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Abstract

A network approach to brain and dynamics opens new perspectives towards understanding of its function. The functional
connectivity from functional MRI recordings in humans is widely explored at large scale, and recently also at the voxel level.
The networks of dynamical directed connections are far less investigated, in particular at the voxel level. To reconstruct full
brain effective connectivity network and study its topological organization, we present a novel approach to multivariate
Granger causality which integrates information theory and the architecture of the dynamical network to efficiently select a
limited number of variables. The proposed method aggregates conditional information sets according to community
organization, allowing to perform Granger causality analysis avoiding redundancy and overfitting even for high-dimensional
and short datasets, such as time series from individual voxels in fMRI. We for the first time depicted the voxel-wise hubs of
incoming and outgoing information, called Granger causality density (GCD), as a complement to previous repertoire of
functional and anatomical connectomes. Analogies with these networks have been presented in most part of default mode
network; while differences suggested differences in the specific measure of centrality. Our findings could open the way to a
new description of global organization and information influence of brain function. With this approach is thus feasible to
study the architecture of directed networks at the voxel level and individuating hubs by investigation of degree,
betweenness and clustering coefficient.
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Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI)

is increasingly being used to investigate brain dynamics [1]. The

dynamical integration between brain areas, evidencing neuronal

communications beyond the underlying anatomical structure, is

investigated by functional and effective connectivity. Functional

connectivity (FC) measures statistical dependencies of time-series

between distinct units; while effective connectivity (EC) investi-

gates the influence one neuronal system exerts over another, by

means of predictive models [2]. The former has been compre-

hensively described and integrated in the functional connectome of

the human brain [3]. Nevertheless, only a few studies have

investigated the large-scale directed influence brain network based

on EC [4,5], though not yet at the voxel level.

Once that the architecture of a neural network is known, it is

possible to identify its functional hubs and critical nodes,

determining preferred pathways of neuronal communication and

estimating the controllability of a system [6], or to use the graph

structure as a decoding tool for brain states [7]. A graph-

theoretical approach to whole brain functional connectivity, based

on the count of the number of functional connections per voxel

(edges in graph) has been successfully applied [8–15] allowing to

identify the distribution of functional hubs. Prominent functional

hubs were identified in the default mode network as well as in

dorsal, parietal and prefrontal regions.

A significant advance in the understanding of brain function

could come from the investigation of directed networks of

information transfer, such as those based on effective connectivity.

The models on which effective connectivity is based can either be

physiologically motivated, such as dynamical causal models, or

purely data-driven such as in Granger causality (GC) analysis (for

an extensive review see [16]). GC [17], which evaluates whether

the prediction error on one variable is significantly reduced by

including another variable in the autoregressive (AR) model, has

been used to identify the effective connectivity of blood-oxygen-

level-dependent (BOLD) fMRI signals [18–20]. It is worth to note

that the application of GC to fMRI is controversial [21,22],

especially for resting-state fMRI [16]. Nonetheless, the analogies

and differences between network architectures of functional

connectivity and GC-based effective connectivity have been

investigated [5,23,24]. Those studies are based on coarse-grained

parcellations from anatomically based brain atlases. Little is known

on the functional hubs in voxel-wise EC network. The main issue

arising when applying Granger causality to high dimensional

networks, such as voxel time series from the whole brain, is the

curse of dimensionality in the conditioning variables.
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To cope with redundancy and dimensionality issues in

evaluating multivariate GC, it has recently been proposed [25]

that conditioning on a small number of variables, chosen as the

most informative ones for each given driver, can be enough to

recover a network of effective connectivity eliminating spurious

influences in particular when the connectivity pattern is sparse. We

refer to this approach as the partially conditioned GC (PCGC).

Another issue related with the recovery of EC networks from

BOLD signal is the possibly confounding effect of the hemody-

namic response. In order to decouple the neuronal activity and the

hemodynamic responses, we applied a blind deconvolution

procedure, based on the detection of pseudo-events, to the BOLD

signal [26].

Materials and Methods

Subjects and Data Acquisition
The resting-state fMRI dataset used in this study has been

publicly released under the ‘1000 Functional Connectomes

Project’ (http://fcon_1000.projects.nitrc.org, accessed March

2012).and has been collected at the State Key Laboratory of

Cognitive Neuroscience and Learning at Beijing Normal Univer-

sity (n = 197, 122 females; age: 21.261.8 years). All participants

had no history of neurological and psychiatric disorders. Written

informed consent was obtained from each participant, and the

study was approved by the local Institutional Review Board.

During the resting state, participants were instructed to keep still

with their eyes closed but not to fall asleep, remaining as

motionless as possible. The fMRI images were acquired by using

single-shot gradient echo planar imaging (EPI) sequence (repeti-

tion time (TR): 2000 ms; echo time: 30 ms; axial slices: 33;

thickness: 3 mm; inter-slice gap: 0.6 mm; field of view:

2006200 mm2; in-plane resolution: 64664; flip angle: 90u). For

each subject, a total of 225-volumes were acquired, resulting in a

total scan time of 450 s.

