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Abstract: We propose a novel compressive sensing (CS) method on
spectral domain optical coherence tomography (SDOCT). By replacing the
widely used uniform discrete Fourier transform (UDFT) matrix with a new
sensing matrix which is a modification of the non-uniform discrete Fourier
transform (NUDFT) matrix, it is shown that undersampled non-linear
wavenumber spectral data can be used directly in the CS reconstruction.
Thus k-space grid filling and k-linear mask calibration which were proposed
to obtain linear wavenumber sampling from the non-linear wavenumber in-
terferometric spectra in previous studies of CS in SDOCT (CS-SDOCT) are
no longer needed. The NUDFT matrix is modified to promote the sparsity
of reconstructed A-scans by making them symmetric while preserving the
value of the desired half. In addition, we show that dispersion compensation
can be implemented by multiplying the frequency-dependent correcting
phase directly to the real spectra, eliminating the need for constructing
complex component of the real spectra. This enables the incorporation
of dispersion compensation into the CS reconstruction by adding the
correcting term to the modified NUDFT matrix. With this new sensing
matrix, A-scan with dispersion compensation can be reconstructed from
undersampled non-linear wavenumber spectral data by CS reconstruction.
Experimental results show that proposed method can achieve high quality
imaging with dispersion compensation.
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OCIS codes: (170.4500) Optical coherence tomography; (100.3010) Image reconstruction
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1. Introduction

Optical coherence tomography (OCT) is widely used as a routine medical diagnosis and screen-
ing tool in many clinical applications [1, 2]. Over the past decade, Fourier domain OCT
(FDOCT) has shown superior sensitivity and imaging speed and has been replacing conven-
tional time domain OCT (TDOCT) [3, 4].

Currently, FDOCT image generation algorithm requires the number of sampling points in
spectral domain beyond the Nyquist rate which results in a high sampling rate for images re-
quiring both large depth and high axial resolution. In spectral domain OCT (SDOCT), this
requires a high-resolution spectrometer with a large linear array camera. While a laser source
with high digitizer rate is necessary in swept source OCT (SSOCT). Such CCD/CMOS cam-
era and laser source are usually expensive and significantly increases the acquisition time. In
clinical applications of FDOCT where high-speed is desired, longer acquisition time makes the
imaging susceptible to unavoidable motion artifact.

Recently, compressive sensing (CS) has been studied extensively since it requires only a por-
tion of whole data for image reconstruction that satisfies image quality criteria [5, 6]. If the
signal has a sparse representation and the sensing matrix satisfies restricted isometry property
(RIP) [7], CS can obtain exact or accurate reconstruction from highly undersampled data. Ap-
plications of CS in FDOCT (CS-FDOCT) have been proposed [8–16] and high quality imaging
has been achieved with a significantly reduced amount of data compared to Nyquist rate re-
quirement.

Previous works on CS-FDOCT require linear wavenumber k-space undersampling because
a uniform discrete Fourier transform (UDFT) matrix is used as the sensing matrix. This is
inherited from conventional FDOCT image generation algorithms. However, in most FDOCT
systems, the spectra are linear in wavelength and non-linear in wavenumber. Two methods have
been proposed to obtain undersampled linear wavenumber data from the non-linear wavenum-
ber spectra in SDOCT. In [9], k-space grid filling method is used to remapping the undersam-
pled non-linear wavenumber data to linear wavenumber pixels according to a pre-calibrated
functional dependency of wavenumber on pixel index. This method requires spectral cali-
bration with numerical interpolation and is complicated and time-consuming itself. Another
method uses a pre-calibrated k-linear random mask which enables obtaining a linear wavenum-
ber subset by randomly undersampling directly from the non-linear wavenumber spectra [14].
The random mask is generated with the indices of the maximum and minimum points of the
spectra by placing a single reflector in the sample arm. This method still needs pre-calibration.
Also, even if only a slight change in the sampling rate is desired, the whole calibration process
needs to be repeated. Besides, its sampling rate has an upper bound because of the nature of
non-uniformity of the wavenumber.
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Several approaches have been proposed to reconstruct OCT images from the non-
linear wavenumber whole spectra [17–23]. Non-uniform discrete or fast Fourier transform
(NUDFT/NUFFT) is easy to implement and results in high quality images [20–23]. Appli-
cations of CS with the NUDFT/NUFFT matrix as the sensing matrix have also been studied,
mainly for non-Cartesian sampling in magnetic resonance imaging (MRI) [24–27], which use
the non-linear wavenumber spectral data directly. However, as will be shown in Section 3.1,
CS with the undersampled NUDFT/NUFFT matrix as the sensing matrix cannot be applied
directly to the non-linear wavenumber undersampling of FDOCT spectra because the recon-
structed A-scan will have less sparsity in spatial domain which requires much more k-space
sampling. Here the sparsity is defined as the number of coefficients to represent the signal is
close to 0. In this paper, we modified the NUDFT matrix to promote the sparsity of A-scans
by making them symmetric while preserving the intensity of the desired part of the A-scans.
Therefore, the modified NUDFT matrix can be used as the sensing matrix in CS reconstruction
on the non-linear wavenumber sampling of FDOCT signal.

