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Abstract: Optical coherence tomography (OCT) allows for non-invasive
3D visualization of biological tissue at cellular level resolution. Often hin-
dered by speckle noise, the visualization of important biological tissue de-
tails in OCT that can aid disease diagnosis can be improved by speckle
noise compensation. A challenge with handling speckle noise is its inherent
non-stationary nature, where the underlying noise characteristics vary with
the spatial location. In this study, an innovative speckle noise compensation
method is presented for handling the non-stationary traits of speckle noise
in OCT imagery. The proposed approach centers on a non-stationary spline-
based speckle noise modeling strategy to characterize the speckle noise. The
novel method was applied to ultra high-resolution OCT (UHROCT) images
of the human retina and corneo-scleral limbus acquired in-vivo that vary in
tissue structure and optical properties. Test results showed improved perfor-
mance of the proposed novel algorithm compared to a number of previously
published speckle noise compensation approaches in terms of higher signal-
to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual
assessment.
OCIS codes: (110.4500) Optical coherence tomography; (030.6140) Speckle; (100.2980) Im-
age enhancement; (100.3010) Image reconstruction techniques; (170.4460) Ophthalmic optics
and devices.
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1. Introduction

Optical Coherence Tomography (OCT) is an interference-based imaging technology that is
capable of imaging biological tissue with micrometer scale resolution and in a non-invasive
manner. With the advent of ultrahigh resolution OCT (UHROCT) imaging, it is now possible
to visualize biological tissue at the cellular level up to depths of approximately 1 mm below
the tissue surface, thus allowing morphological details such as individual tissue layers, clus-
ters of specialized cells, small blood vessels, and lipid deposits to be studied and characterized
morphometrically in vivo. Furthermore, the data acquisition speed of OCT systems has greatly
improved over the past decade with the development of high-speed CCD and CMOS [1] cam-
eras and tunable lasers with MHz sweep rates [2], thus allowing real-time imaging and display
of large volumes of biological tissue. All these developments have opened the door for a vari-
ety of medical imaging applications such as in vivo imaging of the human eye, gastrointestinal
tract, as well as the epidermis and dermis layers of the skin [3].

As an interferometric method based on coherent optical beams, one of the fundamental chal-
lenges with OCT imaging is the presence of speckle noise in the tomograms. The character-
istics of the speckle pattern in OCT imagery depend not only on the wavelength and coherent
properties of the imaging beam, but also on the underlying structural details of the imaged ob-
ject [4]. All of these factors lead to a speckle pattern with non-stationary characteristics that
vary spatially within the OCT imagery and carries both information regarding the structure of
the imaged object, as well as a noise component. The presence of speckle noise can often ob-
scure small but important morphological details in the reconstructed OCT images, resulting in
an overall grainy appearance that makes it more difficult for clinicians and clinical scientists
to distinguish between different types of tissues. This challenge becomes more important in
the case of high-speed OCT imaging systems, where there is a fundamental trade-off between
acquisition speed and signal-to-noise ratio. As such, the development of speckle noise compen-
sation strategies is of great importance in obtaining high quality, high resolution OCT imagery
of biological tissue.

A number of methods exist for speckle noise compensation in OCT imaging, and can be
grouped into two main categories: i) hardware compensation, and ii) algorithmic compensation.
In general, hardware speckle noise compensation methods are based on the acquisition of multi-
ple frames with uncorrelated noise that can be averaged together to improve the signal-to-noise
ratio (SNR). Schmitt demonstrated a method using array detectors to measure the same signal
across different spatial coordinates such that each detector element measures light backscat-
tered from the sample at a different angle [5]. This “angular compounding” approach resulted
in several other methods, including the sample beam angle adjustment over time [6], splitting
of the incident beam and sampling simultaneously at different incident beam angles [7], or
use of mirrors to change the incident beam angle [8]. Other methods use a “spatial diversity”
approach, for example varying the position of the imaging lens relative to the sample [9], or
varying the position of the sample itself for small samples [10]. Fang et al achieved competi-
tive speckle compensation by using custom scan patterns to image a small fraction of a volume
at a high SNR, then learning sparse representation dictionaries from the high-SNR scans and
denoising the low-SNR remainder of the volume using these sparse dictionaries [11]. Major
disadvantages inherent to any hardware speckle noise compensation approaches include longer
data acquisition times, a more complex data acquisition procedure, as well as increased com-
plexity of the opto-mechanical design of the OCT imaging system.