Data Preprocessing
Preprocessing of resting-state images was performed using

SPM8: data underwent slice timing correction, realigning of all the

images to the first image using six degrees of freedom rigid body

transformations, spatial normalization into the Montreal Neuro-

logical Institute template then resampling to 3-mm isotropic

voxels, and spatial smoothing using a 6-mm full-width half-

maximum Gaussian kernel. Recently, small head movements have

been identified as an important confounding factor for resting state

fMRI studies [27–29]. To limit the impact of micro-movements

artifacts on these data, we implemented a ‘scrubbing’ procedure as

part of data preprocessing. An estimate of head motion at each

time point was calculated as the frame-wise displacement (FD)

(mean absolute FD across all subject = 0.10460.045 mm), using

six displacements from rigid body motion correction procedure

mentioned above [27]. Following [30], any image with

FD.0.5 mm was removed and replaced by a linear interpolation.

Additional parameters were used to remove possible spurious

variances from the data through linear regression. These were 1)

six head motion parameters obtained in the realigning step, 2)

signal from a region in cerebrospinal fluid, 3) signal from a region

centered in the white matter, 4) global signal averaged over the

whole brain. Time series were linearly detrended and temporally

band-pass filtered (0.01–0.08 Hz). We then generated a study-

specific functional volume mask that included only voxels present

in all participants.

Spontaneous Point Event Detection and HRF
Deconvolution

Previous studies have shown that the hemodynamic processes

are inhomogeneous across the whole brain [31]; in order to

maximally eliminate the effect of hemodynamic response which

may disturb the inference of temporal precedence [32], we

employed a blind deconvolution technique developed for resting-

state BOLD-fMRI signal [26], starting from the idea that the

resting-state BOLD spikes are due to spontaneous point events,

based on the increasing evidence of non-random patterns of

BOLD spike that govern the dynamics of the brain at rest [33–35].

These spontaneous events can be detected by point process

analysis (PPA), picking up BOLD fluctuations of relatively large

amplitude [36,37]. After detecting these resting-state BOLD

transients, the neural event onsets are stored for further HRF

reconstruction. Voxel-specific HRF is obtained by fitting raw

BOLD signal with canonical HRF and its time derivative, in order

to finally recover signals at the neural level by Wiener

deconvolution (Matlab code is available at http://users.ugent.

be/,dmarinaz/code.html) [38].

Partially Conditioned Granger Causality
Partially conditioned Granger causality (PCGC) was originally

proposed in [25] as a technique able to compute the GC

conditioned to a small number of variables in the framework of

information theory. The idea is that conditioning on a small

number of the most informative variables for the candidate driver

variable is sufficient to remove indirect interactions especially for

sparse connectivity patterns. Here we briefly report the founda-

tions of the approach.

Let’s consider n covariance-stationary variables fxi(t)gi~1,���,n;

the state vectors, representing the past realizations up to a lag q are

denoted as Xi(t)~ xi(t{q), � � � ,xi(t{1)½ �. The multivariate

Granger causality from variable b to variable a is defined as the

logarithm of the ratio of e(xaDX ), the mean squared error

prediction of xa on the basis of all the vectors X , and

e(xaDX \Xb), the mean squared error prediction of xa on the basis

of the past of all variables but b. What was proposed is a reduction

of the number of variables to be included in the conditioning

dataset.

The PCGC index PCGC(b?a)is defined as follows:

PCGCnd
(b?a)~ log

e(xaDZ)

e(xaDZ|Xb)
ð1Þ

where Z~fXi1
, � � � ,Xind

gis a set of the nd variables, in X\Xb,

most informative for Xb.

In order to choose the first variable of the subset, the mutual

information between the candidate driver variable and each of the

other variables is estimated; the second variable of the subset is

selected among the remaining ones, as those that, jointly with the

previously chosen variable, maximize the mutual information with

the driver variable. Then, one keeps adding the rest of the

variables by iterating this procedure. This is repeated until the

addition of another variable does not result in a substantial

information gain.

The model order for PCGC analysis can be chosen by standard

methods such as the Akaike information criterion, the Bayesian

information Criterion or leave-one-out cross validation. In the

following analysis we set q~1, as in other fMRI studies [18]. From

now on we refer to this data-driven method as PCGCd.

Voxel-Wise Effective Connectivity in fMRI at Rest
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The statistical significance of Granger causality value was

estimated under the null hypothesis of zero influence, with a

standard F-test on the restricted and unrestricted AR model [39].

