle (95) plays a similar role in promoting
vasodilation coincident with the activation of muscle fibers (274) but such actions also
remain controversial (6). Other vascular beds that have been associated with cholinergic
innervation of arteries and arterioles in dogs and cats include those supplying the tongue,
reproductive organs, heart and gastrointestinal tract (234). The origins of such innervation
have occasionally been attributed to ganglion cells within tissues (234) or even the vascular
wall itself (117). Signaling events initiated by ACh acting on the vasculature (e.g., EDH)
have been well described (8, 83, 85) and are beyond the focus of this discussion.

Nitrergic (i.e., nitroxidergic) nerves are present in many vascular beds (Table 1) and
contribute to PVN-mediated vasodilation via NO produced within nerve terminals that
contain nNOS (33), including some sensory and parasympathetic PVNs. Thus unlike other
neurotransmitters, NO is not stored in and then released from synaptic vesicles (however it
production is also dependent upon Ca2+ influx into the nerve terminal). Instead, it is
synthesized by nNOS as described for NO produced via eNOS in ECs (83), and NO released
from PVNs diffuses into SMCs and activates soluble guanylate cyclase to generate cGMP
and produce vasodilation (55), consistent with downstream actions of NO generated by
eNOS. Nitrergic nerves can also modulate vasomotor activity through interacting with other
PVNs. For example, in rat mesenteric arteries, nitrergic nerves localize with sympathetic
nerves and their release of NO inhibits adrenergic vasoconstriction, presumably by
diminishing the release of NE (105, 151). Nitrergic-cholinergic interactions producing
vasodilation have been demonstrated in porcine ciliary arteries (257) and monkey cerebral
arteries (258). Nevertheless, despite numerous studies demonstrating the presence of
nitrergic nerves in the vasculature (Table 1), the physiological role of NO as a
neurotransmitter remains to be resolved in the resistance vasculature. While there is a lack of
definitive evidence for the presence of nNOS within sympathetic PVNs, additional studies
are required to define the role of NO as a cotransmitter in sensory and parasympathetic
PVNs.

Sensory Innervation
The presence of sensory PVNs has been characterized in a wide variety of vascular beds
across several animal species including humans (Table 1). In contrast to sympathetic nerves,
the cell bodies of sensory nerves lie in the dorsal root ganglia (114, 122). Immunostaining
for the CGRP and SP peptides synthesized in these neurons typically identify perivascular
sensory nerves (95), although other markers are occasionally used (see Table 1). In addition
to coursing diffusely through surrounding tissue (95), efferent axons of sensory nerves can
also localize to form a plexus surrounding blood vessels (Figure 1). However the distances
between their varicosities and SMCs can exceed 500 nm (176); i.e., several-fold greater than
those associated with perivascular sympathetic nerves (174). Unlike sympathetic nerves,
sensory nerves are capable of both antidromic and orthodromic conduction, thereby enabling
their participation in local axon reflexes independent of efferent signaling from the cell body
(152, 284). Thus, noxious stimuli experienced in the tissue, such as chemical or mechanical
irritation, extremes in temperature or pH can cause antidromic stimulation of sensory nerves,
leading to neurotransmitter release and vasodilation (41, 152) in addition to the sensation of
pain. While CGRP is the primary neurotransmitter (30), SP and ATP are released as
cotransmitters (140). Collectively, the release of these agents underlies nonadrenergic -
noncholinergic vasodilation (36).
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Peptidergic neuroeffector signaling
Calcitonin gene related peptide: CGRP is synthesized in both central and peripheral
sensory neurons, transported along axons (134) and packaged into vesicles along with SP
and ATP (30). Because CGRP does not undergo reuptake, its actions are terminated through
degradation (30). Once released, CGRP can bind to one of its two G protein-coupled
receptor subtypes, CGRP1 and CGRP2, with the former mediating most cardiovascular
effects including relaxation of vascular SMCs (12). CGRP1 is associated with RAMP1,
which is required for ligand binding and specificity (240). The predominant action is
vasodilation mediated by an increase in cAMP, with PKA activating K+ channels (e.g.,
KATP and BKCa) (28, 199, 222, 273). The resulting hyperpolarization of SMCs evokes
closure of voltage-gated Ca2+ channels, lowering intracellular [Ca2+]i to promote relaxation
(Figure 3). While such direct effects on SMCs occur in the majority of vascular beds, an
endothelium-dependent pathway for CGRP in promoting vasodilation has been
demonstrated in aorta (96), mammary artery (216) and pulmonary artery (279) that results
from cAMP- and PKA-mediated increases in NO production. Despite the consistency of
vasodilation observed in response to CGRP, its effect on Ca2+ signaling remains unclear. In
SMCs from human umbilical veins, CGRP exposure was linked to reductions in both Ca2+

