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Abstract
The recent revolution in sequencing technology has helped to reveal a large transcriptome of long
non-coding RNAs (lncRNAs). A major challenge in the years to come is to determine what
biological functions, if any, they serve. Although the purpose of these transcripts is largely
unknown at present, existing examples suggest that lncRNAs play roles in a wide variety of
biological processes. Exemplary cases are lncRNAs within the X-inactivation center. Indeed,
lncRNAs dominate control of random X-chromosome inactivation (XCI). The RNA-based
regulatory mechanisms of XCI include recruitment of chromatin modifiers, formation of RNA-
based subnuclear compartments, and regulation of transcription by antisense transcription. XCI
and lncRNAs now also appear to be very relevant in the development and progression of cancer.
This perspective focuses on new insights into lncRNA-dependent regulation of XCI, which we
believe serve as paradigms for understanding lncRNA function more generally.

INTRODUCTION: LncRNAs AND X-INACTIVATION
Chromosome-based sex determination systems create an imbalance in the dosage of X-
linked genes between the two sexes. As a result of the X-Y system of sex determination,
female mammals must correct for its double dosage of X-linked gene expression by
transcriptionally silencing the majority of genes on one X-chromosome in a process known
as X-chromosome inactivation (XCI).1 This process is driven by a series of long non-coding
RNAs (lncRNAs) (Table 1). Because of the involvement of many lncRNAs and distinct
mechanisms of action, XCI is an excellent model system for studying lncRNA function.

One of the first lncRNAs identified was Xist2; 3; 4; 5, a 17-kb transcript expressed from the
X-inactivation center (XIC) solely from the inactive X (Xi).2; 3 Xist deletions prevent X-
inactivation in cis6; 7 and forced Xist expression is sufficient to induce chromosome-wide
silencing.8; 9; 10 Xist RNA coats the Xi11, and the spreading of Xist RNA along one X-
chromosome in cis initiates chromosome-wide silencing. Whereas Xist expression
designates the Xi, Tsix expression demarcates the active X (Xa), also in cis.9; 12; 13; 14; 15

Tsix is antisense to Xist and serves as potent antagonist of Xist expression. It is therefore an
excellent example of a natural antisense transcript that represses its sense partner.
Noncoding genes have also been implicated in activating Xist, including Jpx, RepA, and
Ftx.16; 17; 18 In this review, we will summarize recent advances in the control of XCI by
lncRNAs and conclude with new insight into how one lncRNA (Xist) influences the
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development of cancer, a disease for which a role of the X-chromosome has long been
suspected.

XIST RNA: THE RECRUITER OF SILENCING COMPLEXES
Xist RNA is one of the first examples of an RNA that recruits a chromatin- modifying
complex to specific sites (Fig. 1). Polycomb repressive complex 2 (PRC2) is attracted to the
X-chromosome by Xist RNA through a repeated motif at the 5′ end of the RNA, known as
“Repeat A”.17 The Repeat A motif directly interacts with EZH2, the catalytic subunit of
PRC2, both in vivo and in vitro. PRC2 in turn decorates the X-chromosome and silences it
as it trimethylates histone H3 at lysine 27 (H3K27me3).19; 20; 21; 22 Along the X, PRC2 first
binds ~150 “strong sites”, which have canonical features of known PRC2 binding sites,
including a CpG-rich content and presence of bivalent domains.23 From the strong sites,
PRC2 migrates laterally and locally, giving rise to thousands of non-canonical domains
which may represent sites of dynamic spreading along the X chromatin.23 H3K27me3
density also spreads out from the strong sites, and H3K27me3 occupancy is anti-correlated
with LINE density23; 24, an intriguing finding given a long-standing hypothesis that LINE
elements serve as “booster elements” that help X-inactivation spread across the whole
chromosome25. When expressed ectopically from autosomal transgenes, Xist RNA also
recruits PRC2 and silences genes located in cis19; 26; 27, demonstrating that Xist RNA is
both necessary and sufficient to recruit PRC2 and inactivates genes on a multi-megabase
scale.