In order to cope with extra-large data sets, such as voxel-wise

fMRI data, an additional strategy to reduce the number of

conditioning variables is in order. In this study it is proposed to

make use of the community structure of the data. This procedure,

indicated as PCGCt, exploits a hierarchical partition, at two

resolutions, of the brain signal. It consists of the following steps:

[1]. Considering each potential driver voxel b, the whole

ensemble of voxels (excluding b) S is divided into N systems:

S1,S2 � � � ,SN , such as the signal for the N systems is obtained

aggregating voxels inside each system Sk resulting in

ZS~f�ZZS1 , � � � ,�ZZSNg.
[2]. Each system is further partitioned into subsystems

Sk1
, � � � ,Skd

, such that now the signal within the subsystems of Sk

is given by ZSk ~f�ZZSk

1 , � � � ,�ZZSk

d g, where �ZZSk ~
1

d

Pd
i~1

�ZZSk

i , being

�ZZSk

i the mean signal of the variables Xj belonging to the subsystem

Ski
.

[3]. If b[Sgi
, then Z~fZs

\�ZZS
g ,ZSgg, and PCGC(b?a) is

calculated following Eq.(1).

This strategy is justified by the following assumptions:

Let us consider PCGCt in the restricted and unrestricted

regression models:

xa~Xaa1zZ1ze1

xa~Xaa2zXbb2zZ2ze2

ð2Þ

where

Zh~
P

j[Is
Xjchj~

PN
j~1 YjChj~

PN
j~1

P
i Y i

j Ci
hj ,(h~1,2);

Yj~½Xj1
, � � � ,Xjm �, (ji[ISj

); Y i
j ~½Xi1

, � � � ,Xin �, (ik[ISji
); IS , ISj

and ISji
are the index of S, system Sj and subsystem Sji

respectively; and Yj~½Y 1
j , � � � ,Y d

j �.
For voxel-wise analysis, excluding the special case in which Z is

a small subset containing all the informative variables, the

observation is always much smaller than the number of predictors

in Eq. 2, resulting in a singular matrix in the computation of the

regression coefficients. Moreover, predictors will also face a high

degree of multicollinearity (predictors too are redundant). As a

consequence estimation of regression coefficients in CGC may

change erratically in response to small changes in the data.

According to our algorithm, the coefficients of Xji (ji[ISj
,j=g)

will have the same given weight; different weights will be assigned

to the coefficients of Xik (ik[ISgi
), thus

Zh~
X

k
½Y k

g |(e6ck
hg)�z

XN

j~1,j=g
½Yj|(e6chj)�

where 6 denotes the Kronecker product and e~ 1, � � � ,1½ �[<1|t,

t is changed according to the dimension of Y k
g and Yj .

So, in the proposed algorithm, even if we only consider a few

conditioning variables Z~fZs
\�ZZS

g ,ZSgg, we are potentially taking

into account all the information needed to partial out possible

indirect causal influences, and avoiding multicollinearity in

regression analysis models.

In order to achieve effectiveness and feasibility of the proposed

scheme, the predictors should be reasonably aggregated into

groups, ensuring that they contribute with approximately equal

weights to the dependent variable. Since the construction of a pair-

wise correlation matrix will yield indications on the likelihood that

predictor variables are multicollinear/redundant, we can group

the predictors after detecting community structure from the

correlation matrix. We then average the predictors which contain

the redundant information about the dependent variable to avoid

overfitting in regression analysis model. Considering that spatially

connected voxels will most likely display similar BOLD signal, we

can find community structure on a coarse resolution under the

local mean-field assumption.

Detection of the Conditioning Dataset
Community detection. In order to reduce the dimensional-

ity of the set Z of variables to include in the conditional analysis

we explored its community distribution.

First, the preprocessed functional images were parcellated into

90 (45 for each hemisphere) non-cerebellar anatomical regions of

interest (ROIs) using automated anatomical labeling (AAL)

template [40]. This parcellation scheme is referred to as AAL-

90. Considering that the range of nodal scale and the difference in

template parcellations may affect the results of community

detection [41], we also used a high-resolution parcellation scheme

with 512 and 1024 micro ROIs [42,43]. Specifically, we generated

smaller ROIs of approximately identical size across both

hemispheres by subdividing each region of the low-resolution

AAL-90 template into a set of sub-regions. These parcellation

schemes are referred to as AAL-512 and AAL-1024. The study-

specific functional volume mask was superposed to the AAL-90/

512/1024 templates.

Then, the time series from each ROI i and j were used to

calculate the pairwise Pearson correlation matrix R = (rij) for each

subject. This matrix was averaged across all subjects and its

community structure was explored. As negative weights play a

controversial role in network organization [44], for this study the

absolute values of the averaged matrix were considered. The

Louvain algorithm for modularity detection was run 104 times,

and the solution producing the highest Q was selected as the

representative modular partition, where modularity Q was defined

as [45]:

Q~
1

2m

X
i,j
½rij{

kikj

2m
�d(ci,cj),

Where ki~
P

j rij , ci is the community to which vertex i is

assigned, d(ci,cj) is the Kronecker delta, and m~
1

2

P
ij rij .

According to the PCGCt algorithm, these large modules were

further divided into smaller sub-modules according to the strategy

described above.