influx through the plasma membrane and release of Ca2+ from internal stores (59). In
cultured skeletal muscle cells, exposure to CGRP increased IP3 levels, an effect that was
attributed to crosstalk between cAMP and phosphoinositide signaling (163). The actions of
CGRP have yet to be resolved in the context of vasomotor control.

Substance P: Substance P is a neurokinin that is synthesized in dorsal root ganglia,
transported along axons and contained in vesicles within sensory nerve terminals (276).
Upon release, SP exerts its effects through binding to postjunctional G-protein coupled
tachykinin (i.e., NK) receptors located on ECs (30). Like CGRP, SP does not undergo
reuptake and continues exerting its actions until it is degraded enzymatically (276). Three
NK receptor isoforms have been identified (NK1-3), with NK1 having the highest affinity
for SP. Exogenous SP applied within the vessel lumen is a potent NO-dependent vasodilator
(1, 138, 277). Its binding to NK1 receptors on ECs increases [Ca2+]i to activate eNOS (29)
(Figure 3); either endothelial denudation or scavenging NO inhibited SP-mediated dilation
of mesenteric arteries (24). When released from PVNs, SP increases vascular permeability
through its alteration of EC structure and function (88, 200, 292) in conjunction with
activation of mast cells (27, 29). Nevertheless, the physiological role of SP in the resistance
vasculature remains controversial as its levels in the microcirculation may not be sufficient
to affect vessel diameter or permeability (27). For hepatic (210) and mesenteric (140, 166)
arteries, exogenous SP had no effect on vessel diameter while exposure of the same vessels
to CGRP produced vasodilation. The latter findings suggest that SP released from the
abluminal perivascular sensory nerves has little effect on adjacent SMCs. Thus, it appears
unlikely that SP released as a neurotransmitter contributes substantively to vasomotor
control. Conversely, SP that gains access to the vessel lumen may contribute to signaling
from ECs to SMCs subsequent to elevating EC [Ca2+]i (Figure 3).

Purinergic neurotransmission
Multiple sources and receptors for ATP—Arising from both sensory and sympathetic
nerves, purinergic signaling encompasses an array of mechanisms involved in the mediation
of vascular function (37). As first shown in rabbit ear arteries (116), ATP is released upon
stimulation of sensory nerves. However, it is difficult to resolve the actions of ATP released
from sensory nerves versus that released from sympathetic nerves or other physiological
sources which include ECs, erythrocytes and other non-neuronal cells (71, 171). Purinergic
receptor expression varies between vascular beds (111, 217) and some innervated vessels
may express multiple receptor subtypes on sympathetic nerves, sensory nerves, SMCs and
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ECs (Figure 3). Such multiplicity of receptor expression further complicates the difficulty in
determining specifically where ATP exerts direct effects on blood vessels and how its
actions relate to vasomotor control. A recent review (39) outlines the historical and current
controversies surrounding the study of purinergic signaling in the vasculature, highlighting
the need for more work in this field. However, even when selective agonists and antagonists
become available for respective purinergic receptor subtypes, the challenge remains to
identify the source(s) of vasoactive ATP under physiological conditions. Nevertheless,
because ATP can be released from multiple sources, we now address purinergic signaling in
the vasculature.