Dispersion in FDOCT introduces a frequency-dependent phase to the Fourier components
which degrades the axial resolution and reduces sensitivity [1]. Dispersion compensation meth-
ods have been successfully implemented in both hardware and software [28–31]. One widely
used method is proposed in [28] by first resampling the non-linear wavenumber spectra with
numerical interpolation; then constructing the complex representation of the real spectra with
Hilbert transform; finally correcting the dispersion phase of the linear wavenumber complex
signal. However, dispersion compensation has never been discussed in the context of CS recon-
struction of FDOCT signal. In this paper, we show that dispersion compensation can be imple-
mented by multiplying the dispersion correcting term directly to the non-linear wavenumber
real spectra. This enables incorporation of dispersion compensation to CS reconstruction by
adding dispersion correcting term to the modified NUDFT matrix. Dispersion compensation
then becomes a by-product of CS reconstruction.

The main focus of this paper is to study of the novel sensing matrix (the MNUDFT matrix
in Eq. (13)) with which dispersion compensated A-scan can be reconstructed from undersam-
pled non-linear wavenumber sampling. The organization of this paper is as follows: Section 2
demonstrates the mathematical background of UDFT, NUDFT and CS in FDOCT; CS with the
modified NUDFT matrix is proposed in Section 3; in Section 4, the dispersion compensation
is incorporated to CS-FDOCT on the non-linear wavenumber undersampling; experimental re-
sults on SDOCT images are shown in Section 5, with discussion in Section 6, and conclusions
in Section 7.

2. Mathematical background

2.1. Uniform discrete Fourier transform

In most FDOCT system, the spectra are non-linear in wavenumber which requires pre-
processing procedures such as numerical interpolation to convert the dataset into linear in
wavenumber if UDFT is to be applied. Denote y = [y0,y1, . . . ,yN−1]

T as the non-linear
wavenumber k-space spectra (real value) and ŷ = [ŷ0, ŷ1, . . . , ŷN−1]

T as the linear wavenum-
ber spectral data (real value) obtained from y. The uppercase T denotes the transpose.
N is the whole signal length (no undersample). Denote x = [x0,x1, . . . ,xN−1]

T as the A-
scan reconstructed from y and x̂ = [x̂0, x̂1, . . . , x̂N−1]

T as the A-scan reconstructed from
ŷ. k = [k0,k1, . . . ,kN−1]

T is the non-linear wavenumber corresponding to y while k̂ =
[k̂0, k̂1, . . . , k̂N−1]

T is the linear wavenumber corresponding to ŷ. Then x̂ can be obtained from ŷ
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through inverse UDFT:

x̂n =
1√
N

N−1

∑
m=0

ŷm exp

(
i
2π
Δk̂

(k̂m − k̂0)×n

)
=

1√
N

N−1

∑
m=0

ŷm exp(iω̂m ×n) (1)

for n ∈ [0, . . . ,N − 1]. i is the imaginary unit. Δk̂ = k̂N−1 − k̂0 is the wavenumber range. ω̂m =
2π/N ×m. The derivation of the last part of Eq. (1) is because k̂ contains linear wavenumber:
Δk̂ can be written as Δk̂ = N ×δ k̂ and k̂m − k̂0 = m×δ k̂.

2.2. Non-uniform discrete Fourier transform

It has been shown that the A-scan (x) can be reconstructed from the non-linear wavenumber
spectra (y) through inverse NUDFT [20–23]. To avoid any numerical instability in computing
the inverse NUDFT matrix, [23] uses the forward NUDFT matrix instead:

xn =
1√
N

N−1

∑
m=0

ym exp

(
i
2π
Δk

(km − k0)×n

)
=

1√
N

N−1

∑
m=0

ym exp(iωm ×n) (2)

for n ∈ [0, . . . ,N − 1]. Δk = kN−1 − k0 is the wavenumber range (Δk = Δk̂). ωm = 2π/Δk ×
(km−k0). In standard FDOCT where y and ŷ are real values, only the first halves of x and x̂ are
displayed. In other words, n∈ [0, . . . ,N/2−1] in Eq. (1) and (2). Compared to the interpolation-
UDFT method, inverse NUDFT method has several advantages: it is simple to implement and
immune to the interpolation error which results in increased background noise and side-lobes,
especially at larger image depth [23].

In the rest of this paper, if not specified, inverse NUDFT refers to transformation with the
inverse NUDFT matrix which has the same form as the forward NUDFT matrix in Eq. (2).
Constructing a new sensing matrix by starting from the forward NUDFT matrix, instead of the
strict inverse NUDFT matrix, will be discussed in Section 6.

2.3. Compressive sensing in FDOCT

In CS-FDOCT, A-scan can be reconstructed from undersampled spectral data by solving the
following optimization problem if it is sparse in some domain:

minimize
g

‖Wg‖1,s.t.‖Fug− zu‖2 � ε (3)

where g is the desired A-scan signal in spatial domain. W is the sparsifying operator which will
transform g to a sparse representation, such as the wavelet transform matrix. If g is sparse in
spatial domain, W shall be the identity matrix. Fu is the undersampled sensing matrix and zu is
the undersampled k-space data. ε controls the fidelity of the reconstruction to the sampled data
or, equivalently, it reflects the noise level of zu; ε ≈ 0 for noise-free data.

If Fu is the undersampled UDFT matrix, zu has to be linear wavenumber sampling which is
the case in traditional CS-FDOCT. However, as is mentioned in Section 1, acquisition of linear
wavenumber sampling from the non-linear wavenumber spectra of FDOCT requires either k-
space grid filling with spectral calibration or k-linear random mask calibration.

If undersampled NUDFT matrix is used as the sensing matrix, zu is no longer required to be
linear in wavenumber and the non-linear wavenumber spectra of FDOCT can be undersampled
directly at an arbitrary sampling rate and used in CS reconstruction.

