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Abstract
The receiver operating characteristic (ROC) curve, the positive predictive value (PPV) curve and
the negative predictive value (NPV) curve are three measures of performance for a continuous
diagnostic biomarker. The ROC, PPV and NPV curves are often estimated empirically to avoid
assumptions about the distributional form of the biomarkers. Recently, there has been a push to
incorporate group sequential methods into the design of diagnostic biomarker studies. A thorough
understanding of the asymptotic properties of the sequential empirical ROC, PPV and NPV curves
will provide more flexibility when designing group sequential diagnostic biomarker studies. In this
paper we derive asymptotic theory for the sequential empirical ROC, PPV and NPV curves under
case-control sampling using sequential empirical process theory. We show that the sequential
empirical ROC, PPV and NPV curves converge to the sum of independent Kiefer processes and
show how these results can be used to derive asymptotic results for summaries of the sequential
empirical ROC, PPV and NPV curves.
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1. Introduction
Several recent papers have discussed the application of group sequential methodology to
diagnostic biomarker studies (Tang, Emerson and Zhou, 2008; Tang and Liu, 2010; Pepe et
al., 2009). Group sequential study designs (i.e. study designs with multiple interim analyses)
provide an opportunity to improve the efficiency of diagnostic biomarker studies by
allowing studies to terminate early when the candidate marker is clearly superior or inferior
to established markers or historical levels of marker performance. Many group sequential
methods assume the existence of a test statistic with an independent increments covariance
structure (Jennison and Turnbull, 2000). A thorough understanding of the asymptotic
properties of the sequential empirical ROC, PPV and NPV curves and, specifically,
verifying that their summary measures have an independent increments covariance structure,
would provide great flexibility when designing group sequential diagnostic biomarker
studies.

Diagnostic biomarkers are used to classify a patient as a case or a control. A dichotomous
biomarker results in either a positive test, indicating that the subject should be classified as a
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case, or a negative test, indicating that the subject should be classified as a control. Many
biomarkers are measured on a continuous scale and a threshold must be defined in order to
translate a continuous biomarker into a positive or negative test result. Let D be a Bernoulli
random variable indicating disease status with prevalence ρ and let X be a biomarker value
with conditional distribution F(x|D = 1) ≡ FD(x) and F(x|D = 0) ≡ FD¯(x), where FD(x) is
the distribution function for the cases and FD¯(x) is the distribution function for the controls.
Furthermore, we define F(x) ≡ FD(x) + (1 − ρ) FD¯(x) to be the biomarker distribution
function for the entire population. Without loss of generality, assume that larger biomarker
values are more indicative of disease. For a threshold c, a biomarker value X is translated
into a positive test result if it is greater than c and a negative test result if it is less than or
equal to c.

The receiver operating characteristic (ROC) curve summarizes the classification accuracy of
a continuous diagnostic biomarker (Pepe, 2003) by reporting the true positive fraction (TPF)
and the false positive fraction (FPF) for all possible cut-offs of the marker. For a threshold c,
TPF(c) = P [X > c|D = 1] and FPF(c) = P [X > c|D = 0]. The ROC curve is defined as,

and can alternately be expressed as,

(1.1)

where SD(x) = 1−FD(x) and SD¯(x) = 1−FD¯(x). ROC(t) can be interpreted as the TPF
corresponding to a FPF of t. Alternately, one might be interested in the inverse of the ROC
curve,

(1.2)

ROC−1 (υ) is indexed by the TPF and can be interpreted as the FPF corresponding to a TPF
of υ.

The predictive accuracy of a dichotomous biomarker can be summarized by the positive
predictive value (PPV) and negative predictive value (NPV).

The PPV and NPV curves were proposed as an extension of PPV and NPV to continuous
markers (Moskowitz and Pepe, 2004; Zheng et al., 2008). For a threshold c, PPV (c) = P[D
= 1|X > c] and NPV (c) = P[D = 0|X ≤ c]. The PPV and NPV curves are defined as PPV (c)
and NPV (c) for all c ∊ (−∞, ∞). In practice, PPV and NPV curves are indexed by a
summary of the marker distribution rather than a generic threshold (Moskowitz and Pepe,
2004; Zheng et al., 2008). In this paper, we consider the PPV and NPV curves indexed by
the FPF and the percentile value in the entire population.