While it is clear that Xist RNA spreads PRC2 to targets on the X-chromosome, mechanisms
that localize Xist RNA itself are just beginning to emerge. Localization begins with loading
of Xist RNA at a “nucleation center” located within exon 1 of the Xist locus.27 The
transcription factor, YY1, is required for Xist RNA loading onto the nucleation site.
Knocking down YY1 or mutating its three binding sites within the nucleation center
eliminates Xist loading and furthermore blocks formation of the prominent cloud of Xist
RNA seen in RNA fluorescence in situ hybridization (FISH) experiments. Xist RNA directly
binds YY1 in vivo and in vitro, and YY1 in turn directly contacts three YY1-binding sites
near “Repeat F” within Xist exon 1.27 Thus, YY1 is a “bivalent” protein (capable of binding
both RNA and DNA) and acts as “bridge” between Xist DNA and RNA. In this way, YY1
tethers the Xist-PRC2 complex to the nucleation site and positions the complex to spread
throughout the rest of the chromosome. It is not currently known how Xist RNA binds to
other sites along the Xi. These results suggest that recruitment of PRC2 in mammals may
involve not only an lncRNA but also an adaptor protein such as YY1. YY1 is a homolog of
the Drosophila gene pleiohomeiotic (PHO)28, which has been shown to recruit PRC2 to
polycomb response elements in Drosophila.29 Some data suggest that YY1 can interact with
several components of the mammalian PRC2 30 but may not be a core component.

Expressing an Xist transgene carrying mutations in the YY1 binding sites led to the very
surprising discovery that Xist RNA can act in trans.27 In such situations, transgenic Xist
RNA could not bind the nucleation site in cis (on the transgene), but was observed to diffuse
to the nucleation site of the Xi and then spread along the Xi. Furthermore, when the
transgene is not mutated, Xist RNA produced from the Xi could migrate to the transgene
nucleation site and spread along the autosome. This observation led to questions about how
the Xa does not engage in binding of Xist. Further analysis indicated that YY1 binds only
the nucleation site on Xi (not on Xa).27 Thus, the cis-limited action of Xist RNA occurs in
the normal developmental context likely because of developmental programming which
blocks YY1 nucleation sites at all but the Xi. Xist is a cis-acting RNA only to the extent that
sites in trans are prevented from binding.
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It is now clear that RNA-mediated recruitment of PRC2 is not unique to the inactive X-
chromosome, as a myriad of transcripts associate with PRC231; 32; 33; 34; 35. The observation
that PRC2 interacts with thousands of transcripts raises interesting questions regarding
whether the function of RNA in PRC2 biology may extend beyond the role of targeting
PRC2, given that the PRC2 “transcriptome” contains RNAs that are not strictly cis-limited.
Some lncRNAs may not be directly involved in PRC2 recruitment, but instead modulate
PRC2’s methyltransferase activity or its interactions with accessory proteins. Many other
chromatin modifiers have been shown to interact with RNA, such as Dnmt3a, G9a, PRC1,
MLL-WDR5 and LSD1-CoREST (reviewed in 36). Further understanding the interaction of
the Xist-PRC2 interaction may shed light on the functions of interactions between chromatin
modifiers and lncRNAs. It would also be of interest to learn whether YY1 functions as
adaptor for PRC2-lncRNA complexes elsewhere in the genome.

TSIX: THE ANTISENSE REGULATOR
Tsix is another long, non-coding transcript that plays a key role in X-inactivation. A
considerable amount of genetic analysis has been carried out on Tsix towards understanding
the antisense mechanism of action. Tsix controls Xist expression in cis by modulating the
chromatin structure and DNA methylation status of the Xist promoter.37; 38 Anti-sense
transcription extending through the Xist promoter is required to silence Xist in cis.39; 40; 41 It
is possible that Tsix acts as a functional RNA and recruits repressors such as the de novo
methyltransferase, Dnmt3a37; 38, or titrates activators away from the Xist promoter. The act
of antisense transcription through the Xist promoter could also induce a chromatin state that
is refractory for sense transcription; alternatively, it could disrupt RNA polymerase function
in the sense direction. Definitive experiments to test these hypotheses must separate
transcription of the antisense RNA from the action of the antisense transcript.