3. CS with the modified NUDFT matrix on the non-linear wavenumber sampling

3.1. A-scan sparsity of FDOCT using UDFT and NUDFT

CS reconstruction on the undersampled non-linear wavenumber spectral data with the NUDFT
matrix as the sensing matrix has already been successfully implemented, mainly on non-
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Cartesian sampling of MRI [24–27]. Traditional CS-FDOCT on the UDFT matrix and the
linear wavenumber sampling also shows that A-scans of FDOCT are sparse enough and can
be reconstructed from highly undersampled data [8–16].

However, applying the NUDFT matrix and non-linear wavenumber sampling to CS-FDOCT
would be a problem since the sparsity of the reconstructed A-scan is much less than that of the
A-scan obtained from traditional CS-FDOCT with the UDFT matrix and linear wavenumber
sampling. According to CS theory, the sampling rate for an accurate reconstruction depends
highly on the A-scan’s sparsity. Decreased A-scan sparsity will require much more sampling.

The sparsities of the A-scans with both methods are compared using the whole k-space spec-
tra. If UDFT is applied, the A-scan (x̂) can be obtained from the linear wavenumber spectra (ŷ)
through Eq. (1). Because the elements of ŷ are real, x̂ is symmetric:

x̂N−n =
1√
N

N−1

∑
m=0

ŷm exp

(
i
2π
N

m× (N −n)

)
=

1√
N

N−1

∑
m=0

ŷm exp

(
−i

2π
N

m×n

)
= (x̂n)

∗ (4)

for n ∈ [1, . . . ,N/2− 1] because m is integer and exp(i2πm) = 1. (x̂n)
∗ is the conjugate of x̂n.

This conjugate property implies that the intensity of x̂N−n is the same as that of x̂n for n ∈
[1, . . . ,N/2−1]. Figure 1(a) shows the plot of an A-scan (belonging to a mouse paw scanning)
obtained by applying inverse UDFT to ŷ which is obtained from the non-linear wavenumber
spectra (y) using cubic interpolation.
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Fig. 1. Sparsity comparison of A-scans by applying (a) inverse UDFT to the linear
wavenumber whole spectra (ŷ), (b) inverse NUDFT to the non-linear wavenumber whole
spectra (y), (c) modified inverse NUDFT to the non-linear wavenumber whole spectra (y)

If NUDFT is applied, the A-scan (x) can be obtained from the non-linear wavenumber spectra
(y) through Eq. (2). Because y is non-linear in wavenumber, x is no longer symmetric:

xN−n =
1√
N

N−1

∑
m=0

ym exp(iωm × (N −n)) =
1√
N

N−1

∑
m=0

ym exp(−iωm ×n)× exp(iωmN) �= (xn)
∗ (5)

for n ∈ [1, . . . ,N/2−1] because usually exp(iωmN) �=±1. Figure 1(b) shows the plot of A-scan obtained
by applying inverse NUDFT to y.

As can be seen in Fig. 1(a) and 1(b), the first halves of x̂ and x, i.e., [x̂0, . . . , x̂N/2−1] and [x0, . . . ,xN/2−1]
have similar sparsity. But the sparsity of the second half of x is much less than that of x̂. The decrease of
sparsity implies that more sampling is required to reconstruct x than x̂ using CS.

Although a specific example from a mouse paw scanning is displayed in Fig. 1, according to experi-
mental results with different samples, it is quite universal that x has less sparsity than x̂. The influence
of the decreased sparsity usually cannot be eliminated by using larger ε in CS reconstruction: In Fig.
1(b), [x0.75N , . . . ,xN−1] has higher intensity than most of [x0, . . . ,xN/2−1], which implies that most of
[x0, . . . ,xN/2−1] will receive a bigger penalty than [x0.75N , . . . ,xN−1] during the reconstruction and is more
likely to be zero with larger ε . Although the second halves of both x and x̂ will not be displayed for the
standard FDOCT system, their sparsity will greatly influence the reconstruction of the FDOCT signal with
CS since Eq. (3) tries to find the solution that minimizes the l1-norm of the whole A-scan.
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3.2. The modified NUDFT matrix

The sparsity of the second half of x has a greater influence on the CS reconstruction of the whole x. In
standard FDOCT, however, we do not care about the intensity of this undisplayed half of x as long as
its sparsity is high enough. It would be perfect if the second half of x is always 0. However, that’s not
typically true for arbitrary y.

It has already been shown in previous work of CS-SDOCT that x̂ can be accurately reconstructed with
a relatively small sample size [9,14,16]. So our motivation is: since the first halves of x and x̂ have similar
sparsity and x̂ can be reconstructed by CS, if the second half of x is symmetric to its first half, x and x̂ will
have similar sparsity. Then x can be accurately reconstructed with almost the same amount of sampling
required to reconstruct x̂ by CS. We find that this idea can be realized by modifying the NUDFT matrix.

The inverse NUDFT transformation in Eq. (2) can be written in matrix form as follows:

⎡
⎢⎢⎢⎣

x0
x1
...

xN−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

h(0,0) h(1,0) . . . h(N −1,0)
...

...
. . .

...
h(0,N/2) h(1,N/2) . . . h(N −1,N/2)

...
...