The ROC, PPV and NPV curves are commonly estimated nonparametrically to avoid
making assumptions about the form of FD(x) and FD¯(x). This is particularly important in the
case of the ROC, PPV and NPV curves because we are often interested in regions of the
curve that correspond to the tails of these distributions. For example, a biomarker must
possess a high specificity in order to be clinically useful in a low disease risk population
screening setting, which corresponds to the upper tail of the biomarker distribution among
controls.
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Our understanding of the empirical ROC curve is enhanced by knowledge of its asymptotic
properties. Hsieh and Turnbull (1996) showed that the empirical ROC curve converges to
the sum of two independent Brownian bridges. The asymptotic normality of summary
measures of the empirical ROC curve, such as the area under the ROC curve or a point on
the ROC curve, can be derived from their work. To our knowledge, no asymptotic theory is
available for the empirical PPV and NPV curves.

Tang, Emerson and Zhou (2008) showed that a family of weighted area under the ROC
curve (wAUC) statistics has an independent increments covariance structure. It would be
beneficial to show that this assumption holds for a larger class of summaries of the ROC
curve. In this paper, we develop asymptotic theory for the sequential empirical ROC, PPV
and NPV curves. Our results allow us to develop distribution theory for other summaries of
the ROC curve and to develop distribution theory for summaries of the PPV and NPV
curves.

2. Notation and Definitions
Before beginning our discussion of the sequential empirical ROC, PPV and NPV curves, we
provide definitions of the sequential empirical estimates for the underlying distribution and
quantile functions. Let XD,1, XD,2,…, XD,nD be i.i.d. marker values for the cases with
distribution function, FD(x), and XD¯,1, XD¯,2,…, XD¯,nD¯ be i.i.d. marker values for the
controls with distribution function, FD¯(x). Furthermore, let rD and rD¯ refer to the proportion
of case and controls, respectively, that are observed at a given time point. The sequential
empirical estimate of FD(x) is defined as

and the sequential empirical estimate of  is defined as

where XD,1,[rDnD], XD,2,[rDnD], …, XD,[rDnD],[rDnD] are the sequential order statistics of the

biomarker values for the cases. The sequential empirical estimates of SD(x) and  are

defined as ŜD,rD(x) = 1 − F̂D,rD(x) and . The sequential empirical
estimates for the control population are defined in an analogous fashion. The sequential
empirical estimates of FD(x) and FD¯(x) lead to a natural definition of the sequential
empirical estimates of F(x) and F−1(t),

and
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where ρ is assumed to be known. F̂rD,rD¯(x) is a linear combination of F̂D,rD(x) and F̂D¯,rD¯(x)
and is therefore indexed by both rD, the proportion of cases observed at a given time point,
and rD¯, the proportion of controls observed at a given time point.

Throughout this paper We let 0 < a < b < 1, 0 < c < 1, 0 < d < 1 and make the following
assumptions:

A1 FD(x) and FD¯(x) are continuous distribution functions with continuous densities
fD(x) and fD¯(x), respectively,

A2 fD(x) > 0 for x ∊ (sup{x: FD(x) = 0}, inf{x: FD(x) = 1}),

A3 fD¯(x) > 0 for x ∊ (sup{x: FD¯(x) = 0}, inf{x: FD¯(x) = 1}),

A4  as nD → ∞ and nD¯ → ∞, i.e. the ratio of cases to controls converges to a
constant that is greater than 0.

The asymptotic results in Section 3 make use of the Kiefer process. The Kiefer process,
K(t,r), is a two-dimensional, mean-zero Gaussian process with covariance:

where ∧ represents the minimum. The Kiefer process behaves like a Brownian Bridge in t
and Brownian Motion in r.

The remainder of this paper proceeds as follows. In Section 3, we develop asymptotic theory
for the sequential empirical ROC, PPV and NPV curves. First, we generalize the work of
Hsieh and Turnbull (1996) to the sequential empirical ROC curve by showing that the
sequential empirical ROC curve converges to the sum of independent Kiefer processes.
Next, we develop asymptotic theory for the sequential empirical PPV and NPV curves
indexed by the FPF by writing them as functions of the sequential empirical ROC curve.
Finally, we follow the approach of Pyke and Shorack (1968) to develop asymptotic theory
for the PPV and NPV curves indexed by the percentile value of the marker distribution. We
validate our asymptotic results by simulation in Section 4 and illustrate how they can be
used to design group sequential diagnostic biomarker studies in Section 5. We conclude with
a discussion in Section 6.