Statistical analysis of Z. Following the identification of

modules from the mean correlation matrix (see Fig. 1), further

analysis was performed on the distributions of Z according to

modular structure. The distributions of the first nd variables

(obtained from greedy algorithm) in the partitioned module are

reported in Fig. 2 in which it’s evident that the most informative

variables for each candidate driver come mainly from the same

partition, but also, with no major differences in proportion, from

the other modules.

Effect of including the driver variable in Z. The

formulation of PCGCt requires that the driver variable b is

excluded before partitioning the system. While this step is

absolutely necessary at large scale, when working with time series

from individual voxels one can suppose that the results will not be

dramatically affected since its effect will be most likely averaged

Voxel-Wise Effective Connectivity in fMRI at Rest
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out. Including the driver variable is computationally very

advantageous, saving time in the partition step.

To validate this hypothesis, we propose a test to evaluate how

the presence of the candidate driver variable affects the result of

the voxel-wise PCGCt analysis. Firstly, the correlation between the

average signal �ZZSk

i of subsystem Ski
and its individual voxels is

computed (see the distribution of these values in Fig. S1). Then, for

every subsystem, a driver voxel b yielding the maximum value of r

is chosen, and PCGCt is computed including it in the subsystem Z.

This modified approach is called PCGCti.

Figure 1. The functional connectome: layout and communities. The full brain contains about 43413 3-mm cubic voxels for AAL-90 (A), AAL-
512(B) and AAL-0124 (C) template. On average 6 functional communities were found. They are colored distinctly within multiple axial slices and 3D
rendered on MNI152 standard brain surface (Bottom). To highlight the overall layout at a sparse 2% connection density, the functional connectome
was further visualized as a network layout with the same colors (Top).
doi:10.1371/journal.pone.0073670.g001

Figure 2. Distributions of the most informative variables contained in the set Znd
across communities.

doi:10.1371/journal.pone.0073670.g002

Voxel-Wise Effective Connectivity in fMRI at Rest
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Seed-based Granger Causality
As a representative example, medial prefrontal cortex (mPFC,

MNI coordinates [0, 52, 26] with sphere 6mm diameter, see

Fig. 3) was used as the seed ROI. This choice is motivated by the

evidence of it being a hub sending out information in default mode

network [46]. The set Z of conditioning variables was chosen on

AAL-1024 template. Causal interaction was investigated by

mapping the influence from the source to voxels in the rest of

the brain. Indirect influences will be misleadingly considered as

direct in the traditional pairwise GC analysis, which was computed

for comparison and validation.

Voxel-wise Granger Causality
To construct the voxel-wise Granger causality network, the

PCGC conditioning variables Z were individuated using the AAL-

1024 based community structure. Specifically, the time series for

each voxel were extracted from the HRF-deconvolved rs-fMRI

data to calculate a PCGC matrix G~(aij),1ƒi,jƒN (N is the

number of voxels), where aij is the GC value between the i- and j-

th voxels. A visualization of group level voxel-wise directed graph

resconstructed by PCGC is reported in Fig. 4. Considering that

the graph G is directed, all topological properties were calculated

on both incoming and outgoing matrix. Graph theoretical analyses

were carried out on the EC network using the MatlabBGL

package (https://code.launchpad.net/matlab-bgl).

Centrality Indices
Degree centrality (DC) is the sum of the weights of edges

connected to a node, i.e. DC(i)~
P

j aij . Nodes with high DC can

be considered as hubs for information integration.

Betweenness centrality (BC) is a measure based on shortest

paths, widely used in complex network analysis. Nodes with high

BC are important in managing the flow of information in the

graph due to the fact that they have a high probability to occur on

a randomly chosen shortest path between two randomly chosen

nodes.

Clustering coefficient (CC) is defined as the number of

connections among the neighbors of a particular node. It reflects

the local efficiency of information transfer in the graph. A high CC

along with a small characteristic path length indicates ‘‘small-

world’’ architecture, reflecting regional hubs with long-distance

connections and high clustering within each of them.

Normalized nodal parameters. We calculated the normal-

ized nodal parameters as in the following formula [47]:

pnorm(i)~

1

M

PM
k~1 pnode(i,k)

1

M|N

PN
i~1

PM
k~1 pnode(i,k)

where pnode(i,k) is an integrated nodal parameter (BC, CC and

DC) of node i in the network of subject k, M is the number of

networks included in the analysis(M = 197) and N is the number of

nodes.

Identification of hubs. The hubs for each node in the brain

network were identified according to the following criteria: (1)

Node i is a BC-hub if BCnorm (i) .mean+SD. (2) Node i is a CC-

hub if CCnorm(i) .mean+SD. (3) Node i is a DC-hub if DCnorm(i)

.mean+SD. To each node was assigned a score between 0 and 3,

determined by the total number of hub criteria fulfilled. Voxels

showing a hub-score of 2 or 3 (i.e. which were designed hubs for at

least two measures) were marked as hub nodes.