. . .
...

h(0,N −1) h(1,N −1) . . . h(N −1,N −1)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y0
y1
...

yN−1

⎤
⎥⎥⎥⎦ (6)

where h(p,q) = exp(iωp ∗q).
It is easy to see that values of the bottom half of x ([xN/2, . . . ,xN−1]) are only relevant to the bottom

half of the inverse NUDFT matrix and y. Therefore, obtaining symmetric reconstructed A-scan (x′) can
be realized by modifying the bottom half of the inverse NUDFT matrix:

⎡
⎢⎢⎢⎣

x′0
x′1
...

x′N−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0,0) h(1,0) . . . h(N −1,0)
h(0,1) h(1,1) . . . h(N −1,1)

...
...

. . .
...

h(0,N/2−1) h(1,N/2−1) . . . h(N −1,N/2−1)
h(0,N/2) h(1,N/2) . . . h(N −1,N/2)

h(0,N/2−1)∗ h(1,N/2−1)∗ . . . h(N−1,N/2−1)∗
...

...
. . .

...
h(0,1)∗ h(1,1)∗ . . . h(N−1,1)∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y0
y1
...

yN−1

⎤
⎥⎥⎥⎦ (7)

where h(p,q)∗ = exp(−iωp×q) is the conjugate of h(p,q). Elements from the second row to the last row
of the bottom half of the transformation matrix (rows in bold) are conjugate to those of the symmetric
rows in the top half, e.g., elements of the row corresponding to x′(N/2+1) are conjugate to the elements of

the row corresponding to x′(N/2−1). It can be proved that x′ is symmetric:

x′N−n =
1√
N

N−1

∑
m=0

ym h(m,n)∗ =

(
1√
N

N−1

∑
m=0

ym h(m,n)

)∗
= (x′n)∗ (8)

which implies that x′N−n and x′n have the same intensity for n ∈ [1, . . . ,N/2−1]. Thus x′ is symmetric. It
is also easy to see that [x′0,x

′
1, . . . ,x

′
N/2−1] is the same as [x0,x1, . . . ,xN/2−1]. Thus, proposed modification

preserves the intensity of the desired part of the A-scan. The first and (N/2+ 1)th row of the modified
inverse NUDFT matrix are unchanged, which makes x′ and x̂ to have the same symmetric structure. Figure
1(c) shows the plot of x′ whose sparsity is similar to x̂ and much higher than x. Proposed method shows
good performance at promoting the sparsity of A-scan.

The modified inverse NUDFT matrix in Eq. (7), however, cannot be used directly as the sensing matrix
in CS-FDOCT because the sensing matrix should transform data from spatial domain to k-space according
to Eq. (3). Thus, its inverse matrix, i.e. the modified NUDFT matrix is needed. Based on the fact that
the inverse NUDFT matrix in Eq. (6) is indeed the forward NUDFT matrix instead of the strict inverse
NUDFT matrix, the modified NUDFT matrix can be easily obtained by taking conjugate transpose of the
transformation matrix in Eq. (7).
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Using the undersampled modified NUDFT matrix as the sensing matrix, A-scan can be reconstructed
with high accuracy by CS from undersampled non-linear wavenumber spectral data.

4. CS with dispersion compensation

4.1. Dispersion compensation with NUDFT on non-linear wavenumber real spectra

Dispersion degrades FDOCT image quality by introducing a frequency-dependent phase term to the
Fourier components of the signal. One widely used method to compensate the dispersion is proposed
in [28] which first resamples the non-linear wavenumber spectra with numerical interpolation; generates
the imaginary part of the signal with Hilbert transform; then corrects the phase of the linear wavenumber
complex signal to compensate dispersion; finally applies UDFT to the corrected spectrum to obtain the
A-scan. However, this method cannot be applied to undersampled spectral data because both interpola-
tion and Hilbert transform require whole spectra which makes it very difficult to obtain undersampled
dispersion compensated linear wavenumber spectral data. Also, this method cannot be applied as post
processing to the reconstructed A-scan with dispersion because it corrects the dispersion in k-space, not
in spatial domain. Thus it is difficult to incorporate this widely used dispersion compensation method into
CS-FDOCT directly.

Therefore, we propose and validate a dispersion compensation method by first multiplying the cor-
recting phase directly to the non-linear wavenumber real spectra; then applying NUDFT to the corrected
spectrum to reconstruct the A-scan. This method eliminates the need for interpolation and Hilbert trans-
form which are used to transform the spectra to be first linear in wavenumber then complex. It will be
shown in Section 4.3 that after transformation, proposed dispersion compensation method has the form
similar to that of the inverse NUDFT-based FDOCT image generation algorithm in Eq. (6). Then the
transformation matrix is modified in the same way mentioned in Section 3.2 to promote the A-scan’s
sparsity and its undersampled matrix can be used in CS reconstruction on the non-linear wavenumber real
sampling to obtain dispersion compensated A-scan.

Multiplying the correcting phase directly to the non-linear wavenumber real spectra can be written as:

Icomp(ωm) = Re{2×∑n

√
Sn(ωm)Sr(ωm)exp(−i[ωmτn +Φ(ωm)])}× exp(iΦ(ωm))

= (∑nAn(ωm)(exp(−i[ωmτn +Φ(ωm)]+ exp(i[ωmτn +Φ(ωm)])))exp(iΦ(ωm))
= ∑nAn(ωm)exp(−i[ωmτn])︸ ︷︷ ︸

A1

+∑nAn(ωm)exp(i[ωmτn +2Φ(ωm)])︸ ︷︷ ︸
A2

(9)

for m ∈ [0, . . . ,N − 1]. Icomp(ω) is the corrected spectrum. Sn(ω) is the intensity of light reflected from
the n-th layer in the sample; Sr(ω) is the intensity of light reflected from the reference arm; τn is the
optical group delay of the n-th reflection to the reference light path. Φ(ω) is the dispersion term. An(ωm)
substitutes

√
Sn(ωm)Sr(ωm) from the second row. The first term after the first equal mark is the inter-

ferometric signal with some degree of dispersion (i.e. y in previous sections) while the second term is
the dispersion compensation term. Compensating second and third order dispersion is usually sufficient
where Φ(ω) =−a2(ω −ω∗)2−a3(ω −ω∗)3. ω∗ is the central angular frequency; a2 and a3 are constant.
In the last row, the term A1 is the desired dispersion compensated spectra. However, proposed method will
also introduce an undesired term in Icomp(ω): A2.