3. Asymptotic Results
3.1. The Sequential Empirical ROC Curve

In this section we provide asymptotic results for the sequential empirical ROC curve.
Results for the inverse of the sequential empirical ROC curve are nearly identical; we direct
the reader to an associated technical report for details (Koopmeiners and Feng, 2010). The

sequential empirical ROC curve,  is defined by substituting the sequential
empirical estimates of SD(x) and SD¯ (x) into (1.1), yielding,

Koopmeiners and Feng Page 4

Ann Stat. Author manuscript; available in PMC 2013 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and for ease of notation, we define,

The primary result in this section provides asymptotic theory for RrD,rD¯(t). By developing
asymptotic theory for RrD,rD¯(t), we are also able to develop asymptotic theory for
functionals of RrD,rD¯(t) as a special case. Theorem 3.1 establishes the convergence of
RrD,rD¯(t) to the sum of independent Kiefer processes.

Theorem 3.1—Assume A1-A4 hold and let  be bounded on [a, b]. As nD → ∞
and nD¯ → ∞

uniformly for t ∊ [a, b], rD ∊ [c, 1] and rD¯ ∊ [d, 1] where K1 and K2 are independent Kiefer
Processes.

A proof of Theorem 3.1 can be found in the Appendix. Theorem 3.1 generalizes the results
of Hsieh and Turnbull (1996) to the sequential empirical ROC curve. The proof of Theorem
3.1 is similar to the proof found in Hsieh and Turnbull (1996) but our proof relies on the
more powerful sequential empirical process theory. Sequential empirical process theory
generalizes asymptotic theory for the standard empirical process by introducing a parameter
for time. In doing so, asymptotic results for the sequential empirical process involve the
Kiefer Process. Using properties of the Kiefer Process, we are able to easily derive
asymptotic results for summaries of the sequential empirical ROC curve and verify that the
independent increments assumption holds in many cases. Furthermore, we can recover
Hsieh and Turnbull's result as a special case of Theorem 3.1 by letting rD and rD¯ both equal
1.

Corrollary 3.2—Assume A1-A4 hold and let  be bounded on [a, b]. As nD→ ∞
and nD¯ → ∞

uniformly for t ∊ [a, b] where B1 and B2 are independent Brownian Bridges.

Koopmeiners and Feng Page 5

Ann Stat. Author manuscript; available in PMC 2013 September 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Proof. Immediate from Theorem 3.1 and by noting that K(t, 1) =dB(t).

An advantage to studying the asymptotic behavior of the sequential empirical ROC curve at
the process level, rather than a single point on the sequential empirical ROC curve, is that
we are able to study the joint behavior of multiple points on the ROC curve. Corollary 3.3
provides a normal approximation for a vector of points on the sequential empirical ROC
curve.

Corollary 3.3—Assume A1-A4 hold and let  be bounded on [a, b]. For t1,t2, …,tJ
∊ (0,1), rD,1, rD,2, …, rD,J ∊ (0,1] and rD¯,1, rD¯,2, …, rD¯,J ∊ (0,1], a vector of arbitrary points

on the sequential empirical ROC curve, 
is approximately multivariate normal with,

where

and

Proof. Immediate from Theorem 3.1.

Corollary 3.3 provides the asymptotic covariance for two points at different locations and
different times on the sequential empirical ROC curve. This allows us to fully specificy the
joint sequential distribution of multiple points on the ROC curve, which allows us to design
group sequential diagnostic biomarker studies where multiple points on the ROC curve are
treated as multiple endpoints of a group sequential study. For example, we might be
interested in ROC(t1) and ROC(t2), where t1 is chosen for high specificity to rule patients in
for work up and t2 is chosen for high sensitivity to rule out patients for invasive work.

Our interest in the sequential empirical ROC curve is motivated by the need to design group
sequential diagnostic biomarker studies. Our ability to design group sequential diagnostic
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biomarker studies would be enhanced by showing that summaries of the sequential
empirical ROC curve have an independent increments covariance structure. The simplest
summary of the ROC curve is a point on the ROC curve, ROC(t). ROC(t) can be interpreted
as the sensitivity at a specificity of 1 − t. Corollary 3.4 shows that the sequential empirical
estimator of ROC(t) is asymptotically normal and has independent increments when divided
its variance.

Corollary 3.4—Assume A1-A4 hold and let  be bounded on [a, b]. For t ∊ (0,1)

and J stopping times,  is approximately
multivariate normal with,

and

where  is defined as in Corollary 3.3.