Given the technological challenges with hardware speckle noise compensation methods, over
the past two decades significant effort has been invested in the development of algorithmic
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speckle noise compensation methods which require no hardware modifications nor increased
acquisition time. Classical algorithmic approaches for speckle noise compensation such as lin-
ear least-squares estimation [12–14] and adaptive median filtering [15] were found to not only
provide poor speckle noise compensation, but importantly lead to the loss of fine morphologi-
cal details that are important for clinical diagnosis and scientific analysis [16]. More advanced
data-adaptive speckle noise compensation methods [4, 17] have shown improved contrast and
preservation of detail compared to the classical approaches, but still suffer from significant loss
in detail under high speckle noise contamination situations.

More recently, much of the focus in algorithmic speckle noise compensation has revolved
around wavelet-based strategies [18–22] and diffusion-based methods [20, 23–25]. In wavelet-
based strategies, the underlying OCT imagery is decomposed across multiple scales using
wavelet transforms, and thresholding is applied to the wavelet coefficients which contribute to
the appearance of speckle noise in the imagery. Wavelet-based methods have superior speckle
noise compensation capabilities when compared to earlier speckle noise compensation strate-
gies. However, such methods may introduce wavelet-related artifacts that can obscure fine mor-
phological details that are important for clinical diagnosis and scientific study [16]. In diffusion-
based methods, the speckle-free OCT imagery is estimated by optimizing a diffusion-based
partial differential equation (PDE) formulation that adapts non-linearly based on the under-
lying image detail. Diffusion-based methods have also been shown to provide strong speckle
noise compensation capabilities compared to earlier strategies and do not introduce the type
of artifacts that may be created by the wavelet-based methods. However, such methods have
shown noticeable loss in detail in situations characterized by high speckle noise contamination.

One important trait of speckle noise patterns in OCT imagery of biological tissue that has
not been adequately investigated is the non-stationary nature of the speckle noise characteristics
that varies spatially within the OCT imagery. Several speckle-specific image restoration meth-
ods [26, 27] use sample variance within the local neighborhood to estimate spatially-varying
noise variance. More general approaches, such as the Gaussian Scale Mixture model [28, 29]
or Non-Local Means [30], use a single global estimate for noise variance. As such, the aim
of the proposed method is to further explore the effectiveness of non-stationary speckle noise
modeling for the purpose of speckle noise compensation in OCT imaging.

In this study, we investigate and introduce a novel stochastic approach for speckle noise
compensation in OCT via non-stationary spline-based speckle noise modeling. Based on the
non-stationary speckle noise model learned from the underlying OCT imaging data, a stochas-
tic speckle noise compensation strategy is developed based on a spatially-adaptive Monte Carlo
sampling strategy to estimate the noise-free OCT imagery. In this paper, we will denote the pro-
posed method as the Non-stationary Speckle Compensation (NSC) method. The NSC method
bears some similarities to a previous method for speckle noise suppression in OCT [16]; no-
tably, both are Bayesian approaches to denoising speckle-contaminated images using Monte
Carlo sampling. However, the NSC method makes several contributions:

Non-stationary speckle noise modeling: while the previous method assumes stationary
speckle characteristics, the proposed method assumes that speckle variance is spatially-
varying and estimates it using local Median Absolute Deviation, found to have superior
noise estimation performance [31].

Stochastic acceptance-rejection sampling: while the previous method accepts randomly
drawn samples based on a fixed criterion, the NSC method introduces a novel stochastic
acceptance-rejection sampling strategy which accepts samples probabilistically based on
the local speckle characteristics, thus better adapting to the underlying image informa-
tion.
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Local structure importance-weighted estimation: while the previous method accepts or re-
jects samples based on first-order statistics, the NSC approach incorporates more local
structure information in its importance-weighting function, thus improving estimation of
the posterior.

Fessler proposed a method for tomographic reconstruction using spline smoothing, however
the proposed method differs by estimating the non-stationary noise variance (rather than re-
lying on calibration frames) [32]. Furthermore, the method proposed by Fessler uses splines
to enforce smoothness on image intensity values, while the proposed method uses splines to
enforce smoothness on local variance estimates.