Validations: Simulated Data
The reliability of PCGCt was validated using simulated data. A

benchmark dataset was created based on the following AR(1)

model:

yt~0:7yt{1zj1
t

gt~0:7yt{1zj2
t

ct~0:7gt{1zj3
t

mt~0:7ut{1zj4
t

ut~0:7mt{1zj5
t

where j are i.i.d. unit variance Gaussian variables. By construc-

tion, y?g,g?c and m?u. A system of 6k time series, where k = 10

or 20 was constructed as follows. For i~1, � � � ,k:

xi(t)~c0ytzri
t

xkzi(t)~c1gtzrkzi
t

x2kzi(t)~c2ctzr2kzi
t

x3kzi(t)~c3mtzr3kzi
t

x4kzi(t)~c4utzr4kzi
t

x5kzi(t)~r5kzi
t

ð3Þ

Figure 3. Reproducibility of the causal flow from mPFC (purple sphere) when using pairwise GC(left) and PCGCt (right) under
p[10{3. Relative frequency with which a voxel was selected as a hub for outgoing information.
doi:10.1371/journal.pone.0073670.g003

Voxel-Wise Effective Connectivity in fMRI at Rest

PLOS ONE | www.plosone.org 5 September 2013 | Volume 8 | Issue 9 | e73670



where r and c are i.i.d. Gaussian variables, r are zero mean and

unit variance, c is generated from a Gaussian distribution with

mean 0.3 and variance 0.3. Note that the first k variables share the

same information corresponding to y (Module 1), whilst the

second k variables share the information corresponding to g
(Module 2). The variables xi (Module 3), with i~2kz1, � � � ,3k,

form a group of variables with correlations at equal times, similarly

to the group of variables with i~3kz1, � � � ,4k (Module 4) and

i~4kz1, � � � ,5k (Module 5). The variables xi, with

i~5kz1, � � � ,6k (Module 6), correspond to pure noise. We

generated a data set of 5000 time points (in order to get robust

statistical significance in the next analysis). Then we evaluated the

element-wise GC/PCGC for all pairs of maps. We repeated the

simulation 100 times with random values of j, r and c to generate

a null distribution; Wilcoxon signed rank test was employed to

Figure 4. Visualization of the group-level voxel-wise directed graph. Upper panel: layout at a sparse 2.4% connection density, 8156 voxels
with degree.11 are displayed; the 17 bigger communities (detected from the directed network at group level) are indicated by different colors.
Lower panel: the spatial distributions of the voxels in the upper panel are mapped on the anatomical image with the same colors.
doi:10.1371/journal.pone.0073670.g004

Voxel-Wise Effective Connectivity in fMRI at Rest
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assess the statistical significance of the links in the repeated

simulation result, corrected by family-wise error rate with p[0:05.

Results

Seed-based and voxel-wise Granger causality were evaluated. In

the latter case, conditioning variables were obtained after

partitioning the data in high-resolution functional connectivity

communities. We further report the centrality analyses based on

binary directed influence network at voxel-level.

The conditional variables Z were detected in functional

connectomes of different spatial scale, constructed using AAL-

90, AAL-512 and AAL-1024 templates. On average 6 commu-

nities were detected in each functional connectome (Fig. 1). These

results are consistent with previous findings [48,49]. Further

analysis was performed on the distribution of the variables in Z
across the modules. The distribution of Znd

(nd = 10, Fig. 2)

according to the partitioned community organization shows that

the highest fraction of the predictors in Znd
come from the same

module of the driver variable, and contributions from other

modules are relatively equally distributed.

Seed-based Granger Causality Mapping
The reproducibility of directed influence from mPFC (seed-to-

voxel causality mapping) across all subjects is shown in Fig. 3. The

reproducibility is given by the number of subject which showed a

significant F value, divided by the total number of subjects, for a

given voxel. The outgoing information values retrieved with

pairwise GC and PCGCt were relatively consistent (r = 0.43).

Compared to pairwise GC, the PCGCt displayed higher repro-

ducibility in medial frontal gyrus, superior frontal gyrus, inferior

frontal gyrus, middle temporal gyrus, anterior prefrontal cortex,

anterior cingulate, dorsolateral prefrontal cortex, posterior cingu-

late, precuneus and lower in occipital lobe, cuneus under the same

statistical significancep[10{3.

Moreover, the first 10 most informative voxels for mPFC are

shown in Fig. S2, with size proportional to their reproducibility

across all subjects. It can be observed that these voxels are

distributed not only in proximity of the zone of interest but across

the brain, consistently with findings reported for Z derived when

voxel time series were averaged according to AAL-90/512/1024

templates [50].

Concerning the effect of including the driver voxel in Z, we

found that PCGCti is highly correlated with PCGCt (minimum

correlation 0.993 across all subsystems and subjects, Fig. S3),

especially for the statistical significant values, thus indicating that

this approximate step has a negligible influence on the accuracy of

the method.