Tsix’s mechanism of action may extend to other antisense transcripts. There are at least
several hundred sense-antisense pairs within mammalian genomes42; 43; 44; 45, many of
which are arranged in a structurally similar manner as the Xist-Tsix pair.44 In these cases,
the antisense transcript might similarly regulate expression of the sense transcript with
which it overlaps.46; 47; 48 In several well-studied examples within imprinted loci, allele-
specific expression patterns have been proposed to be controlled by expression of an
antisense transcript. For example, Air silences the paternal Igf2r cluster49; 50; 51 and
Kcnq1ot1 silences the paternal Kcnq1 cluster.52; 53 Both antisense transcripts are implicated
in binding of repressive chromatin factors, such as G9a and PRC2.50; 53 There are likely
many other examples of sense-antisense transcription modules that operate like the Xist-Tsix
pair. Thus, uncovering the molecular mechanisms that underpin Tsix-mediated regulation of
Xist may have broad applicability for understanding the role of antisense transcription.

RNA’S RELATIONSHIP TO LARGE-SCALE CHROMOSOME INTERACTIONS
In addition to its role as an inhibitor of Xist expression on the active X, Tsix plays a role in
interchromosomal contacts hypothesized to be crucial for X-chromosome choice and for
properly demarcating only one active X. Before Xist is upregulated, the two Xic’s of the
female cell transiently come into close contact with each other in the nucleus (Figure
2).54; 55; 56; 57 This transient “pairing” of the two Xic’s may allow a redistribution of
transcriptional activators between the two alleles56; 58; 59; 60, resulting in asymmetric
binding of activators to one X-chromosome and thereby enabling expression of Tsix RNA
only on one chromosome. Tsix and its enhancer, Xite, are necessary for pairing56 and are
also each sufficient to induce pairing when integrated onto an autosome.57 Interestingly,
inhibition of transcription with actinomycin D prevents the formation of new pairing
complexes but has little effect on the half-life of paired complexes already formed,
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suggesting that RNA may be required to attract two X-chromosome to each other but not to
keep them paired.57 Whether transcripts emanating from Tsix and Xite are required is
currently not known, though the two loci are clearly necessary and sufficient to induce
pairing.

It seems likely that RNAs may generally participate in long-range chromosome interactions.
There are several pieces of evidence implicating RNA as a structural component that
determine higher order structures. RNA has long been known to known to co-fractionate
with chromatin in eukaryotic nuclear extracts.61; 62; 63; 64 The nuclear matrix consists of a
network of ribonucleoprotein particles (reviewed in 65), and it has been suggested that Xist
RNA is a component of the nuclear matrix, interacting with factors such as hnRNP-U/SAF-
A and ASF.66; 67; 68; 69 Recent experiments more directly implicate a relationship between
non-coding RNA and chromatin architecture. A newly-discovered class of RNAs that appear
to activate nearby genes in cis called “Activating RNAs” (a-RNA)70 are required for 3D
contacts between enhancers and promoters of nearby genes regulated by a-RNAs.71 These
RNAs are hypothesized to be predominately cis-acting non-coding transcripts that function
like enhancers in enhancer assays. However, unlike classical enhancers, a-RNA activity can
be blocked by siRNAs targeting the non-coding transcripts. Chromatin conformation assays
revealed looping interactions between several a-RNAs and their target gene’s promoters.
These looping interactions were disrupted by knockdown of the a-RNA. Another lncRNA
that appears to function through looping interactions is HOTTIP, a putative activator that
operates through a change in chromatin conformation in the Hox-a cluster.72 Additionally,
two chromatin conformation studies73; 74 suggested that Xi assumes a more “randomized”
organization relative to Xa and autosomes, thereby indirectly implicating Xist RNA in
generating the less ordered configuration. Indeed, an Xi-specific deletion of Xist partially
restored long-range contacts on Xi suggesting that Xist acts to disrupt long-range chromatin
contacts73. These may be only a handful of examples of an entire class of lncRNAs involved
large-scale chromatin interactions.