Proof. Immediate from Corollary 3.3.

Asymptotic theory for other summary measures of the ROC curve, such as the area under
the curve or the partial area under the curve, can also be derived from Theorem 3.1. This
illustrates the flexibility of Theorem 3.1. By developing distribution theory for the
sequential empirical ROC curve, we are able to derive distribution theory for summaries of
the ROC curve as a special case.

3.2. The sequential empirical PPV and NPV curves indexed by the False Positive Fraction
In this section, we consider the sequential empirical PPV and NPV curves indexed by the
false positive fraction, t. The PPV and NPV curve indexed by the false positive fraction can
be written as a function of the ROC curve and their asymptotic properties can be derived
using the results from Section 3.1. Asymptotic results for the PPV and NPV curve indexed
by the true positive fraction, υ, can similarly be derived by writing the PPV and NPV curve
as a function of the inverse of the ROC curve but are not presented in this paper. The
interested reader is directed to Koopmeiners and Feng (2010) for details.

The PPV and NPV curves indexed by the false positive fraction are defined as

 and  for all t ∊ (0,1) and can be written
as functions of the ROC curve as follows:
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(3.1)

and

(3.2)

The sequential empirical estimators of PPV(t) and NPV(t) are defined be plugging the
sequential empirical estimator of ROC(t) into (3.1) and (3.2), yielding,

and

From this point forward we only consider  and note that results for 
are nearly identical. Again, for ease of notation, we define,

We begin by using the results of Section 3.1 to derive asymptotic theory for PrD,rD¯(t).
Theorem 3.5 establishes the convergence of PrD,rD¯(t) to the sum of two independent Kiefer
Processes.

Theorem 3.5—Assume A1-A4 hold and let  be bounded on [a, b]. As nD→ ∞
and nD¯ → ∞

uniformly for t ∊ [a, b], rD ∊ [c, 1] and rD¯ ∊ [d, 1] where K1 and K2 are independent Kiefer
Processes.

The proof of Theorem 3.5 relies on writing PrD,rD¯(t) as a function of RrD,rD¯(t)
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and applying the results of Theorem 3.1. The first term converges to 
and RrD,rD̄(t) converges to the sum of two independent Keifer process by Theorem 3.1. A
formal proof of Theorem 3.5 can be found in Koopmeiners and Feng (2010).

From Theorem 3.5, we can prove analogous results to Corollaries 3.3 and 3.4 for the
sequential empirical PPV curve indexed by the FPF. Namely, that an arbitrary vector of
points on the sequential empirical PPV curve follows a multivariate normal distribution and
the sequential empirical estimate of a point on the PPV curve is approximately normally
distributed with an independent increments covariance structure. We leave the formal
statement of these corollaries for the Appendix but present the form of the covariance
between two arbitrary points on the sequential empirical PPV curve:

PPV(t) is a function of ROC(t) and, therefore, distribution theory for a vector of points on
the PPV curve can also be derived using the delta method and Corollary 3.3.

Asymptotic theory for the fixed-sample empirical PPV curve indexed by the FPF, which
was previously unavailable, can be derived as a special case of Theorem 3.5 by letting rD
and rD̂ equal 1. The fixed-sample empirical PPV curve converges to the sum of independent
Brownian bridges,

which allows us to derive a normal approximation for the empirical estimate of a point on
the PPV curve,

where  is defined as in Corollary 3.3.

3.3. The sequential empirical PPV and NPV curves indexed by the Percentile Value
Finally, we consider the PPV and NPV curves indexed by the proportion of the population
that are classified as negative, u, and positive, 1 – u. In this case, the PPV and NPV curves
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are defined as PPV(u) = P[D = 1|X > F−1(u)] and NPV(u) = P[D = 0|X ≤ F−1(u)] for all u ∈
(0,1). Under this indexing, the PPV curve can be written as

(3.3)

and since the NPV curve can be written as,

(3.4)

it suffices to study the PPV curve when considering estimation of the NPV curve.

The sequential empirical estimator of PPV(u) is found by substituting the sequential
empirical estimators of SD(x) and F(x), along with the known value of ρ, into (3.3),

(3.5)

and the sequential empirical estimator of NPV(u) is found by substituting the sequential
empirical estimator of PPV(u) into (3.4),

(3.6)

Finally, we define,

and

for mathematical convenience. We begin by developing distribution theory for PrD,rD̂(u).
Theorem 3.6 establishes the convergence of the sequential empirical PPV curve to the sum
of two independent Kiefer Processes.