Then inverse NUDFT is applied to the corrected spectrum Icomp(ω). Denote the results of applying
the inverse NUDFT to A1 and A2 as T1 and T2 respectively. The resulting A-scan is the sum of T1 and
T2. In standard FDOCT system, only the first half of the A-scan will be shown. The first half of T1 is
the desired dispersion compensated A-scan with better resolution while the first half of T2 degrades the
A-scan’s resolution. However, as will be shown below, the intensity of first half of T2 is relatively small
compared to that of the first half of T1. In other words, T1 dominates the displayed half of the A-scan and
the resolution degradation caused by T2 has little effect.

4.2. Experimental validation

To illustrate this domination effect, the simulation with only one reflector (n= 1) is shown in Fig. 2 which
plots the intensity ratio value of (|T1(τ1)|/|T2(τ1)|) with different reflector position τ1 (from 1 to N/2−1).
The simulation is done with different level of dispersion (a2 ∈ {−500,−250,−100,0,100,250,500} f s2;
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a3 = 0) to demonstrate that intensity of T1 is much higher than that of T2 regardless of the level of disper-
sion. ω is obtained from the SDOCT system used in the study. Sn and Sr are set as 1 since their values do
not influence the plot.

0.1N 0.2N 0.3N 0.4N 0.5N
10

20

30

40

50

60

70

80

90

pixel index

|T
1(τ

1)|
/|T

2(τ
1)|

(d
B

)

 

 

−500
−250
−100
0
100
250
500

Fig. 2. Plot of |T1(τ1)|/|T2(τ1)| versus different reflector position τ1. Simulation is done
with different level of dispersion (a2 ∈ {−500,−250,−100,0,100,250,500} f s2; a3 = 0).

As can be seen in Fig. 2, most of (|T1(τ1)|/|T2(τ1)|) is above 30dB when the reflector is in the displayed
half of the A-scan. T1 dominates T2 under various dispersion condition. The curve without dispersion
shows higher ratio as expected.
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Fig. 3. Sensitivity roll-off of systems applying (a) inverse UDFT to the linear wavenum-
ber real spectra without dispersion compensation, (b) inverse NUDFT to the non-linear
wavenumber real spectra without dispersion compensation, (c) dispersion compensation
method in [28], (d) proposed dispersion compensation method on the non-linear wavenum-
ber real spectra. A 2cm water cell is inserted to introduce large dispersion mismatch.

Sensitivity roll-off of the proposed dispersion compensation method on the non-linear wavenumber
real spectra (y) is compared with those by applying (1) inverse UDFT to the linear wavenumber real
spectra (ŷ) without dispersion compensation; (2) inverse NUDFT to y without dispersion compensation;
(3) dispersion compensation method in [28]. Here 124 A-scans with 2048-pixel each were averaged for
each position. A 2cm water cell was inserted to the reference arm of the interferometer to introduce large
dispersion mismatch (both y and ŷ contains dispersion). The dispersion coefficients were empirically set
as a2 = 460 f s2 and a3 = 134 f s3. The results are shown in Fig. 3 (intensity of each A-scan is normalized).
Figure 3(b) shows flatter sensitivity roll-off with smaller background noise and side-lobes at larger image
depth than Fig. 3(a), which is consistent with the observation in [20, 23]. Peaks in Fig. 3(c) and 3(d) are
much sharper than those in Fig. 3(a) and 3(b), indicating the FWHM of 4μm against 22μm. Figure 3(d)
also shows better sensitivity than Fig. 3(c) as well as less background noise and side-lobes. Thus, proposed
method shows good potential at compensating dispersion and outperforms the dispersion compensation
method in [28].

The above two calculations show that the influence of undesired term T2 is relatively small compared
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with T1 on the displayed half of reconstructed A-scan and that multiplying the correcting term directly to
the non-linear wavenumber real spectra could achieve a satisfying dispersion compensation effect.

4.3. Incorporation of dispersion compensation to CS-FDOCT

Dispersion compensation method proposed in Section 4.2 can be written in matrix form as:

⎡
⎢⎢⎢⎣

xc
0

xc
1
...

xc
N−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

h(0,0) h(1,0) . . . h(N −1,0)
...

...
. . .

...
h(0,N/2) h(1,N/2) . . . h(N −1,N/2)

...
...

. . .
...

h(0,N −1) h(1,N −1) . . . h(N −1,N −1)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

y0
y1
...

yN−1

⎤
⎥⎥⎥⎦ .∗

⎡
⎢⎢⎢⎢⎣

eiΦ(ω0)

eiΦ(ω1)

...
eiΦ(ωN−1)

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

(10)
where xc = [xc

0,x
c
1, . . . ,x

c
N−1]

T is the dispersion-compensated A-scan; “.*” stands for the component-wise
multiplication. The transformation matrix is the inverse NUDFT matrix.