Purinergic neuroeffector signaling is multifaceted—Since the co-release of
neurotransmitters was first proposed (34), it has become accepted that ATP is released along
with NE during SNA (144). Free ATP can activate two types of P2 receptors, P2X and P2Y,
located on vascular cells and nerves (35). The P2X receptors on SMCs are intrinsic cation
channels that, when activated, allow influx of Ca2+ and/or Na+ to cause a rapid and transient
depolarization known as an excitatory junction potential (39, 112). In turn, depolarization
activates L-type Ca2+ channels to increase SMC [Ca2+]i (155). As a result of acute
desensitization of P2X receptors and the rapid degradation of ATP, this purinergic response
contributes more to the initiation than to the maintenance of sympathetic vasoconstriction
(35, 171). There are seven P2X subtypes (P2X1-7), with P2X1 being primarily responsible
for purinergic signaling in vascular SMCs (38, 158). Expression of P2X receptors on ECs
has also been reported (103, 282) and linked to vasodilation (3, 104), however these
receptors are far more likely to be activated by luminal ATP [e.g., released from
erythrocytes in response to low PO2 (69) or ECs in response to shear stress (171)] rather
than by ATP released from sympathetic nerve terminals. The activation of P2X receptors on
SMCs can also produce vasodilation through mechanisms that remain unclear but are
independent of the endothelium (218). Given this diversity of responses, it should not be
surprising that the activation of P2X can result in biphasic vasomotor responses. For
example, P2X receptors located on ECs of the mesenteric artery were linked to a transient
vasoconstriction followed by prolonged vasodilation (104). In the rat femoral artery, ATP
evoked dilation via P2X receptors on ECs or constriction via P2X receptors on SMCs (143).
Nevertheless, because vasomotor responses of feed arteries and arterioles to SNA are
abolished by phentolamine (a nonselective αAR antagonist) (191, 267) the functional
expression of P2X receptors and their role in sympathetic neural control of the resistance
vasculature require further elucidation of their physiological signficance.

Free ATP can also bind to P2Y receptors on ECs, which express five of the eight known
isoforms (P2Y1, P2Y2, P2Y4, P2Y8, P2Y11) (219, 271). In contrast to the ionotropic nature
of P2X receptors, the P2Y receptors are metabotropic. Thus binding of ATP leads to
activation of PLC with production of IP3 stimulating internal release of Ca2+ and the
activation of eNOS to promote SMC relaxation via the generation of NO (37). While these
effects have been defined for ATP released from ECs in response to shear stress (40), it is
not clear whether ATP released from PVNs actually reaches ECs to activate P2Y receptors.
In response to PVN stimulation, the activation of P2Y receptors on SMCs has been linked to
constriction of coronary arteries (243). The expression of P2Y receptors has also been
reported in cultured SMCs derived from the aorta (72, 93, 271), with their activation
resulting in distinct IP3-dependent Ca2+ signals that vary with the P2Y receptor isoform
expressed (92). Studies of isolated SMCs have linked increased P2Y receptor expression to
their growth in culture, consistent with P2Y receptor activation leading to SMC proliferation
in the arterial wall (72, 241). The latter findings support a role for ATP released during SNA
in promoting SMC growth and proliferation (73, 248), which may thereby contribute to the
etiology of hypertension.
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Confounding factors to resolve—Complicating the resolution of the physiological
actions of ATP released from PVNs, the magnitude and duration of the purinergic
component of sympathetic vasoconstriction in resistance vessels is affected not only by P2X
and P2Y actions in SMCs and ECs but also by the expression of these receptors on
sympathetic and sensory nerve terminals (Figure 2), where their activation can facilitate both
constriction and dilation (38). A recent review explores the heterogeneity of purinergic
receptors on perivascular nerves as well as SMCs and ECs (217). Suffice to say that the
presence of both P2X and P2Y receptors (each with different subtypes) in ECs and SMCs
and the lack of correspondingly specific pharmacological agents have made it difficult to
isolate the specific actions of respective receptors in light of vasomotor control.
Nevertheless, purinergic constriction (mediated primarily via P2X receptors) is consistently
more pronounced in resistance arteries and arterioles than in larger conduit arteries (74, 90,
91, 221). Such regional heterogeneity in the actions of ATP suggests that purinergic
signaling pathways could serve as selective targets for pharmacological agents acting at
defined branches within the vascular tree. Whereas the breakdown products of ATP are also
vasoactive (e.g., adenosine via P1 receptors), the actions of such “vasodilator metabolites”
are beyond the focus of the present discussion.