The rest of this paper is organized as follows: in Section 2, we explain the problem formu-
lation and methodology of our approach. In Section 3, we explain the protocol used to acquire
testing data and the experimental procedure for each of the three experiments conducted. In
Section 4, experimental results using the acquired UHROCT imaging data of the human eye
retina and limbus are presented and discussed. Finally, conclusions are drawn and potential
future avenues of improvements are discussed in the Discussion.

2. Methodology

2.1. Problem formulation

The speckle noise found in OCT images, which is due to scattering of the laser source, is
multiplicative in nature, and can be described by

G(x) = F(x)N(x), (1)

where G represents the measurements taken over the domain of x, F represents the true re-
flectance of the sample, and N denotes the speckle noise. Because different tissue types can
have very different backscattering properties, some regions naturally produce more speckle. As
such, N should be treated as a non-stationary noise process in x. By taking the logarithm of
the measured data G, the multiplicative relationship between F and N becomes additive, and
Eq. (1) becomes

logG(x) = logF(x)+ logN(x) . (2)

Looking at Eq. (2), one can reduce the complexity of estimating the true reflectance of the
sample by estimating logF(x) rather than F(x) itself, and then taking the exponential of the
logarithmic estimate.

Based on Eq. (2), one can treat the problem of estimating the true reflectance of the sample
as an inverse problem, and tackle the problem from a statistical perspective by formulating it as
a Bayesian least-squares estimation problem, [33],

log F̂(x) = argmin
logF(x)

E
(
(logF(x)− log F̂(x))2| logG(x)

)

= argmin
logF(x)

∫
(logF(x)− log F̂(x))2 p(logF(x) | logG(x))d(logF(x)) .

(3)

One issue with the formulation in Eq. (3) is that it requires knowledge of the posterior
p(logF(x)| logG(x)), which is intractable to obtain analytically in this case. To tackle this is-
sue, we estimate the posterior p(logF(x)| logG(x)) using a non-parametric, spatially-adaptive
Monte Carlo sampling method. By adapting the posterior estimation process using the novel
spline-based speckle model introduced herein, we can better capture the spatially-varying
speckle noise characteristics in OCT imagery to aid in the speckle noise compensation pro-
cess.
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2.2. Non-stationary spline-based speckle noise model

Since the speckle noise process N is a non-stationary noise process due to the varying tissue
backscattering properties, one strategy to deal with this is to construct a non-stationary speckle
noise model over the domain of x. While the speckle noise process N is non-stationary as a
whole across the entire set of measurements, it can be reasonably assumed to be stationary
within a small region of interest. As such, one can obtain an initial estimate of the speckle noise
variance at a pixel x based on the local noise statistics. Furthermore, it can be observed that pix-
els within very close proximity of each other have similar speckle noise characteristics, given
that neighboring pixels within an image typically capture connected tissues with similar tissue
backscattering properties. As such, one may want to ensure that the speckle noise variances
estimated for neighboring pixels are consistent. Motivated by these insights and observations,
we introduce a spline-based non-stationary speckle model for characterizing speckle noise vari-
ances over the domain of x.

The proposed spline-based non-stationary speckle model can be constructed as follows. First,
to estimate local variances, we compute the Median Absolute Deviation (MAD) within the
neighborhood ℵN of each pixel by taking the difference of the pixel values with the median
pixel value in the neighborhood, and then we find the median of the absolute values of these
differences. The MAD can be used to estimate the standard deviation in the log space by mul-
tiplying by a constant:

σ(x) = 1.4826medianℵN (| logG(xi)−medianℵN (logG)|) . (4)

The use of MAD for estimating local variance is robust to the presence of outliers, and was
shown in a comprehensive analysis of noise estimation strategies to be the most effective at
characterizing local noise variance [31].

Following this, we would like to arrive at an initial estimate of the speckle noise variance at
pixel x given the set of computed local variances within a neighborhood ℵS. To help determine
the speckle noise variance based on the set of computed local variances, we observe that the
local variances that best approximates the noise variance are those computed in areas that are
largely homogeneous. Furthermore, we observe that, in general, the most frequently occurring
areas within an image are such homogeneous areas. Motivated by these observations, for each
pixel x, we compute the initial noise variance estimate M(x) as the mode of the set of computed
local variances in the neighborhood ℵS:

M(x) = modeℵS(σ) (5)

Based on empirical testing, the neighborhoods ℵN and ℵS were set to 9×9 and 15×15, respec-
tively, for strong speckle noise variance estimation performance.