Denote exp(iΦ(ωn)) as Φn for n ∈ [0,1, . . . ,N−1], then Eq. (10) can be rewritten by incorporating the
dispersion compensation term into the inverse NUDFT matrix:

⎡
⎢⎢⎢⎣

xc
0

xc
1
...

xc
N−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

h(0,0)Φ0 h(1,0)Φ1 . . . h(N −1,0)ΦN−1
...

...
. . .

...
h(0,N/2)Φ0 h(1,N/2)Φ1 . . . h(N −1,N/2)ΦN−1

...
...

. . .
...

h(0,N −1)Φ0 h(1,N −1)Φ1 . . . h(N −1,N −1)ΦN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y0
y1
...

yN−1

⎤
⎥⎥⎥⎦ (11)

where h(p,q)Φn = exp(iωp × q)× exp(iΦ(ωn)). Although the transformation matrix in Eq. (11) does
not have the same form as the inverse NUDFT matrix in Eq. (2), it could still be considered an inverse
NUDFT matrix because the phases in each row are non-linear in wavenumber.

Eq. (11) gives a transformation between the dispersion-compensated A-scan and the non-linear
wavenumber real spectra, building the foundation of CS reconstruction. However, it cannot be used di-
rectly in CS-FDOCT because of decreased A-scan sparsity problem mentioned in Section 3.1. Thus the
transformation matrix in Eq. (11) also needs modification to make xc symmetric for higher sparsity:

⎡
⎢⎢⎢⎢⎣

x
′c
0

x
′c
1
...

x
′c
N−1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(0,0)Φ0 h(1,0)Φ1 . . . h(N −1,0)ΦN−1
h(0,1)Φ0 h(1,1)Φ1 . . . h(N −1,1)ΦN−1

...
...

. . .
...

h(0,N/2−1)Φ0 h(1,N/2−1)Φ1 . . . h(N −1,N/2−1)ΦN−1
h(0,N/2)Φ0 h(1,N/2)Φ1 . . . h(N −1,N/2)ΦN−1

(h(0,N/2−1)Φ0)
∗ (h(1,N/2−1)Φ1)

∗ . . . (h(N −1,N/2−1)ΦN−1)
∗

...
...

. . .
...

(h(0,1)Φ0)
∗ (h(1,1)Φ1)

∗ . . . (h(N −1,1)ΦN−1)
∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

y0
y1
...

yN−1

⎤
⎥⎥⎥⎦

(12)
The modification also preserves the value of desired half of the A-scan: [xc

0,x
c
1, . . . ,x

c
N/2−1]

T =

[x
′c
0 ,x

′c
1 , . . . ,x

′c
N/2−1]

T .
The sensing matrix required for CS reconstruction can be obtained in the same way as in Section 3.2:

take the conjugate transpose of the transformation matrix in Eq. (12):
⎡
⎢⎢⎣

(h(0,0)Φ0)
∗ . . . (h(0,N/2−1)Φ0)

∗ . . . h(0,N/2−1)Φ0 . . . h(0,1)Φ0

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
(h(N −1,0)ΦN−1)

∗ . . . (h(N −1,N/2−1)ΦN−1)
∗ . . . h(N −1,N/2−1)ΦN−1 . . . h(N −1,1)ΦN−1

⎤
⎥⎥⎦ (13)

With the undersampled matrix of Eq. (13), dispersion compensated A-scan can be reconstructed from un-
dersampled non-linear wavenumber spectral data. It is noteworthy to mention that with proposed sensing

#189385 - $15.00 USD Received 25 Apr 2013; revised 12 Jul 2013; accepted 21 Jul 2013; published 2 Aug 2013
(C) 2013 OSA 1 September 2013 | Vol. 4,  No. 9 | DOI:10.1364/BOE.4.001519 | BIOMEDICAL OPTICS EXPRESS  1528



matrix, dispersion compensation becomes a by-product of CS reconstruction and no additional dispersion
compensation procedure is needed.

5. Experimental results

To evaluate the effect of proposed method, k-space data from a SDOCT system are used. The system uses
a spectrometer having a 12-bit CMOS line scan camera (EM4, e2v, USA) with 2048 pixels at 70 kHz line
rate. A superluminescent laser diode (SLED) is used as the light source which provides an output power of
10 mW and an effective bandwidth of 105nm centered at 845nm. The experimental axial resolution of the
system is 4.0μm in air while the transversal resolution is approximately 12μm. All animal studies were
conducted in accordance with the Johns Hopkins University Animal Care and Use Committee Guidelines.
Spectral data were post-processed with MATLAB� R2012b on a desktop with Intel� CoreTM 2 Duo CPU
(E8400, 3.0GHz), 4GB RAM, Windows� 7 64-bit operation system. The CS reconstruction algorithm is
SPGL1 with default parameters [32, 33].

Proposed sensing matrix in Eq. (13) (denoted as the MNUDFT matrix) is applied to CS reconstruction
on the undersampled non-linear wavenumber real spectra. For comparison purpose, the following results
are also evaluated: 1) original image obtained by applying NUDFT to 100% of the non-linear wavenumber
real spectra; 2) image reconstructed using CS on the undersampled non-linear wavenumber real spectra
with the NUDFT matrix as the sensing matrix.

The undersampled non-linear wavenumber spectral data is obtained by applying a pseudo-random mask
to the original spectra. Variable density random sampling [12] is used to generate this mask. This eval-
uation method is widely used in the studies of CS-SDOCT [9, 14, 16]. A CCD camera with randomly
addressable pixels [9,34–36] can be used to practically implement random undersampling of spectral data
in an SDOCT system.