Voxel-wise Granger Causality Network
In Fig. 4 the voxel-wise PCGCt network is represented using a

network layout at aij]0:3 for each subject. This network of

directed information is divided in modules which are then mapped

on the brain. For a better visualization, only nodes with degree

.11 are reported in the figure. The purple cluster, containing the

posterior regions of the default mode network is intensely

interconnected to other modules. In particular it appears to send

directed information to the anterior regions (pink cluster) rather

than receiving, providing additional details to previous results on

the directionality of information flow in the default mode network

[46]. The salmon cluster, containing the thalamus and the

putamen, does not have strong connections to the other modules.

These results are consistent with those reported in [51], in which it

was shown that all midline cortical rich-club nodes (i.e., bilateral

precuneus, superior frontal, superior parietal) are connector hubs,

playing an important role in between-module connectivity, while

subcortical rich-club regions (bilateral thalamus, putamen) play an

important role in module structure.

Considering that the graph we focused on is directed, each

node’s incoming degree and outgoing degree must also be

considered separately [24]. Incoming degree and outgoing degree

represent the total number of connections incoming to a node and

outgoing from the same node, respectively [52].

Here only binary graph results with fixed threshold aij]0:3 and

a minimum cluster size of 27 contiguous voxels were reported. The

spatial distributions of the weighted graphs are similar (Fig. S4).

Based on normalized nodal parameters, some consistent regions

are identified as hubs (voxel hub-score of 2 or 3) at the same time

in the incoming and outgoing directed influence network (Fig. 5):

middle occipital gyrus, cuneus, postcentral gyrus, precuneus,

associative/secondary visual cortex, cingulate gyrus, superior

temporal gyrus, dorsal posterior cingulate cortex, inferior parietal

lobule, supramarginal gyrus, transverse temporal gyrus, angular

gyrus, primary auditory cortex, middle frontal gyrus, posterior

cingulate, precentral gyrus, subcentral area. Most of these regions

are involved in the following resting state networks: default mode

network (DMN), visual network (VN), auditory network (AN).

These results are in line with previous reports studying brain

anatomical, functional connectivity networks [15,53].

Cuneus, precuneus, somatosensory associative cortex, associa-

tive visual cortex, superior parietal lobule, cingulate gyrus, inferior

parietal lobule, dorsal posterior cingulate cortex were evidenced as

hubs for incoming information.

Some regions were consistently identified as hubs of outgoing

directed influence: superior temporal gyrus, postcentral gyrus,

middle occipital gyrus, transverse temporal gyrus, precentral

gyrus, and primary auditory cortex.

GCD vs. FCD
In addition, we compared DC in voxel-wise Granger causality

network versus voxel-wise functional connectivity network. For

voxel-wise functional connectome, DC was referred to as global

FC density (FCD) in previous studies [13]. The FCD map (binary

graph at fixed significant threshold p[10{6) is consistent with

previous functional connectivity studies [15,54]. The incoming

and outgoing GCD maps (binary graph results with fixed

significant threshold p[10{6) are shown in Fig. 6. The regions

showing high DC both for EC (Incoming/Outgoing) and FC are

located in middle frontal gyrus, superior frontal gyrus, dorsal

frontal cortex, superior temporal gyrus, angular gyrus, supra-

marginal gyrus, dorsal posterior cingulate cortex, anterior

prefrontal cortex, primary auditory cortex, precuneus, insula,

posterior cingulate cortex; most of them are part of the DMN

system.

Simulated Validations
We simulated data according to Eq.2 with k = 10, 20. The

resulting modules when k = 20 are reported in Fig. 7 (similar results

are obtained with k = 10). Pairwise GC and PCGC analysis were

performed with model order equal to 1. PCGCt and PCGCd all

successfully revealed the ground truth in both cases, while pairwise

GC detected false positives from Module 2 to Module 1, and from

Module 1 to Module 3. The nd = 10 for PCGCd analysis is

determined by the knee of the curve of the information gain when

an additional variable is used for conditioning (Fig. S5 right).
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Figure 5. The spatial distribution of hub voxels in a binary graph obtained keeping all the weights higher than a threshold of 0.3,
with unitary value, and setting the rest to zero. In the top sagittal views, red indicates the incoming network hubs, blue the outgoing network
hubs, while green the common hubs of incoming and outgoing network. Concerning the axial views, 1-3rd (5–7th) rows indicate the BC/CC/DC
incoming network hubs. In 4th (8th) row, yellow indicates incoming (outgoing) regions which are hubs for one measure (hub-score of 1), red indicates
incoming (outgoing) regions which are hubs for two measures (hub-score of 2), while green indicates regions which are hubs for all three measures
(hub-score of 3). The last row indicates the regions that are at the same time hubs for incoming and outgoing network with hub score of at least 2.
doi:10.1371/journal.pone.0073670.g005
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Discussion

Large-scale integration of information across brain regions is

investigated by both functional and anatomical connectomes. In

this study, to extend human brain connectomic repertoire, we first

constructed the effective connectivity network using voxel-wise

Granger causality on resting-state fMRI data. To cope with

dimensionality issues for voxel-wise Granger causality and to

decouple the neuronal activity and hemodynamic responses of

resting-state fMRI, we proposed the partially conditioned Granger

causality (PCGC) and blind deconvolution using the spontaneous

events detected in BOLD signal. The convergence and divergence

of hub regions between functional and effective connectivity

network were documented.