Feedback between sympathetic and sensory nerves—In addition to their effects
on SMCs and ECs, sympathetic and sensory PVNs interact through negative feedback to
regulate the efficacy of neuroeffector signaling (Figure 3). For example, the activity of
sensory nerves can reduce sympathetic vasoconstriction via prejunctional inhibition of
noradrenergic neurotransmission. In segments of rabbit ear arteries (194) and in arterioles of
the guinea pig submucosa (47, 48), pretreatment with the sensory neurotoxin capsaicin
(which binds to TRPV1 receptors leading to desensitization) transiently enhanced
vasoconstriction to electrical stimulation of PVNs but not to NE applied externally. In
isolated rat mesenteric arteries, the inhibition of CGRPergic nerve function potentiated
vasoconstriction to SNA (136, 203) however recent intravital studies in mice have shown
this effect to be lost with aging (275). Conversely, treatment with CGRP or SP (i.e., sensory
neurotransmitters) reduced the amplitude of neurally-evoked vasoconstrictions (47, 48).

The preceding findings collectively suggest that vasodilator (sensory) nerve activity can
inhibit sympathetic vasoconstriction via prejunctional actions on sympathetic nerve
terminals (Figure 3) without altering downstream signaling pathways initiated by NE (150).
In rat mesenteric arterial rings, the activation of TRPA1 channels on sensory nerve terminals
led to relaxation (10, 213), presumably through enhanced Ca2+ influx promoting exocytosis
and release of CGRP which, in turn, inhibited the release of NE (63). TRPV1 channels
appear to play a similar role (141), as supported by impaired dilation of mesenteric arteries
isolated from TRPV1-null mice upon stimulation of sensory PVNs (272). However, it
appears unlikely that the activities of TRPV1 and TRPA1 channels are coupled (10, 63).
Instead, respective channels represent distinct targets that can mediate CGRP release and
thereby influence vasomotor control.

In a reciprocal manner, sympathetic PVNs can inhibit the activity of sensory PVNs (136,
203). As shown in rat mesenteric arteries, NE acting on prejunctional α2ARs of sensory
nerve terminals impairs the release of CGRP (137) (Figure 3). Further, NPY (a sympathetic
co-transmitter; above) has been found to inhibit dilation of rat mesenteric arteries mediated
by stimulation of sensory PVNs (202) although the mechanism remains to be resolved.
Experiments performed on the rat vas deferens suggest that ATP released from sympathetic
nerves binds to P2Y receptors on sensory nerves to inhibit CGRP release (60). However the
potential role for ATP in modulating sensory nerve activity has not been studied in the
vasculature. Nevertheless, P2Y receptors localized to sympathetic PVNs were found to
respond to ATP by inhibiting transmitter release (22). From earlier discussion, the ATP

Westcott and Segal Page 10

Microcirculation. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



exerting such prejunctional effects could arise from either sympathetic or sensory nerve
activation. Thus, P2Y receptors may contribute indirectly (i.e., by reducing NE release) to
the purinergic component of sensory nerve-mediated vasodilation. In addition, sensory
nerves may exhibit autoinhibition. For example, in the presence of guanethidine (to block
adrenergic neurotransmission), application of exogenous CGRP decreased vasodilation of
mesenteric arteries during PVN stimulation (203), implying the presence of prejunctional
CGRP receptors on sensory nerve terminals. In a complementary manner, ATP released
from either sympathetic or sensory PVNs may bind to prejunctional P2X receptors that act
to inhibit further release of sensory neurotransmitters (38). While the crosstalk between
respective PVNs nerves appears integral to vasomotor control [e.g., in mesenteric arteries
(136, 202, 203); Figure 1], these relationships require further investigation in the
microcirculation to resolve their role in the local control of tissue blood flow.