Theorem 3.6—Assume A1 - A4 hold and let  be bounded on [a, b].
As nD → ∞ and nD̂ → ∞
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uniformly for u ∈ [a, b], rD ∈ [c, 1] and rD̂ ∈ [d,1] where K1 and K2 are independent Kiefer
Processes.

The proof of Theorem 3.6 is complicated by the fact that S¯D,rD(x) and  are
correlated because F¯rD,rD̂(x) is a linear combination of F¯D,rD(x) and F¯D̂,rD̂.(x) In contrast,
the sequential empirical ROC curve and the sequential empirical PPV curve indexed by the
FPF are functionals of two independent sequential empirical estimators, S¯D,rD(x) and

 which makes it easier to show that RrD,rD̂(t) and PrD,rD̂(t) converge to the sum of

independent Kiefer processes. To account for the correlation between S¯D,rD(x) and 
we follow the approach of Pyke and Shorack (1968), who prove a similar result for two
correlated, fixed-sample empirical processes. The proof of Theorem 3.6 can be found in the
Appendix.

Theorem 3.6 also establishes asymptotic theory for the sequential empirical NPV curve

because  is a function of  Corollary 3.7 establishes the convergence of
NrD,rD̂ (t) to the sum of two independent Kiefer processes.

Corollary 3.7—Assume A1 - A4 hold and let  be bounded on [a,b]. As nD → ∞
and nD̂ → ∞

uniformly for u ∈ [a, b], rD ∈ [c, 1] and rD̂ ∈ [D, 1] where K1 and K2 are independent
Kiefer Processes.

Corollary 3.7 is immediate from Theorem 3.6 by noting that,

As with the ROC curve and the PPV curve indexed by the FPF, Theorem 3.6 and Corollary
3.7 allow us to develop distribution theory for summaries of the PPV and NPV curve
indexed by u. Distribution theory for a vector of points on the PPV or NPV curve is left for
the Appendix but we choose to highlight the joint distribution of the sequential empirical
estimate of a single point on the PPV or NPV curve. Corollary 3.8 establishes that the
sequential empirical estimate of a point on the PPV or NPV curve is asymptotically normal
and has independent increments when divided by its variance.

Corollary 3.8—Assume A1 - A4 hold and let  be bounded on [a, b]. For u ∈
(0,1) and J stopping times,
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A. , is approximately multivariate normal
with,

and

where

B.  is approximately multivariate normal
with,

and

where

It is immediate from Theorem 3.6 and Corollary 3.7 that  and  are
asymptotically normal with an independent increments covariance structure. By noting that,
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and

we can write the asymptotic variances of  and  as functions of PPV
(u) and NPV (u), respectively. This provides a better understanding of the mean-variance

relationship for the asymptotic distributions of  and  and, perhaps,
provides a form of the variance that is easier to work with in practical situations (i.e. study
design, estimating the standard error, etc.).

An important component of Theorem 3.6 and Corollary 3.7 is that not only do PrD,rD̂(u) and
NrD,rD̂(u) converge to the sum of independent Kiefer processes, but they both converge to
the same two Kiefer processes. As a result, we are able to derive the correlation between a
point on the PPV curve and a point on the NPV curve. Corollary 3.9 provides a bivariate
normal approximation for a point on the PPV and a point on the NPV curve.

Corollary 3.9—Assume A1 - A4 hold and let  be bounded on [a,b]. For u1,u2 ∈

(0,1), , is approximately bivariate normally distributed
with,

and

with,
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when u1 ≤ u2 and,

when u2 ≤ u1, where  and  are defined as in Corollary 3.8.

The case of a point on the PPV curve and a point on the NPV curve is presented for
simplicity but Corollary 3.9 can be extended to an arbitrary vector of points on the PPV and
NPV curves. Corollary 3.9 has obvious practical implications. It is not uncommon to
classify the bottom u1 × 100% of the population as “low-risk”, the top (1 —u2) × 100% of
the population as “high-risk” and the remainder of the population as “moderate-risk”. In this
case, one would be interested in the NPV of the low-risk group and the PPV of the high-risk
group. Corollary 3.9 provides the joint convergence of these two estimates.