The same undersampled data, reconstruction domain and ε are used in the CS reconstructions of the
same object. According to experimental results, OCT signal is sparse in spatial domain in most cases.
However, it is usually sparser in wavelet domain than spatial domain. The reconstruction domain is chosen
to optimize the reconstruction result. Besides, the sampling rate is chosen to balance the size of spectral
data and the image quality while ε is selected to balance the loss of useful information and the reduction
of noise. The dispersion compensation parameters a2 and a3 are set empirically.

To carry out a quantitative assessment of reconstruction results of different methods, the local contrast
and signal to noise ratio (SNR) are computed. Their definitions are as follows:

local contrast =
μo

μb
(14)

SNR = 20× log10

⎛
⎝

√
1

No
∑(i, j)∈object I(i, j)2√

1
Nb

∑(i, j)∈background I(i, j)2

⎞
⎠ (15)

where No and Nb are the number of pixels in the selected object region and background region respectively.
As is shown in Fig. 4, 5, and 6, area in the red rectangles are selected object region while the green
rectangle area is selected background region. They have the same size. I(i, j) is the intensity. μo and μb
are mean of intensity of the object region and background region respectively.

The comparison is first implemented on the mouse paw scanning which contains several layers. The
CS reconstructions use 40% spectral data; W is the four-level daubechies4 wavelet transform matrix.
Compensation parameters are set as a2 = 157 f s2 and a3 = 170 f s3. All images are shown in the same
dynamic range. Figure 4(b) exhibits bad quality because of the decreased A-scan sparsity problem. It
achieves accurate reconstruction for pixels with high intensity but loses information for the pixels with
relative low intensity. The layer beneath the surface is difficult to see due to the CS reconstruction error,
as is pointed out by the arrows. Figure 4(c) has much better quality, which is very close to 4(a) which
uses 100% sampling rate. Besides, Fig. 4(c) shows obvious dispersion compensation effect with clear and
thin tissue boundary compared to 4(a) and 4(b). The overall contrast of 4(c) is better than that of 4(a) with
100% sampling rate because CS is well known to be good at reducing noise [15, 37]. The local contrast
and SNR of Fig. 4(a), 4(b) and 4(c) are listed in Table 1 which shows that CS reconstruction with the
MNUDFT matrix obtains better image quality.
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(a) (b) (c)

Fig. 4. B-scans of a mouse paw. (a) original image obtained by applying NUDFT to
100% of the acquired non-linear wavenumber spectra; (b) CS reconstruction result with the
NUDFT matrix from 40% of the acquired non-linear wavenumber spectra; (c) CS recon-
struction result with the MNUDFT matrix from 40% of the acquired non-linear wavenum-
ber spectra; The scale bars represent 100μm. Image size in pixel is 450×1000

Table 1. Local contrast and SNR of the B-scans of mouse paw in Fig. 4

original CS+NUDFT CS+MNUDFT
Local contrast(dB) 4.63 3.50 5.42
SNR(dB) 14.06 11.44 16.07

The mouse cornea images are shown in Fig. 5. CS reconstructions used 37.5% sampling rate. W is the
identity matrix. a2 = 120 f s2 and a3 = 100 f s3. Figure 5(c) is very close to 5(a) while Fig. 5(b) shows
obvious artifact and information loss. Regions of interest (ROI) are extracted from the reconstructed im-
ages (cyan rectangles in Fig. 5(a), 5(b) and 5(c)). Figure 5(f) shows that CS with the MNUDFT matrix
preserves almost all the structures in the original image which uses 100% sampling rate while Fig. 5(e)
are void of fine details. Table 2 lists the local contrast and SNR of Fig. 5(a), 5(b) and 5(c).

(d) (e) (f)

(a) (b) (c)

Fig. 5. B-scans of a mouse cornea; (a) original image obtained by applying NUDFT to
100% of the acquired non-linear wavenumber spectra; (b) CS reconstruction result with
the NUDFT matrix from 37.5% of the acquired non-linear wavenumber spectra; (c) CS
reconstruction result with the MNUDFT matrix from 37.5% of the acquired non-linear
wavenumber spectra; (d), (e) and (f) are zoom in of the cyan rectangle areas in (a), (b) and
(c) respectively. The scale bars represent 100μm. Image size in pixel is 700×1000.

To give an in-depth assessment of the dispersion compensation effect of CS with the MNUDFT matrix,
a 2.4cm water cell was placed in the reference arm when imaging a polymer-layered phantom to intention-
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Table 2. Local contrast and SNR of the B-scans of mouse cornea in Fig. 5

original CS+NUDFT CS+MNUDFT
Local contrast(dB) 2.68 2.12 3.50
SNR(dB) 8.81 8.04 9.67

ally introduce a large dispersion mismatch between the two arms. CS reconstructions use 50% sampling
rate. W is the four-level daubechies4 wavelet transform matrix. a2 = 575 f s2 and a3 = 295 f s3. The B-scan
obtained by applying the forward MNUDFT matrix to 100% of the acquired spectra (Eq. (12)) is added
in Fig. 6(d) to show that MNUDFT can also achieve obvious dispersion compensation when used in the
traditional imaging generation. Figure 6(a) shows much bigger dispersion than the previous cases. Figure
6(b) is void of fine details and there are obvious artifacts in the area outside the phantom. Dispersion
compensated images, Fig. 6(c) and 6(d), are highly clear compared to Fig. 6(a), especially near the upper
surface. Both of them show obvious dispersion reduction which validates the proposed method while CS
uses only 50% of the acquired spectra and achieves better image quality, as is shown in Table 3.