Roles for perivascular nerves in myoendothelial communication
Myoendothelial signaling initiated by adrenergic receptor activation—
Adrenergic signaling initiated through SNA plays a critical role in governing the control of
blood flow by small arteries and arterioles (106, 183, 267). Growing evidence implicates
signaling from SMCs to ECs as an integral component of vasomotor control intrinsic to
these resistance vessels (Figure 3). Thus, myoendothelial GJs enable the direct transmission
of electrical and chemical signals between SMCs and ECs within the vessel wall (107, 145)
(Figure 3). As first reported in hamster cheek pouch arterioles, activation of α1ARs with PE
increased SMC [Ca2+]i with an ensuing rise of EC [Ca2+]i leading to activation of eNOS and
the release of NO (62). These findings suggested that signaling from SMCs to ECs occurs
via heterocellular diffusion of a second messenger which thereby provides feedback to
moderate vasoconstriction. Ensuing studies in cremaster arterioles (125, 263, 285) found
similar increases in EC [Ca2+]i that were initiated by stimulation of α1ARs on SMCs.
Confirming the lack of α1AR expression or function in ECs ruled out direct effects of PE on
the endothelium (125). Studies in cremaster muscle arterioles have also linked PE-induced
increases in EC [Ca2+]i to the initiation of conducted vasodilation (285), indicating that
interactions between SMCs and ECs initiated through αAR activation have functional
implications both at local sites and throughout resistance networks.

In a co-culture model of ECs and SMCs derived from vessels of the cremaster muscle, both
Ca2+ and IP3 were found to diffuse from SMCs to ECs upon α1AR stimulation, with each
having differential effects on EC [Ca2+]i (121). Supporting the idea that increases in SMC
[Ca2+]i lead to EC responses via MEJs are findings that purported blockers of GJs inhibit
EC Ca2+ responses to adrenergic stimulation (121). While these studies point to the
diffusion of second messenger(s) from SMCs to ECs, its identity (e.g., Ca2+ vs. IP3) has not
been ascertained in native microvessels and remains a key issue to resolve in the context of
blood flow control. It should also be recognized that the co-culture model is has pronounced
differences in ultrastructure when compared to the vessel wall. For example, it lacks an IEL
and contains far more myoendothelial contacts than occur in vivo. Thus caution and
appropriate controls are advised when applying findings from vascular cell culture models to
intact vessels (253).

In isolated strips of rat mesenteric arteries, [Ca2+]i increased within ECs following
elevations of [Ca2+]i within SMCs responding to PE or high-K+ depolarizing solution (156).
Pharmacological inhibition of IP3 signaling in SMCs prevented these EC Ca2+ signals,
suggesting that IP3 could diffuse from SMCs to ECs via MEJs. In pressurized rat mesenteric
arteries, Ca2+ signals within ECs appeared spontaneously, increased in frequency upon SMC
stimulation with PE, and were diminished when IP3Rs, voltage-gated Ca2+ channels, or GJs
were inhibited (133). These observations are consistent with constitutive intercellular
communication from SMCs to ECs that can increase upon SMC stimulation. Because high
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K+ depolarization (which acts independent of PLC or IP3) caused similar increases in EC
Ca2+ signals, the diffusion of Ca2+ (vs. IP3) was proposed to serve as the likely second
messenger from SMC to EC (133). While such studies collectively support the idea of SMC-
to-EC communication via diffusion of a second messenger, it remains unclear whether IP3,
Ca2+ or both are important to myoendothelial signaling in the vessel wall under
physiological conditions. Resolving this issue will provide important insight into which
signaling pathways regulate myoendothelial Ca2+ signaling and may thereby enable
determination of whether and/or how these pathways may be altered (and treated) with
vascular disease.