To enforce smoothness in the speckle noise variance such that pixels within very close prox-
imity of each other have similar speckle noise characteristics, a cubic spline model is fitted
using the initial speckle noise estimates M(x) to arrive at the final speckle noise variance es-
timate S(x). Therefore, the spline-based speckle noise variance estimate S(x) can be defined
as

S(x) = argmin
S(x)

p
n

∑
j=1

(M(x j)−S(x j))
2 +(1− p)

∫
‖D2S(x)‖2 dx , (6)

where p is a smoothing parameter and D2 is the second derivative operator. By varying p, the
resulting spline will vary between a least-squares straight line fit (p = 0) and a natural cubic
spline interpolation (p = 1). Empirical testing led to a choice of 0.004 for p, which provided a
good balance between data fidelity and estimation smoothness enforcement.
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2.3. Spatially-adaptive Monte Carlo posterior estimation

Based on the spline-based non-stationary speckle noise model S, a spatially-adaptive Monte
Carlo approach is then introduced to estimate the posterior p(logF(x)| logG(x)). We extend
upon the concept of importance-weighted Monte Carlo sampling [34] with a spatially-adaptive
approach so that the number of samples taken increases in regions with high speckle noise
variance (to improve noise suppression) and decreases in areas where there is less speckle
noise (to improve detail preservation).

Given the location x0 of a pixel of interest, we use a neighborhood around x0 as the search
space, sampling new pixels uniformly at various values of xi. The neighborhoods around these
samples are examined to determine their statistical similarity to the neighborhood around x0
before the samples are accepted. All the accepted samples and their importance weights are
denoted by Ω. Intuitively, we want to accept a sample with high statistical likelihood of being
a realization of the posterior p(logF(x)| logG(x)). The probability of accepting a sample into
Ω is α(xi|x0), and is calculated by examining the neighboring pixels around each of x0 and xi
according to

α(xi|x0) =
∏ j(2πS(x0))

−1/2 exp
[
− (hi[ j]−h0[ j])

2

2S(x0)

]

∏ j expλ j
. (7)

The normalization terms λ j are defined such that α(xi|x0) = 1 if the neighbors around xi are
identical to those around x0. The measured pixel intensities in log-space at the jth location in the
neighborhoods around x0 and xi are h0[ j] and hi[ j], respectively. We assume that neighboring
pixels are independent of one another in order to express the total probability as the product of
probabilities for each neighbor. It can be observed that Eq. (7) adapts dynamically the likelihood
criterion based on S(x0) according to our spline-based speckle noise model.

The sampling process is repeated until a desired number of samples has been accepted into
Ω. These samples are used to estimate the posterior distribution by weighting each sample
according to its α(xi|x0), computing the weighted histogram, and then normalizing so that the
area under the histogram is unity. The result is our estimate, p̂(logF(x)| logG(x)), which can
be used to reconstruct log F̂(x), as described in Eq. (3).

3. Experimental setup

To evaluate the performance of the proposed NSC method for speckle reduction, the proposed
novel algorithm was applied to OCT images acquired from different parts of the human eye: 1)
healthy human retina; 2) healthy human corneo-scleral limbus and 3) human corneo-scleral lim-
bus with pinguecula. The images were acquired with a research-grade, high-speed, ultrahigh-
resolution Spectral Domain OCT system (SD-OCT) operating at 1060 nm. The SD-OCT sys-
tem was powered with a super luminescent diode (λc =1060 nm, Δλ=110 nm, Pout=10 mW) to
provide 3 μm and 6 μm axial resolution in the corneal and retinal tissue respectively. At the de-
tection end, the system was interfaced with a high performance spectrometer (P&P Optica) and
a fast InGaAs linear array CCD camera (Sensors Unlimited Inc.) with 1024 pixels and readout
rate of 47 kHz. Volumetric images were acquired from the human retina and limbus with 1.3
mW power of the incident imaging beam, which resulted in 95 dB system SNR near the zero
delay line. The imaging procedure was carried out in the biomedical optical imaging group at
the University of Waterloo in accordance with the University of Waterloo ethics regulations for
research involving human subjects. The images selected for testing were chosen because they
contain a variety of tissue types with different morphology and optical properties that result in
spatially varying speckle noise characteristics; they are well-suited for evaluating the speckle
compensation performance of the proposed NSC method. For simplification purposes, the NSC
method does not account for speckle correlation.
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3.1. Experimental OCT imaging data