Finally, we note that asymptotic results for the fixed-sample empirical PPV and NPV curves
indexed by the percentile value of the marker distribution can be derived as a special case of
the results in this section. It is immediate from Theorem 3.6 and Corollary 3.7 that the fixed-
sample empirical PPV and NPV curves converge to the sum of independent Brownian
Bridges by letting rD and rD̂ both equal 1. Furthermore, Corollary 3.8 provides a normal
approximation for the fixed-sample empirical estimate of a point on the PPV or NPV curve
for the special case when J = 1.

4. Finite Sample Properties
A simulation study was completed to assess the finite sample properties of the results in
Theorems 3.1, 3.5 and 3.6. We simulated 10,000 studies with nD̂ controls and nD cases.
Biomarker values for the controls were drawn from a standard normal distribution and
biomarker values for the cases were drawn from a normal distribution with mean and
standard deviation equal to 1. A prevalence of .2 was used for estimation of the PPV curve.
Figure 1 presents the true ROC and PPV curves for this scenario. For each realization, we
calculated RrD,rD̂(t), PrD,rD̂(t) and PrD,rD̂(u) and evaluated the expected value, normality and
covariance for various combinations of rD, rD̂ and t or u. Normality was evaluated by
providing a summary of information found in a normal q-q plot. Instead of providing the
entire plot, we provide the (simulated) probability of being less than the 5th, 25th, 50th, 75th
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and 95th percentile of a normal distribution with variance derived using the results in
Theorems 3.1, 3.5 and 3.6. Similarly, the simulated covariance matrices were compared to
the theoretical covariance matrices derived using the results in Theorems 3.1, 3.5 and 3.6.

Table 1 presents simulation results for RrD,rD̂(t). The expected value was close to 0 in all
cases with only a small amount of bias observed when t = .2. The probability of being less
than the theoretical 5th and 95th percentile was close to the nominal value for all sample
sizes, while the probability of being less than the 25th, 50th and 75th percentile was less
than the nominal value with 50 cases and 50 controls but approached the correct values as
sample size increases. The observed variance and covariance were less than expected with
50 cases and 50 controls but the observed covariance matrix approached the theoretical
covariance matrix in larger sample sizes. This phenomenon is likely due to the sample space

for ROC(t) being restricted to the unit interval.  is less likely to equal 0 or 1 as
sample size increases and the normal approximation will be more accurate. Similar results
were observed for PrD,rD̂(t) and PrD,rD̂(u) but were omitted for brevity.

5. Application
The results of Section 3 provide fundamental theory that allows existing group sequential
methodology to be applied to summaries of the ROC, PPV and NPV curves. In this section,
we present an example of how these results can be used to design group sequential
diagnostic biomarker studies. Our application is presented in the context of a study to
evaluate the diagnostic accuracy of des-gamma carboxyprothrombin (DCP), a novel
biomarker for the early detection of hepatocellular carcinoma (HCC). A multi-center study
was completed to compare the diagnostic accuracy of DCP to that of alpha-fetoprotein
(AFP), the most widely used biomarker for the detection of HCC (Marrero et al., 2009) but
in our application we will only consider the design of a study to compare DCP to historical
levels of diagnostic accuracy for AFP.

We consider a study to evaluate the predictive accuracy of DCP using the following novel
design that makes use of the joint asymptotic theory for the PPV and NPV curve derived in
Section 3.8. Assume that the prevalence of HCC in the population of interest is 0.2. In this
case, one might call the bottom 60% percent of biomarker values “negative”, the top 10% of
the biomarker values “positive” and refer the remaining subjects for further evaluation.
Under this scenario, we would desire a high NPV for negative test results, NPV(0.6), and a
high PPV for positive test results, PPV(0.9). The NPV(0.6) for AFP is 0.92 and the
PPV(0.9) is 0.82. To determine if DCP improves on the predictive accuracy of AFP, we
would test the hypothesis,

versus,

using the test statistics, ZNPV(u1) and ZPPV(u2), where ZNPV(u1) is defined as
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and ZPPV(u2) is defined in an analogous fashion.

We consider a group sequential design using the error spending approach proposed by
Hwang, Shih and De Cani (1990). The overall null hypothesis will only be rejected if the
null hypotheses for both NPV (0.6) and PPV (0.9) are rejected. In the context of a group
sequential study, this means that the study will stop early to reject the null hypothesis if
ZNPV (u1) and ZPPV (u2) both cross the boundary for rejecting the null hypothesis but the
study will stop early for futility if either ZNPV(u1) or ZPPV(u2) cross the futility boundary.
This implies that we do not need to adjust the type-I error rate to account for multiple
endpoints but we do need to consider the joint probability of rejecting the null hypothesis
when determining the power.