The development of the Cx40BAC-GCaMP2 transgenic mouse model represents a significant
advancement towards understanding intercellular communication with respect to EC Ca2+

signaling (256). In these animals, the ECs of arteries and arterioles selectively express a
fluorescent GFP-based Ca2+ indicator by linking its expression to that of Connexin40, a
constitutive subunit of EC GJs. Thus visualization of EC Ca2+ signals is enabled without the
need for fluorescent dyes that may alter intercellular signaling through Ca2+ buffering and/or
dye sequestration (207). Recently, opened mesenteric artery preparations from GCaMP2
mice were studied en face to define Ca2+ “pulsars” in the endothelium (164). These
localized events were characterized as spontaneous, IP3-dependent Ca2+ signals within ECs
that are associated with holes in the IEL (164) (see Figure 3), highlighting their potential
role in mediating intercellular signaling through MEJs. A subsequent study confirmed this
correlation and linked the regulation of Ca2+ pulsars to sympathetic nerve stimulation,
proposing that pulsars can provide negative feedback to attenuate vasoconstriction (198).
Thus, by increasing Ca2+ within EC projections, the activation of IKCa and SKCa channels
evokes hyperpolarization that, in turn, spreads back into SMCs via myoendothelial GJs (120,
121, 133, 164, 231, 260). Thus Ca2+ signaling from SMCs to ECs through MEJs is
implicated as a mechanism for providing negative feedback to oppose sympathetic
vasoconstriction (Figure 3).

Myoendothelial signaling initiated by purinergic receptor activation—
Purinergic-mediated Ca2+ signals may represent another mechanism through which PVNs
mediate intercellular communication between ECs and SMCs. Unfortunately, few studies
have investigated the effect of P2 receptor activation on SMC Ca2+ signaling or intercellular
communication. Nevertheless, Ca2+ imaging of rat mesenteric arteries has revealed that the
activation of P2X1 receptors on SMCs produces jCaTs (159) near varicosities of
sympathetic PVNs (157) and that these Ca2+ signaling events can be elicited by PVN
stimulation (158). While jCaTs are spatially restricted within SMCs, their occurrence can
lead to global elevations in SMC [Ca2+]i mesenteric arteries (289), consistent with their role
in promoting Ca2+-induced Ca2+ release from IP3 receptors in SMCs of renal arteries (212).
In the juxtaglomerular apparatus of the kidney, purinergic signaling plays an important role
in tubuloglomerular feedback through GJs, as the purported blocking of GJs prevented such
feedback and reduced renal blood flow autoregulation (255). One explanation for such
actions is that SMC Ca2+ derived from purinergic neurotransmission could no longer move
though GJs to coordinate cellular function. Thus, purinergic signaling associated with SNA
(particularly jCaTs) could also result in SMC-to-EC signaling via the diffusion of Ca2+ and/
or IP3 through MEJs. Nonadrenergic signaling initiated by PVNs may thereby contribute
further to vasomotor control through myoendothelial signaling.

Myoendothelial signaling initiated by peptidergic signaling—Peptidergic
signaling is initiated via sympathetic nerves through NPY and the activation of Y1 receptors
may further contribute to myoendothelial signaling (Figure 3). For example, in cardiac
myocytes and vascular SMCs, exposure to NPY increases [Ca2+]i (126, 127). Such actions
in the resistance vasculature would promote Ca2+ diffusion through MEJs to initiate
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feedback signaling in ECs as discussed above. Whereas the activation Y1 receptors can
increase [IP3]i and [Ca2+]i in cardiac myocytes (109), it appears more likely that the effects
of NPY in the vessel wall reflect augmentation of Ca2+ transients caused by activation of
α1ARs (278). Further, NPY may contribute to purinergic receptor-mediated jCaTs through
activating nonspecific cation channels (101, 244). While the correspondence between jCaTs
and myoendothelial signaling remains to be tested in the vasculature, the actions of NPY as
a perivascular cotransmitter appear likely to contribute to intercellular signaling and
vasomotor control in at least some vascular beds.