POSITIVE LncRNA REGULATORS OF XCI
Some lncRNAs of the Xic appear to be transcriptional activators. They include RepA, Jpx,
and Ftx, all proposed to be activators of Xist (Table 1). The molecular mechanisms that
cause these RNAs to induce Xist are currently unknown, though recent studies have
suggested several intriguing possibilities.

RepA RNA is transcribed from an independent transcription unit within exon 1 of Xist and
consists of a repeated motif (Repeat A) that directly binds and targets PRC2 to the Xist
promoter.17 RepA is believed to induce Xist expression by increasing H3K27 trimethylation
of the Xist promoter via its recruitment of PRC2.17 As PRC2 is a repressive complex, this
may seem to be a counterintuitive way to activate Xist transcription. However, Xist may
prefer a heterochromatic environment. Indeed, Xist remains active in the repressive context
of the inactive X, it may actually be induced by repressive signals. This intriguing
possibility has to be tested more directly to determine whether PRC2 recruitment to the Xist
promoter actually induces Xist expression. Consistent with the idea, a mouse deletion of
RepA results in loss of Xist induction.75

Jpx’s activating influence is supported by genetic analysis. When female cells aredeleted for
Jpx – even on just one allele – the cells can no longer induce Xist expression 16. Jpx does
not apparently function as an enhancer, as standard enhancer assays failed to reveal any
activating influence on the Xist promoter. Furthermore, its ability to activate Xist in trans
(when Jpx is placed in an autosomal context) also argues against an enhancer mechanism.16

Thus, Jpx’s action is distinct from enhancer-associated RNAs.70; 76; 77 Because a post-
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transcriptional knockdown of Jpx phenocopies a Jpx knockout, the transcript itself (not just
the Jpx gene or transcription) must be the activating force. The latest work indicates that Jpx
RNA is part of the X-chromosome counting mechanism and activates Xist by titrating away
a repressive autosomal factor, CTCF, that normally binds and blocks the Xist promoter.78

Jpx could act in other ways as well. Jpx is trans-acting, but has a mild cis-preference.16

Consistent with a cis-preference, chromosome conformation analysis suggests that the Jpx
locus makes contacts with the Xist promoter following the onset of differentiation and
XCI.79 It is possible that Jpx RNA mediates the formation of these chromatin contacts, as
has been shown for several other a-RNAs.71 Another possibility is that the chromatin
contacts form independently of Jpx RNA, and juxtaposing nascent Jpx transcripts to the Xist
promoter allows Jpx to recruit activators or titrate repressors from the Xist promoter.
Studying these activating RNAs may provide several important model systems for
evaluating the functions of mechanisms of recently discovered a-RNAs70 and enhancer
RNAs.76; 77

XIST AND CANCER
Much work has centered on the role of Xist in initiating X-inactivation in the early
developing embryo. However, it is now clear that Xist has important roles in later
development and in adults as well, long after the establishment of XCI. In mouse embryonic
fibroblasts 80, a conditional deletion of Xist from the Xi leads to partial X-reactivation.
Since XCI silences several hundred genes, some of which are oncogenes, improper Xist
expression could potentially be a mechanism underlying tumorigenesis.81; 82 Early
experiments suggested a tantalizing connection between X-linked gene dosage and cancer.
Loss of XCI and downregulation of XIST expression are commonly observed in basal-like
cancer, BRCA1-null triple negative breast cancer83; 84; 85; 86; 87; 88; 89, and ovarian cancer
lines.90; 91 Loss of XIST is most commonly caused by X isodisomy, where Xi is lost and Xa
is amplified. Reactivation of Xi may be an alternative mechanism leading to loss of XIST
and overedxpression of the X.85; 87; 90; 91 These observations suggest a correlation between
X-chromosome dysfunction and cancer. The link between XCI and cancer was recently
determined to be causal, with the finding that deleting Xist in the blood compartment leads
to a highly aggressive myeloproliferative neoplasm and myelodysplastic syndrome (mixed
MPN-MDS) with 100% penetrance and lethality in mice.92 This result clearly demonstrates
that loss of Xist RNA and overexpression of the X in adult tissues can lead to cancer.