Directed Network Centrality Mapping
Specific network centrality measures have been primarily

focused on the identification of the human brain hubs at regional

[9,55] and voxel level [13,15,54,56–58]. Brain hubs take a central

position in a network and play a crucial role in fast transfer and

efficient integration of information across the human connectome

[3]. In this study, hubs of directed brain network were generally

identified by high levels of degree centrality, betweenness

centrality, and clustering coefficient [3,58]. As an addition to

previous findings in structural and functional connectomes, here

for the first time the voxel-wise centrality-based characteristics of

information flow in the human brain directed network was

reported. Some regions have been found to be consistently hubs

across various modalities (e.g., fMRI vs. DTI) and different

dynamical connectivity approaches (FC vs. EC), such as posterior

Figure 6. The spatial distribution of hub voxels in a graph binarized with a threshold p[10{6. The first row illustrates the spatial
distribution of global functional connectivity density hubs. The second (third) row indicates the DC incoming (outgoing) network hubs. The last row
indicates the regions which are DC hubs both for FC and EC (incoming/outgoing) networks.
doi:10.1371/journal.pone.0073670.g006

Figure 7. Results of the different PCGC algorithms on simulated data (k = 20). Left: pairwise GC, center: PCGCd, right: PCGCt.
doi:10.1371/journal.pone.0073670.g007
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cingulate cortex, precuneus, medial prefrontal cortex, lateral

parietal and temporal cortex, insula. Also, some regions displayed

remarkable differences (e.g., cuneus), due to the specific measure

of centrality [15], the parcellation scale [41] and brain connec-

tivity definition [53] employed. Nonetheless, our findings suggest

that higher order cortical association regions acted as pivotal

incoming or outgoing hubs, maintaining information flow even in

resting state.

Although pivotal hubs have already been found within single

resting-state network [46], among multiple networks [5,19], and

even in large-scale whole brain network [4,24], uncovering voxel-

wise centrality hubs on directed networks is particularly challeng-

ing. Efficient algorithms to estimate voxel-wise centralities are still

under development [59], while computation of the intermediate

directed connectivity matrix (,109 elements) involves accuracy

and efficiency problems. In the present work, we proposed a novel

approach, PCGCt, to remove indirect interactions in large

multivariate datasets.

Partial Conditioning Technique
It has been recently proposed [25] that partial conditioning on a

small number of the most informative variables for the driver node

is sufficient to obtain a reliable estimate of the directed

connectivity, especially when the pattern of causalities is sparse.

This approach not only allows a much faster calculation of

Granger causality matrix, but also a more accurate one, where a

fully multivariate approach would incur in curse of dimensionality

and in underestimation of influences due to the presence of

redundancy. Anatomical studies have shown that axonal connec-

tivity of the cortex is generally sparse [53], functional connectivity

studies have been shown that the human brain is a highly clustered

and redundancy complex system. Furthermore, the information

gain plots reflect that the most informative variables for driver

node were confined to small number of nodes or components.

These evidences provide the idea to construct voxel-wise EC

network by uses of partial conditioning technique.

In a recent study we have shown that the relative information

gain (and thus the number of variables to condition on) is not

affected by the time between successive scans (TR) [26], even

though data with shorter TR contain more absolute information.

Here we further examined how template size affects the

information gain [60]. However, with lower scale template (such

as AAL 512 and AAL 1024, and in general when the number of

variables is larger than the number of samples), the residual

redundancy will prevent a further decrease of the information gain

after a local minimum. On the other hand, when Z is built from

the aggregated signal according to community structure, this

phenomenon disappears (Fig. S5).

The statistical analysis of Znd
provides the evidence that the

most informative variables for the candidate driver mostly come

from the community to which it belongs and are uniformly

distributed within the rest of communities. This may give an

additional explanation for the number of variables for which the

curve of the information gain shows a knee, corresponding to the

case in which relevant information is picked across all the

communities. The joint information collected from the informa-

tion gain curve, and the sensitivity and specificity of the greedy

searching approach, one can choose the most convenient number

of variables to include in the conditioning dataset. In the present

study we set nd = 10.

PCGCd method is similar to LASSO based full-brain AR model

[61–63], only including a few variables to predict the other ones.

Compared to PCGCd, PCGCt uses all the information from the

conditional variables, and a proportional distribution of weight

values for conditional variable in AR model are fixed a priori

according to the community parcellation results.