In addition to inhibiting sympathetic vasoconstriction by suppressing neurotransmission
during SNA, CGRP released from sensory nerves may also influence vascular function by
reducing myoendothelial signaling. This effect may be explained by CGRP-mediated
activation of PKA in SMCs leading to phosphorylation of connexin protein subunits within
myoendothelial GJs (160, 161, 252). In the pregnant uterine vasculature, CGRP-dependent
dilations are impaired by the GJ uncoupler carbenoxolone (269). It is also possible that this
effect of carbenoxolone results from its non-specific inhibition of ion channels that initiate
EC hyperpolarization (11). Nevertheless, and in light of classic studies illustrating
vasodilation mediated by the axon reflex of sensory nerves (152), further experiments are
needed to determine the functional role of CGRP in the microcirculation along with the
associated signaling events underlying vasomotor control.

Regional heterogeneity in myoendothelial coupling and intercellular signaling
—Just as variations in perivascular nerves, neurotransmitters and their receptors underlie
regional differences in the nature of effector signaling on SMCs and ECs, variation in the
presence of MEJs and expression of myoendothelial GJs likely contribute to regional
heterogeneity in neuroeffector signaling. For example, in dye transfer studies, the ECs and
SMCs of rat mesenteric arteries appear well-coupled to each other through GJs (185), while
those in hamster cremaster arterioles appear poorly coupled (242). Heterocellular coupling
in hamster cheek pouch arterioles has reported to be both robust in vitro (168) and absent in
vivo (237), highlighting the potential influence of experimental conditions. Differences
between species and/or regional differences in vessel size, prevalence of MEJs and fenestrae
in the IEL can all contribute to regional differences in the regulation of vascular function
(232), e.g., by determining how efficiently second messengers can diffuse between SMCs
and ECs (107). Thus smaller resistance arteries and arterioles tend to have more
myoendothelial contacts (223) when compared to larger conduit arteries (228), consistent
with greater prevalence of myoendothelial signaling (e.g., EDH) in the resistance
vasculature when compared to flow-mediated and NO-dependent dilation of larger conduit
arteries (16). Further complexity arises from heterogeneity in the expression (230) and
regulation (e.g., through phosphorylation and nitrosylation) of connexin isoforms
comprising GJs, including those at MEJs (76, 107, 160, 161, 252). Such complexity argues
against a “unifying principal” for neuromodulation of myoendothelial signaling while
pointing to the need for greater understanding of its complexities.

PERSPECTIVE
The induction and modulation of sympathetic vasoconstriction and sensory nerve-mediated
vasodilation have been well-characterized. However the underlying signaling events remain
unclear, particularly in the context of myoendothelial feedback. Intercellular communication
in the arterial wall has long focused on the role of NO (and other diffusible autocoids) in
mediating SMC relaxation. More recently, the role of EDH in governing SMC [Ca2+]i and
vascular tone via direct electrical coupling through myoendothelial GJs has gained
recognition as an independent yet complementary signaling pathway mediating vasodilation
(8, 85). Recent studies have provided critical insight into the importance of MEJs as
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signaling microdomains that can regulate intercellular communication as well as vasomotor
tone (133, 156, 198, 247, 253, 260) (Figure 3). Remarkably, though integral to the
physiological regulation of vasoconstriction and vasodilation, the role of PVNs in
coordinated signaling between SMCs and ECs remains poorly studied and, therefore, poorly
understood. Recent evidence from isolated mesenteric arteries indicates that local Ca2+

signals in ECs can result from stimulating sympathetic PVNs (198). This behavior is
consistent with earlier findings in isolated arterioles that α1AR activation on SMCs evoked
Ca2+ signaling in ECs (62, 125, 285). Whereas Ca2+ and IP3 have been identified as
candidates based upon studies of α1AR activation, virtually nothing is known about the role
of other intercellular second messengers [e.g., cAMP (132)] or neuroeffector signaling
pathways in either initiating or modulating heterocellular communication through MEJs. In
future studies, the utilization of new recording techniques and improved pharmacological
tools will help to determine the roles of each transmitter released from perivascular
sympathetic and sensory nerves on both SMC-to-EC signaling and the resulting effects on
vasomotor function. Resolving such direct and indirect signaling events and how they
interact in the vessel wall will provide new insight into the multiplicity of roles that PVNs
exert during vasomotor control, how such actions vary between vascular beds and branch
orders, and how effective responses are modulated through intercellular communication. In
turn, this new knowledge can be applied towards developing more selective therapeutic
interventions for targeting the treatment of vascular disease.
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Abbreviations