As Xist RNA promotes the initiation or progression of cancer, it may be reasonable to
propose reactivation of Xist as a therapeutic strategy in cancer. It is known that ectopic Xist
expression in adult mice can lead to ectopic gene silencing in cis and cell death in the
immature precursors of the immune system.93 Therapeutic strategies may include small
molecules. Indeed, there is precedence when one looks to Angelman Syndrome, a congential
disorder caused by maternal deletion or mutation of the imprinted Ube3a allele. Ube3a is
known to be controlled by a long antisense transcript from the Snrpn locus.94; 95; 96; 97

Topoisomerase inhibitors cause loss of imprinting of the silent paternal Ube3a allele by
downregulating the antisense transcript in neurons in vitro and in mice, which may provide a
strategy for rescuing the genetic defect that causes Angelman Syndrome.98 In tumors, Xist
expression might also be reactivated by small molecules, offering a novel therapeutic
approach that would target epigenetically functional lncRNAs.

CONCLUSIONS
LncRNAs have received a great deal of attention over the past few years as regulators of
gene expression.24; 99; 100 Thousands of new transcripts have been identified in the
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mammalian genome, with estimates upwards of 200,000.5 A key challenge is to determine
which transcripts are functional and how these transcripts regulate physiological processes.
RNAs of the Xic may provide a framework towards understanding how those in the rest of
the genome operate. Within the Xic, both cis- (e.g., Tsix) and trans-acting (e.g., Jpx)
lncRNAs can be found. These X-linked lncRNAs can also be either activating (Jpx) or
repressive (Xist). They interact with transcription factors (e.g., YY1, CTCF) and chromatin
modifying complexes (e.g., PRC2, Dnmt3a). The Xic also provides a model by which to
study sense-antisense pairs and the role of RNA in large-scale chromatin architecture. It has
furthermore become clear that lncRNAs of the Xic are crucial not only during early
embryogenesis when dosage compensation takes place, but also throughout adult life. Basic
homeostatic functions of the lncRNAs have been revealed when deleting one member (Xist)
results in a lethal disease (cancer). X-inactivation and other allelic phenomena have often
proven to be fertile grounds for uncovering unexpected biology.94 The very first lncRNAs
were discovered by applying classical genetic techniques to find genes that control X-
inactivation and imprinting. In the future, emerging genomic and nano-scale technologies
will likely provide many new surprising insights into how the noncoding genome
contributes to normal physiology and disease.
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• chromosome inactivation provides a model to study lncRNA

• The lncRNAs can act in cis or trans; activate or repress

• Xist RNA recruits Polycomb complexes to the X-chromosome

• Tsix is a model antisense RNA
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Figure 1.
Model for Xist RNA-mediated recruitment of PRC2.
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Figure 2. Model for XIC pairing before XCI onset
The two X-chromosomes are epigenetically identical and euchromatic in the pre-XCI stage.
The two Xs are brought together by Tsix and Xite (pairing) during cell differentiation to
enable cross-talk and mutually exclusive choice of Xa and Xi. Because it is
thermodynamically favorable to do so, hypothetical transcription factors, potentially OCT4
and CTCF (blue circles), that were previously randomly distributed between the two Tsix/
Xite alleles stochastically shift to one X, which would then become future Xa. This shift
results in monoallelic Tsix expression and differential chromatin modifications within the
Xist region, which lead to repression of Xist on Xa and upregulation of Xist on Xi.
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Table 1

Summary of lncRNAs and proposed interacting protein partners for X-inactivation

RNA Function cis- or trans-acting Known protein Interactors

Xist Required for initiation of X- inactivation6. cis, can in some cases act in
trans at autosomal Xist
transgenes27

PRC217, YY127, hnRNP-U66,
ASF69

Tsix Represses Xist expression by silencing the Xist
promoter37; 38; 40; 41, also required for X- chromosome
pairing, counting the number of X- inactivation centers,
and mutually exclusive allelic choice 14; 101; 102

cis9 Dnmt3a37; 38

RepA Independent transcript from Xist5′ end, helps activate
Xist17

cis17 PRC217

Jpx Activator of Xist transcription; counting of X-
chromosomes 16; 78

trans (mild cis preference)16 CTCF78

Ftx Potential activator of Xist expression18 unknown18 unknown
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