Three types of UHROCT imagery were used to assess the performance of the NSC method:
imagery of healthy human retina, imagery of healthy human corneo-scleral limbus, and imagery
of human corneo-scleral limbus with pinguecula. Pinguecula is a common type of conjunctival
degeneration in the human eye resulting from prolonged exposure to high levels of ultraviolet
light and is typically observed in subjects populating the equatorial to tropical regions. Details
about these acquisitions are provided below; raw imaging data is shown in Fig. 1 overlaid with
bounding boxes used to calculate some of the metrics described in Section 3.2.

3.1.1. Experiment 1: healthy human retina

The retinal imagery used in this experiment measured 512 A-scans × 512 pixels. The SD-OCT
system provided imagery with an axial resolution of 5.7 μm and lateral resolution of 15 μm.

3.1.2. Experiment 2: healthy human corneo-scleral limbus

The imagery of the healthy human corneo-scleral limbus measured 512 A-scans × 512 pixels.
The SD-OCT system provided imagery with an axial resolution of 3 μm and lateral resolution
of 15 μm.

3.1.3. Experiment 3: human limbus with pinguecula

The imagery of the human corneo-scleral limbus with pinguecula measured 1000 A-scans ×
512 pixels. The SD-OCT system provided imagery with an axial resolution of 3 μm and lateral
resolution of 15 μm.

3.2. Quantitative performance metrics

A variety of quantitative measures were calculated for each processed imaging dataset in order
to quantify the performance of the compared algorithms.

3.2.1. SNR analysis

In order to quantitatively evaluate the performance of the proposed method against the other
tested speckle noise compensation methods, the Signal-to-Noise Ratio (SNR) was used. SNR
acts as an indicator of the ability to suppress speckle noise. The performance is evaluated by
determining if the applied method increases the SNR of the original image and can be compared
with other methods based on the largest SNR value. SNR is calculated for the original speckle
contaminated OCT images (see Figs. 2–4(A)) and the noise-compensated OCT images (see
Figs. 2–4(B–J)). SNR is calculated as follows in decibels [20]:

SNR =
1
R

[ R

∑
r=1

10log10(
μ2

r

σ2
r
)
]
, (8)

where μr and σ2
r represent the mean and the variance of the rth local homogeneous region of

interest (ROI), marked by blue boxes in Fig. 1 and R denotes the total number of considered
ROIs on the OCT image.

3.2.2. CNR analysis

Another quantitative measurement used to assess NSC’s execution is Contrast-to-Noise Ratio
(CNR). Similarly to SNR, it is computed for the original speckle contaminated OCT images
and the noise-compensated OCT images. The quality metric of CNR acts as an indicator of
the ability to improve contrast and preserve structure. A higher CNR value indicates there is a
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greater separation of image features from a region with background noise. CNR is calculated
as follows in decibels [20]:

CNR =
1
R

[ R

∑
r=1

10log10
(μr1 −μr2)

σ2
r1 +σ2

r2

)
]
, (9)

where μr1 and μr2 represent the mean of two different ROIs that are used to obtain the CNR
value and marked by numbered red boxes in Fig. 1 and the σr1 and σr2 are the corresponding
variances for these arbitrary ROIs.

3.2.3. ENL analysis

A third quantitative metric is the equivalent number of looks (ENL) which is defined as follows
[16]:

ENL =
1
H

[ H

∑
h=1

μ2
h

σ2
h

]
(10)

where μ2
h represents the mean and σ2

h represent the variance of the hth homogeneous region
of interest. It is a measure of smoothness in this homogeneous region, where a greater value
depicts a more smooth region.