(a) (b) (c) (d)

Fig. 6. B-scans of a polymer-layered phantom with 2.4cm water induced dispersion; (a)
original image obtained by applying NUDFT to 100% of the acquired non-linear wavenum-
ber spectra; (b) CS reconstruction result with the NUDFT matrix from 50% of the acquired
non-linear wavenumber spectra; (c) CS reconstruction result with the MNUDFT matrix
from 50% of the acquired non-linear wavenumber spectra; (d) image obtained by applying
the forward MNUDFT matrix to 100% of the acquired non-linear wavenumber spectra.
The scale bars represent 100μm. Image size in pixel is 450×1000.

Table 3. Local contrast and SNR of the B-scans of polymer-layered phantom in Fig. 6

original CS+NUDFT CS+MNUDFT MNUDFT
Local contrast(dB) 4.43 2.12 7.71 6.13
SNR(dB) 15.99 9.79 27.23 23.82

6. Discussion

The MNUDFT matrix is created by “mirroring” its first half: setting columns of the right half to be
conjugate to the corresponding columns at the left half. This modification itself is not unique. Looking
at the MNUDFT matrix in Eq. (13), one can easily create another sensing matrix by changing the order
of the columns of its right half. Although the resulting A-scan will not be symmetric any more, this does
not change the performance of the method since its l1-norm is unchanged and the displayed half of the
A-scan is preserved.

Although, according to Eq. (7) and (12), setting the entire bottom half of the transformation matrix
to zero will maximize the sparsity of the undisplayed half of the A-scan, one cannot simply drop the
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information in this way since it will make all the right half of the MNUDFT matrix zero. Denote the
proposed MNUDFT matrix as H. It implies y = H ∗ x̃ where y is the acquired spectra with non-linear
wavenumber and x̃ is the A-scan. If the right half of H are all zero, no matter what value the bottom
half of x̃ is (including the desired zero value), y = H ∗ x̃ does not hold any more if the first half of x̃ is
unchanged. Thus the basic principle is violated. In addition, the new sensing matrix should not have any
two columns/rows the same, as is required by the standard CS theory [5, 6].

The proposition of the MNUDFT matrix starts from the forward NUDFT matrix instead of the strict
inverse NUDFT matrix. This substitution does not change the effect of proposed method because the
forward NUDFT matrix is only used to demonstrate what the A-scan would be after the modification. The
usage of the forward NUDFT matrix to compute the A-scan has already been validated by the experiments
in [20, 23]. Then the MNUDFT matrix can be easily obtained because the modification is done on its
conjugate transpose matrix. After all, the matrix that will be used in CS reconstruction as the sensing
matrix is the MNUDFT matrix. Selected CS reconstruction algorithm relies on the sensing matrix and its
conjugate transpose, not its inverse. Starting from the forward NUDFT matrix instead of the strict inverse
NUDFT matrix is because it helps to demonstrate the motivation of proposed method.

Dispersion compensation coefficients a2 and a3 used in this paper were obtained empirically from
the system in the study. However, these two parameters can be obtained automatically using an iterative
procedure which optimizes the sharpness of the reconstructed image, as in [28].

Another interesting subject is incorporating dispersion compensation directly to UDFT-based CS-
FDOCT on undersampled linear wavenumber spectral data. No interpolation is needed in this case. The
Hilbert transform cannot be applied to undersampled data. This can be overcome by multiplying the dis-
persion compensation term directly to the real spectra. But the remaining processing actually becomes
CS reconstruction with the NUDFT matrix: the transformation equation on 100% spectral data (ŷ) in this
case is very similar to Equation (11) except that the non-linear angular frequency ω is replaced by the
linear angular frequency ω̂ . Denote the transformation matrix as D. Because Φ(ω̂) is non-equispaced, the
phase of arbitrary row in D is no longer equispaced. Thus D is a NUDFT matrix, which may introduce
low sparsity to the resulting A-scan. Thus, modification on D is still needed to improve the sparsity of the
resulting A-scan, especially when the dispersion is big.

We have shown that CS reconstruction with the proposed MNUDFT matrix on undersampled non-
linear wavenumber data represents a simpler approach compared to traditional CS-FDOCT based on the
UDFT matrix and undersampled linear wavenumber data. The time for CS reconstructions in both cases
are almost the same. However, many properties such as the difference in sampling rate and robustness to
noise of UDFT and MNUDFT based CS-FDOCT still need more study.

There is some difference when choosing the CS reconstruction algorithm because the MNUDFT matrix
is not unitary. Several CS reconstruction algorithms-such as NESTA [38] and CSALSA [39]-cannot or are
difficult to use to solve the CS optimization problem defined in Eq. (3), because they require either FT

u Fu =
I or explicit (I−FT

u Fu)
−1 (FT

u is the conjugate transpose of Fu). SPGL1 is chosen as the reconstruction
algorithm, in part because it does not require unitary sensing matrix.

7. Conclusion

In this paper, we propose a novel CS-FDOCT method based on the MNUDFT matrix which can be applied
to the non-linear wavenumber spectral sampling instead of the linear wavenumber sampling in traditional
CS-FDOCT with the UDFT matrix. In addition, dispersion compensation by multiplying the correcting
term directly to the non-linear wavenumber real spectra is proposed and incorporated into the sensing
matrix of CS. Experimental results show that proposed method achieves high quality images with good
dispersion reduction.
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