ACh acetylcholine

AR adrenergic receptor

BKCa large conductance calcium-activated potassium channel

[Ca2+]i intracellular calcium concentration

CGRP calcitonin gene-related peptide

EC endothelial cell

EDH endothelium-dependent hyperpolarization

eNOS endothelial nitric oxide synthase

GFP green fluorescent protein

GJ gap junction

GPCR G-protein coupled receptor

IEL internal elastic lamina

IKCa intermediate conductance calcium-activated potassium channel

IP3 inositol 1,4,5 trisphosphate

IP3R inositol 1,4,5 trisphosphate receptor

jCaT junctional calcium transient
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KATP ATP-sensitive potassium channel

Kir inwardly rectifying potassium channel

MEJ myoendothelial junction

NADPH-d Nicotinamide adenine dinucleotide phosphate-diaphorase

NE norepinephrine

nNOS neuronal nitric oxide synthase

NO nitric oxide

NPY neuropeptide Y

NMJ neuromuscular junction

PKA protein kinase A

PKC protein kinase C

PLC phospholipase C

PVN perivascular nerve

RAMP receptor activated modifying protein

SKCa small conductance calcium-activated potassium channel

SMC smooth muscle cell

SNA sympathetic nerve activity

SNS sympathetic nervous system

SP substance P

SR sarcoplasmic reticulum

TH tyrosine hydroxylase

TRP transient receptor potential

VIP vasoactive inhibitory peptide
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Figure 1. Perivascular sympathetic and sensory nerves surrounding a mouse mesenteric artery
Z-stack of immunofluorescent confocal slices taken through one wall a first-order
mesenteric artery of a C57BL/6 mouse. Sympathetic nerves labeled for tyrosine hydroxylase
are shown in red, sensory nerves labeled for CGRP are labeled in green and overlapping
regions are shown in yellow. Scale bar = 100 μm.
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Figure 2. Anatomical location of perivascular sympathetic and sensory nerves
Perivascular nerves are located in the adventitia and do not make direct contact with SMCs
or ECs. Varicosities along efferent sympathetic and sensory nerve axons release multiple
neurotransmitters and contain multiple receptors (see text for details) that contribute to
presynaptic regulation of neurotransmitter release. While perivascular parasympathetic and
nitrergic nerves are present on many vessels, We focus on sympathetic and sensory PVNs
here for clarity.
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Figure 3. Perivascular nerve-mediated regulation of myoendothelial signaling
TOP: Depiction of transmitters released from sympathetic and sensory nerve varicosities and
where these compounds can act to regulate intercellular (myoendothelial) communication in
the wall of resistance vessels. For respective varicosities, symbols indicate whether
activation of the receptor increases (+) or decreases (−) neurotransmitter release. For SMCs
and ECs, receptor activation leads to an increase (solid arrow) or decrease (dashed line) in
[Ca2+]i and/or IP3. These second messengers can then diffuse through myoendothelial GJs
and initiate signaling in the heterologous cell. BOTTOM: Inset (dotted line) indicates local
signals that occur within MEJs in response to Ca2+ or IP3 entering from SMCs. In turn, Ca2+

released from IP3Rs on the ER within endothelial projections can activate IKCa and SKCa
locally, with EDH providing negative feedback to attenuate SMC contraction. Note that
signals originating within ECs (EDH, NO, Ca2+ and IP3) can diffuse into SMCs, thus
heterocellular signaling at MEJs is bidirectional in nature.
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