3.2.4. Edge preservation analysis

The fourth quantitative analytic used is the edge preservation measurement. This analytic is a
correlation measure that assesses edge deterioration in an image. The desired measurement is a
value of 1, which indicates that the speckle-compensated image has very similar edges to those
found in the speckle-contaminated image. The metric is calculated as follows [35]:

η =
Σ(�2V −�2V ) · (�2Ĝ−�2Ĝ)

√
Σ(�2V −�2V )2 ·Σ(�2Ĝ−�2Ĝ)2

(11)

where �2V and �2Ĝ are the Laplacian operator applied to the original image and the noise-free

reconstruction respectively; and �2V and �2Ĝ are the mean values of a 3× 3 neighborhood
around �2V and �2Ĝ.

4. Results

The results of the proposed NSC method for the speckle noise compensation were compared
with six other speckle noise compensation methods.

i.) Lee filter [12]
ii.) Frost filter [13]
iii.)Improved Adaptive Complex Diffusion (IACD)* [25]
iv.) Kuan filter [26]
v.) Detail Preserving Anisotropic Diffusion (DPAD)* [36]
vi.) Speckle Reducing Anisotropic Diffusion (SRAD)* [23]
vii.) Bayesian Least Squares Gaussian Scale Mixture (BLS-GSM)* [28]
viii.) Stationary Bayesian Speckle Compensation (SBSC)

where * indicates use of author’s provided implementation of the algorithm.
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All of these speckle noise compensation methods were applied on the selected OCT images
shown in Fig. 1. The impact of these methods on speckle suppression in the images was com-
pared quantitatively using well-known metrics such as the SNR, CNR, ENL and edge preserva-
tion [20,35] as well as assessed visually, as explained in the following sections. Regions used to
calculate SNR and CNR values are shown overlaid on the speckle-contaminated images shown
in Fig. 1. The NSC algorithm was implemented in MATLAB and C++, and run on a computer
with an AMD Athlon II X3 445 CPU with 12 GB of RAM. Algorithm run times are presented
in Section 4.3.

Fig. 1. UHROCT imagery of (A) a healthy human retina, (B) a healthy human corneo-
scleral limbus and (C) a human limbus with pinguecula, acquired in-vivo. The blue boxes
in these images mark the homogeneous regions of interest (ROIs) used for calculation of
the SNR value, while the red boxes are pairs of ROIs that were used to obtain the CNR
values.

4.1. Processed images

Images were corrected using a number of speckle noise compensation methods including the
proposed method. Results for the healthy human retinal image are shown in Fig. 2; results for
the healthy human limbus image are shown in Fig. 3; and results for the human limbus with
pinguecula image are shown in Fig. 4.
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(a) Speckle Contaminated (b) Frost (c) Lee

(d) IACD (e) Kuan (f) DPAD

(g) SRAD (h) BLSGSM (i) SBSC

(j) NSC

Fig. 2. Results of applying different speckle compensation methods on the human retina
imagery.
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(a) Speckle Contaminated (b) Frost (c) Lee

(d) IACD (e) Kuan (f) DPAD

(g) SRAD (h) BLSGSM (i) SBSC

(j) NSC

Fig. 3. Results of applying different speckle compensation methods on the healthy human
limbus imagery.
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(a) Speckle Contaminated (b) Frost (c) Lee

(d) IACD (e) Kuan (f) DPAD

(g) SRAD (h) BLSGSM (i) SBSC

(j) NSC

Fig. 4. Results of applying different speckle compensation methods on the human limbus
with pinguecula imagery.

4.2. Quantitative analysis

The quantitative measures described in Section 3 were calculated on the processed images. The
results are presented in the following sections.

4.2.1. SNR analysis

SNR values calculated on the ROIs described in Fig. 1 are shown in Table 1. DPAD resulted
in a decrease in SNR compared with the original imagery. NSC, BLSGSM, and SRAD had the
greatest improvements in SNR, while the other methods showed more moderate improvements.
For the limbus imagery, SRAD caused significant loss of detail.

4.2.2. CNR analysis

The averaged CNR values obtained for the ROIs described in Fig. 1 are shown in Table 2. In
each case, the proposed method achieves a much greater improvement in contrast when com-
pared to the other methods ranging from 6-10 dB greater improvement in CNR. This indicates
that the method preserves structure and increases contrast better than the other algorithms.
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Table 1. Average SNR values taken over ROIs in the retina (R), healthy human limbus (HL),
and human limbus with pinguecula (HLwP) imagery. The highest value for each type of
imagery is bolded. IACD and SRAD resulted in some high SNR values but at the cost of
overcompensation (see Figs. 2–4). BLSGSM and NSC had very close improvements to
SNR while other methods had less drastic changes.