Methodological Considerations and Limitations
On average 6.7 min/subject were required to complete a

network, running on Windows 7 (64 bit), Processor: Intel(R)

Core(TM) i5-2400 CPU @ 3.10GHz, Installed memory (RAM):

16.0 GB.

In the simulated model, we did not consider the effect of time

series length. We only chose a fixed value of the data length which

ensured a robust significant causal inference. In addition, the

simulated is not meant to reproduce complex brain activity, it is

rather a controlled benchmark to be used for a proof of concept.

Community structure revealed by grouping the first 10 most

informative contribution regions across all subjects at large scale

parcellation (AAL-90) shows that there is a well distributed spatial

organization of the set of conditioning variables Z [50]. Based on

the above evidence, the distribution the variables in Z was further

explored in the current study, and community organization

derived from correlation matrix was reported as stable across three

parcellations with increasing spatial resolution (AAL-90, AAL-512,

AAL-1024), but it still remains to be validated how the

performance of PCGCt is affected by inter- and intra-subject

variability of the community structure [64].

It is also worth to note that apart from directed connectivity, the

problem of conditional dependencies affects as well correlation-

based undirected (functional) connectivity, and a generalization of

the approach proposed here to the latter case could be in order,

and straightforward.

Here we reported the findings based on binary network, such as

FCD. However, given that weighted networks contain information

about connection strength that reflects heterogeneity in capacity

and intensity of connections, these latter could be more indicated

for brain connectome representation. For a cross-validation of our

results, we additionally used Granger causality strength to identify

brain hubs based on weighted effective connectivity network (see

Figs. S4, S6 and S7). These results are in accordance with the ones

described in the main text.

Finally, for cross-validation of threshold selection, we used

additional thresholds to evaluate the stability of the hubs

organization in the effective networks (see Figs. S6 and S7),

obtaining a general consistence across all the values.

To summarize, we proposed a an approach to perform partially

conditioned Granger causality rooted in information theory and

graph-theory analysis, coupled to a blind deconvolution technique

based on point process analysis to reconstruct the voxel-wise

effective connectome of the human brain. We put in evidence for

the first time the voxel-wise hubs of incoming and outgoing

information, as a complement to previous results on functional and

anatomical connectomes. Analogies and differences with these

networks have been presented and discussed. Our findings could

open the way to a new description of global organization and

information influence of brain function in terms of the Granger

causality density.

Supporting Information

Figure S1 Distribution of Pearson correlation r between
each voxel and the mean signal of its community
(according to the community structure retrieved from
AAL-1024).
(TIF)

Figure S2 Spatial distribution of the nd = 10 most
informative voxels for seed region mPFC (MNI coordi-
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nate: [0 52 26], 6mm- diameter sphere, blue). The size

and color of the sphere denote the relative frequency with which a

given voxel was selected.

(TIF)

Figure S3 Log-log plot of PCGCti and PCGCt. Inset,
linear plot.
(TIF)

Figure S4 The spatial distribution of hub voxels of the
weighted graph obtained keeping all the weights higher
than a threshold of 0.3, with their value, and setting the
rest to zero. In the top sagittal views, red indicates the incoming

network hubs, blue the outgoing network hubs, while green the

common hubs of incoming and outgoing network. Concerning the

axial views, 1–3rd (5–7th) rows indicate the BC/CC/DC incoming

network hubs. In 4th (8th) row, yellow indicates incoming

(outgoing) regions which are hubs for one measure (hub-score of

1), red indicates incoming (outgoing) regions which are hubs for

two measures (hub-score of 2), while green indicates regions which

are hubs for all three measures (hub-score of 3). The last row

indicates the regions that are at the same time hubs for incoming

and outgoing network with hub score of at least 2.

(TIF)

Figure S5 The mutual information gain (Dy), when the
(nd +1)-th variable is included, is plotted versus nd. The

information gain is averaged over all the variables. Left: the

conditioning set Znd
is calculated from the raw signal extracted

from AAL-90/512/1024 template; Top right: Znd
is calculated on

the signal extracted from each community; Right: curves for the

simulated dataset;

(TIF)

Figure S6 CC hubs distribution under different thresh-

olds (rows from top to down, p[10{8, p[10{9, p[10{10,

p[10{11, p[10{12, aij .0.3 ). Top left, Incoming network

(binary graph) CC hubs; Top right, Incoming network (weighted

graph) CC hubs; Bottom left, Outgoing network (binary graph)

CC hubs; Bottom right, Outgoing network (weighted graph) CC

hubs.

(TIF)

Figure S7 DC hubs distribution under different thresh-

olds (rows from top to down, p[10{6, p[10{7, p[10{8,

p[10{9, p[10{10, p[10{11, p[10{12, aij .0.3 ). Top left,

Incoming network (binary graph) DC hubs; Top right, Incoming

network (weighted graph) DC hubs; Bottom left, Outgoing

network (binary graph) DC hubs; Bottom right, Outgoing network

(weighted graph) DC hubs.

(TIF)
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