The sample size for our study is chosen to achieve 90% power under the alternative
hypothesis NPV(0.6) = 0.95 and PPV(0.9) = 0.90. A closed-form formula for determining
the required sample size is not available. Instead, the sample size for a fixed sample design
is derived by numerically solving,

for nD, where the joint distribution of ZNPV(u1) and ZPPV(u2) is derived by applying the delta

method to the joint asymptotic normal distribution of  and  found in
Corollary 3.9. Assuming a one-to-one ratio of cases to controls, 702 cases are required to
achieve 90% power under the alternative hypothesis. This sample size must be multiplied by
an inflation factor to determine the maximum sample size for a group sequential design (i.e.
the sample size if the study does not stop at the interim analyses) in order for the group
sequential design to maintain the same type-I error rate and power as the fixed-sample
design (Jennison and Turnbull, 2000). Using the gsDesign package in R, we find that the
maximum sample size for group sequential studies with two, three and four stopping times
are 724, 737 and 745 cases, respectively. However, as illustrated in the simulation which
follows, the actual sample sizes required in group sequential studies are generally smaller
than these maximum values.

Table 2 presents simulation results using a fixed-sample design and group sequential designs
with two, three and four stopping times. Biomarker values for the controls were simulated
from a standard normal distribution and biomarker values for the cases were simulated from
a normal distribution with mean and variance chosen to achieve the desired value of
NPV(0.6) and PPV(0.9). The advantages of group sequential designs are clear. The group
sequential designs have similar type-I error rate and power to the fixed-sample design but
with substantially smaller expected sample sizes in all scenarios.

6. Discussion
In this paper, we derived asymptotic properties of the sequential empirical ROC, PPV and
NPV curves. We first extended the work of Hsieh and Turnbull (1996) to the sequential
empirical ROC curve and used these results to develop distribution theory for summaries of
the sequential empirical ROC curve. Next, we considered asymptotic theory for the
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sequential empirical PPV curve indexed by the FPF and percentile value in the entire
population. These results were used to develop distribution theory for summaries of the
sequential empirical PPV curve. Asymptotic theory for the fixed-sample PPV curve, which
was previously unavailable, was developed as a special case.

This work was motivated by the desire to design group sequential diagnostic biomarker
studies. In Section 5, we illustrated how our results can be used to design group sequential
diagnostic biomarker studies. Our simulation results clearly illustrate the advantages of
group sequential designs. In both cases, the group sequential designs have similar type-I
error rate and power than the fixed-sample designs but with substantially smaller expected
sample size.

An advantage to our approach is that we are able to investigate the joint behavior of multiple
points on the ROC and PPV curve. The primary end-point of a diagnostic biomarker study
may be a single point on the ROC or PPV curve but other points on the ROC or PPV curve
may also be of interest. The results of Theorems 3.1, 3.5 and 3.6 allow us to apply existing
group sequential methodology for analyzing multiple endpoints to scenarios where multiple
points on the ROC or PPV curve are of interest in a group sequential diagnostic biomarker
study (Liu and Hall, 2001).

We considered estimation of the sequential empirical ROC and PPV curve under case-
control sampling. The asymptotic properties of the sequential empirical ROC and PPV curve
under other sampling schemes are also of interest. We are currently working on extending
the results of this paper to estimation of the sequential empirical ROC and PPV curve under
cohort and nested case-control sampling.

The theory developed in this paper applies to sequential testing of the diagnostic accuracy of
a continuous test. In many cases, diagnostic tests take the form of multi-level ordinal data
(cancer staging, for example). Methods exist extending the ROC curve to ordinal data
(Dorfman and Alf, 1960) but further work is needed to verify that group sequential methods
can be applied in these settings.