SNR (dB)
Method R HL HLwP

Speckle Contaminated 12.0 15.2 13.5
Frost 17.4 22.1 21.2
Lee 14.9 19.4 18.4

IACD 12.4 28.3 25.8
Kuan 14.9 19.4 18.1
DPAD 9.4 14.0 12.5
SRAD 27.6 34.8 16.9

BLSGSM 26.6 24.9 25.6
SBSC 16.6 21.4 24.6
NSC 22.7 27.3 26.0

Table 2. Average CNR values taken over ROIs in the retina (R), healthy human limbus
(HL), and human limbus with pinguecula (HLwP) imagery. NSC achieved the best contrast
improvement in each type of imagery while maintaining structure.

CNR (db)
Method R HL HLwP

Speckle Contaminated 0.84 2.35 0.91
Frost 2.70 5.02 2.47
Lee 2.13 3.75 1.78

IACD 3.94 9.14 5.08
Kuan 2.57 6.98 1.471
DPAD 1.63 5.54 1.464
SRAD 1.58 11.53 1.49

BLSGSM 2.83 5.64 5.84
SBSC 4.09 12.68 4.29
NSC 11.53 21.81 12.15
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4.2.3. ENL analysis

The ENL values calculated on the processed imagery are shown in Table 3. IACD has very
high ENL values for all three types of imagery, but inspection of Figs. 2–4 shows that this is
due to overcompensation of speckle which leads to oversmoothing of structures and details.
NSC achieved competitive ENL values without oversmoothing.

Table 3. Average ENL values taken over ROIs in the retina (R), healthy human limbus (HL),
and human limbus with pinguecula (HLwP) imagery. NSC achieved the best improvements
to ENL without smoothing structures and detail (see Figs. 2–4).

ENL
Method R HL HLwP

Speckle Contaminated 5.9 38.0 8.3
Frost 220.5 278.7 62.8
Lee 75.5 123.5 29.0

IACD 813.4 1715.0 399.7
Kuan 75.5 123.5 10.2
DPAD 25.2 68.6 9.4
SRAD 39.2 7470.0 20.9

BLSGSM 227.6 81.3 109.3
SBSC 71.7 347.8 101.3
NSC 437.4 751.6 284.9

4.2.4. Edge preservation analysis

The edge preservation values calculated from the processed images are shown in Table 4.
BLSGSM and SBSC achieved the highest edge preservation; however, analysis of Figs. 2–4
shows that this is due to the preservation of edges present due to speckle. The proposed method
achieves the best balance of edge preservation with speckle compensation.

Table 4. Edge preservation values for the retina (R), healthy human limbus (HL), and hu-
man limbus with pinguecula (HLwP) imagery. Although BLSGSM achieved higher values,
NSC did a better job of balancing speckle suppression with edge preservation (see Figs. 2–
4).

Edge preservation
Method R HL HLwP

Frost 0.431 0.431 0.244
Lee 0.405 0.402 0.209

IACD 0.420 0.411 0.230
Kuan 0.038 0.009 0.018
DPAD 0.239 0.223 0.081
SRAD 0.416 0.249 0.118

BLSGSM 0.819 0.483 0.472
SBSC 0.562 0.518 0.245
NSC 0.435 0.437 0.254
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4.3. Run time

The run-times for each of the compared methods are shown for each of the experiments in
Table 5. Note that the compared methods were implemented in MATLAB and not optimized
for low run-time. The experiments were run using an AMD Athlon X3 445 processor with 12
GB RAM.

Table 5. Run-times for the various compared methods on each type of imagery.

Method Time (s)

R HL HLwP
Frost 13.1 14.9 33.9
Lee 0.1 0.1 0.2

IACD 1.9 2.4 4.9
Kuan 15.3 17.7 42.0
DPAD 7.0 8.1 19.8
SRAD 8.5 19.8 45.1

BLSGSM 19.0 30.4 48.1
SBSC 48.4 56.9 123.7
NSC 54.9 64.7 140.4

4.4. Visual assessment

In order to visually assess the impact of the aforementioned speckle compensation methods on
improving the OCT images, the speckle-contaminated OCT image and the noise-compensated
OCT images are shown in Figs. 2–4 for the human retina, the normal corneo-scleral limbus
and the limbus with pinguecula. As we observe in part (A) of these figures, the speckle-
contaminated OCT images have a grainy pattern due to the existence of speckle noise. This
makes it difficult to distinguish the finer morphological details within the images, thus lead-
ing to potential difficulties in interpreting the OCT images for diagnostic and scientific study
purposes. The results of applying Lee, Frost, Kuan, BLSGSM and DPAD noise compensation
methods on the tested OCT images showed that they could reduce the speckle noise to some
extent, yet in homogeneous regions the speckle noise was still clearly observable. The SBSC
method also exhibited speckle in homogeneous regions. In the case of the Lee filter, it does not
perform as well as NSC despite its assumption that the image variance changes locally. This
is because it still assumes that it has a set noise variance whereas NSC takes into account the
non-stationarity of speckle. The results from applying the IACD and SRAD method demon-
strated that it could provide improved noise suppression in some cases when compared to the
other methods; however, it overcompensates for the speckle and removes important structural
details. We note that the proposed NSC method provided noticeably improved speckle noise
suppression performance when compared to the other methods while better preserving the fine
morphological and original details.

Discussion

In this study, we introduced a spatially-adaptive Monte Carlo speckle noise compensation
method based on a spline-based speckle noise modeling approach for the purpose of reduc-
ing non-stationary speckle noise in OCT images. This method spatially-adapts to the spatially-
varying noise characteristics of the speckle noise found in OCT imagery. Through quantitative
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analysis, it was shown that the proposed method can provide improved speckle noise suppres-
sion performance in terms of SNR, CNR, ENL and edge preservation. For CNR, the proposed
NSC algorithm improved the speckle-contaminated images by over 10 dB. This improvement
enhanced the visibility of fine morphological details in the UHROCT tomograms, such as clear
delineation of the individual retinal layers, as well as the blood vessel walls of the choroidal
vasculature in human retina; the layered structure of the human cornea at the limbus, as well
as the vasculature pattern of the pinguecula, that are important for the clinical diagnostics of
a variety of pathologies. The novel method also improved the SNR by at least 10 dB over the
speckle-contaminated OCT images. In some cases, the SRAD method had better SNR results
than the proposed NSC method; however in these cases the SRAD method overcompensated
for the presence of speckle noise and instead removed important fine details. ENL analysis
showed that SRAD and IACD improved the smoothness of homogeneous regions of interest,
however visual assessment proved that structures and fine details were not preserved at the cost
of smoothing these regions. NSC had the next highest ENL metrics that showed a successful
compromise of smoothing homogeneous regions and preservation of structure. Edge preserva-
tion analysis supported these results by proving that NSC had high edge preservation but not
to the point of speckle preservation as found by the higher edge preservation metrics shown by
BLSGSM and SBSC methods.

Visual assessment showed that the Lee, Frost, Kuan, DPAD, BLSGSM, and SBSC methods
had limited speckle noise suppression performance compared to the SRAD, IACD and NSC
methods. The SRAD and IACD approaches were more successful than these other methods, but
removed image details. The speckle compensation of SBSC was limited in regions with greater
noise. The non-stationary noise model used by NSC clearly offer better speckle compensation
than similar methods using a stationary noise model such as SBSC. The proposed NSC method
exhibited strong speckle noise suppression performance while preserving important structures
in the image.

Although NSC was applied to two-dimensional B-scans in these experiments, it can be eas-
ily applied to three-dimensional OCT data by repeated application to the constituent B-scans.
However, applying it in this method would not fully exploit the additional local structure; as
such, we propose investigation into the speckle estimation performance of a higher-dimensional
spline fit to incorporate speckle characteristics from neighboring B-scans. Higher-dimensional
spline fits can further be used to incorporate additional imaging modalities such as functional
imaging techniques. Furthermore, we propose additional research into the performance of dif-
ferent regularization methods, for example the use of a piecewise-constant model instead of a
spline fit.

As a result of the positive experiments in this study, we propose that further investigation of
the speckle noise compensation method for use in OCT reconstruction be explored. Notably,
we propose investigation of other speckle models, such as a piecewise-constant model, to see if
improved speckle noise compensation performance can be obtained.
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