Response adaptive clinical trials have been proposed as a means to provide greater
flexibility when designing therapeutic clinical trials. Response adaptive clinical trials adjust
the design characteristics of the study (sample size, percent randomized to each group, etc.)
in response to outcomes for subjects enrolled earlier in the study. Recently, Zhu and Hu
(2010) showed that a class of test statistics from a response adaptive clinical trial converges
to Brownian Motion when considered sequentially (similar to what we have shown for the
emprical ROC, PPV and NPV curves), which allows existing group sequential methodology
to be applied to response adaptive clinical trials. Future work will be needed to consider how
response adaptive designs can be applied in the setting of group sequential diagnostic
biomarker studies.
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Appendix A

Supplementary Results for Section 3
A.1. Supplementary Results for Section 3.1

Proof of Theorem 3.1—First, note that

The first term converges to a Kiefer process. We note that

Therefore

(A.1)

by the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgõ and Szyszkowicz (1998)) and

because . Furthermore,  will be continuous by A1-A3 and will be
uniformly continuous on [a, b]. Therefore,

(A.2)

We note that due to the continuity of FD¯(x),  and therefore (A.2) also

applies to . From corollary 1.A in Csörgõ and Szyszkowicz (1998), (A.2) and the
uniform continuity of the Kiefer process, we have
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(A.3)

The second term can be re-written as

By the mean value theorem, there exists a  between  and t such that

From (A.1), we know that , uniformly for t ∈ [a,b], rD ∈ [c, 1] and rD¯ ∈

[d, 1], and, therefore, , uniformly for t ∈ [a,b], rD ∈ [c, 1] and rD¯ ∈ [d, 1].

This, along with the uniform continuity of , allows us to conclude that

which implies,

(A.4)

For all rD¯ ∈ [d, 1],
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Therefore,

and

(A.5)

From corollary 1.A in Csörgõ and Szyszkowicz (1998), (A.2) and the uniform continuity of
the Kiefer process, we have

(A.6)

By (A.4), (A.5), (A.6) and noting that , we conclude that

(A.7)

Summing (A.3) and (A.7) gives the desired result.

A.2. Supplementary Results for Section 3.2
Corollary A.1

Assume A1-A4 hold and let  be bounded on [a, b]. For t1, t2, …, tJ ∈ (0,1), rD,1,
rD,2, …, rD,J ∈ (0,1] and rD¯,1, rD¯,2, …, r D¯,J ∈ (0,1], a vector of arbitrary points on the

sequential empirical PPV curve, , is
approximately multivariate normal with,
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and

where  and  are as defined in Corollary 3.3.

Proof. Immediate from Theorem 3.5.

Corollary A.2

Assume A1-A4 hold and let  be bounded on [a, b]. For t ∈ (0,1) and J stopping

times , is approximately multivariate normal
with,

and

where  is defined as in Corollary A.1.

Proof. Immediate from Corollary A.1.

A.3. Supplementary Results for Section 3.3
Proof of Theorem 3.6

The proof of Theorem 3.6 follows the proofs found in Pyke and Shorack (1968). First, note
that,
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The first term can be rewritten as,

We begin by showing that  converges to u uniformly,

We note that,
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by the Glivenko-Cantelli Theorems (1.51 and 1.52 in Csörgõ and Szyszkowicz (1998)),

along with the fact that  and . For all rD, rD̄ ∈ (0,1] × (0,1],

Therefore,

which implies that,

(A.8)

We note that (A.8) also implies that  and  converge uniformly to
FD (F−1 (u)) and FD¯(F−1 (u)), respectively, which can be seen by noting that the difference

between  and FD(F−1 (u)) will always have the same sign as the difference

between  and FD¯(F−1 (u)).

By the mean value theorem, there exists  between u and  such that,
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The uniform continuity of  combined with the fact that  u
uniformly, allows us to conclude,

(A.9)

For all rD, rD¯ ∈ (0, 1] × (0,1],

Therefore, as nD → ∞ and nD¯ → ∞,

Combining this result with (A.9) allows us to conclude that,

Corollary 1.A in Csörgõ and Szyszkowicz (1998), (A.9) and the uniform continuity of the
Kiefer process allow us to conclude,

(A.10)

and,
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(A.11)

The second term converges in distribution to a Kiefer process,

(A.12)

by Corollary 1.A in Csörgõ and Szyszkowicz (1998). Summing (A.10), (A.11)and (A.12)
gives the desired result.

Corollary A.3

Assume A1 - A4 hold and let  be bounded on [a, b]. For u1, u2, …, uJ ∈ (0,1),
rD,1, rD,2, …, rD,J ∈ (0,1] and rD¯,1, rD¯, 2, …, r D¯, J ∈ (0,1], a vector of arbitrary points on the

sequential empirical PPV curve, , is
approximately multivariate normal with,

with,

when u1 ≤ u2 and,
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when u2 ≤ u1, where  is defined as in Corollary 3.8.

Proof. Immediate from Theorem 3.6.
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Fig 1.
True ROC and PPV curves for the scenario considered in Section 4.
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