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Abstract

Persistent neural activity in the absence of a stimulus has been identified as a neural correlate of 

working memory, but how such activity is maintained by neocortical circuits remains unknown. 

Here we show that the inhibitory and excitatory microcircuitry of neocortical memory-storing 

regions is sufficient to implement a corrective feedback mechanism that enables persistent activity 

to be maintained stably for prolonged durations. When recurrent excitatory and inhibitory inputs 

to memory neurons are balanced in strength, but offset in time, drifts in activity trigger a 

corrective signal that counteracts memory decay. Circuits containing this mechanism temporally 

integrate their inputs, generate the irregular neural firing observed during persistent activity, and 

are robust against common perturbations that severely disrupt previous models of short-term 

memory storage. This work reveals a mechanism for the accumulation and storage of memories in 

neocortical circuits based upon principles of corrective negative feedback widely used in 

engineering applications.

Working memory on a time scale of seconds is used to hold information in mind during 

cognitive tasks such as reasoning, learning, and comprehension1. Over forty years ago2, a 

neural correlate of working memory was identified when the sustained activity of cells of 

the prefrontal cortex was shown to encode the identity of a remembered stimulus during a 

memory period. Since this time, such persistent activity has been observed in a wide range 

of contexts and brain regions3. However, the mechanisms by which it is maintained remain 

poorly understood.

Biophysically, neurons are inherently “forgetful” due to the rapid leakage of currents out of 

their membranes. Previous theoretical work3–7 has suggested that this leakage of currents 

can be offset if memory cells lie within circuits containing positive feedback loops that 

precisely replace leaked currents as they are lost (Fig. 1a, top). Models based upon this 
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principle can maintain arbitrarily finely graded levels of persistent activity that, in theory, 

can last indefinitely. However, if the strengths of the positive feedback loops are slightly too 

strong or too weak, activity quickly spirals upward or downward until it either saturates or 

comes to rest at a baseline level6–7 (Fig. 1a, bottom). As a result, positive feedback models 

of graded persistent activity require a fine tuning of the level of feedback and are highly 

sensitive to common perturbations, such as global changes in neuronal or synaptic 

excitabilities, that disrupt this tuning.

Anatomically, neocortical circuits exhibit a plethora of both positive and negative feedback 

pathways. While positive feedback has been studied in detail, negative feedback pathways 

have received relatively little attention in models of working memory. Inhibition typically 

has been arranged either in “double-negative” loops that mediate a disinhibitory form of 

positive feedback8 or has served as a global, normalizing background9. By contrast, here we 

suggest that inhibition plays a critical role in providing corrective negative feedback that 

stabilizes persistent activity.

Our model depends upon two primary observations. First, cortical neurons receive massive 

amounts of both excitation and inhibition that, in a wide range of conditions and brain areas 

are believed to be closely balanced10. Second, recent studies of frontal cortical circuits have 

reported differential kinetics in the excitatory pathways onto excitatory versus inhibitory 

neurons. Excitatory to excitatory connections, commonly associated with positive feedback, 

have relatively slow kinetics due to an abundance of slow NMDA conductances11–14. 

Excitatory to inhibitory connections, necessary to drive negative feedback, are relatively 

fast. Together, we show that these two observations lead naturally to a corrective, negative-

derivative form of feedback that counteracts drift in persistent activity.

Below, we first illustrate the basic mechanism by which negative-derivative feedback can 

contribute to persistent activity and temporal integration and construct network models 

based upon this mechanism. The resulting derivative-feedback models are more robust to 

many commonly studied perturbations than previous models based purely upon positive 

feedback and, due to their inherent balance of inhibition and excitation, produce the highly 

irregular firing typical of neocortical neuron responses15–16. Finally, we provide 

experimental predictions that differentiate our model from common positive feedback 

models and discuss implications of our model for the NMDA-hypothesis of working 

memory generation and dysfunction in disorders such as schizophrenia.

Results

Error correction through negative-derivative feedback

In the following, we show how observed features of frontal cortical circuits11–14,17–18 lead 

to a mechanism of memory storage based upon basic principles of engineering feedback 

control. In systems utilizing feedback control, a corrective signal is generated to oppose 

errors whenever a deviation from desired behavior is sensed. For the maintenance of 

persistent activity in memory circuits, the deviation to be detected and corrected is a change 

in time of the memory-storing activity, i.e. a temporal derivative (Fig. 1b, d). If memory 

activity drifts upward, corresponding to a positive derivative of activity, net inhibition 
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should be provided to reduce the magnitude of this drift. Likewise, if memory activity drifts 

downwards, net excitation should be increased to offset this drift. Thus, in both cases, the 

required form of corrective feedback is in a direction opposite to the derivative of the neural 

activity and describes negative-derivative feedback.

To gain a quantitative understanding of how the derivative-feedback mechanism compares 

to the traditional positive-feedback mechanism, we first consider a simple mathematical 

model of a memory cell with intrinsic time constant τ that receives a transient input I(t) to be 

stored in memory. To successfully remember this input after its offset, the memory cell 

should exhibit only very slow changes  in its firing rate r(t). This requires that its intrinsic 

leakage of currents, represented by the term −r below, be offset by positive feedback of 

strength Wpos (Fig. 1a, c, black; second term below) and/or by negative-derivative feedback 

of strength Wder (Fig. 1b, c, red; third term below):

(1)

Positive feedback models do not contain the Wder term. They maintain persistent firing by 

providing a feedback current that, when properly tuned by setting Wpos=1, offsets the 

intrinsic tendency of currents to leak out of the membrane. However, if the feedback is too 

weak (Wpos<1), memory activity decays to a baseline level in a manner analogous to an 

inertia-less particle drifting towards the bottom of a hill (Fig. 1a, bottom). Likewise, if 

feedback is too large (Wpos>1), activity grows exponentially on a time scale set by the 

intrinsic time constant τ. Thus, to perform correctly, positive feedback models require fine 

tuning of the strength of the positive feedback. Quantitatively, this fine tuning condition is 

defined by the relation τeff = τ/(1 − Wpos ), where τeff is the exponential decay time constant 

of network activity in the presence of positive feedback (Eq. (1), Fig. 1e).

Negative-derivative feedback networks instead slow memory decay by providing a force 

that opposes the drift of memory activity in a manner mathematically identical to viscous 

drag forces in fluid mechanics (Fig. 1b, bottom). This drag force effectively extends the time 

constant of memory decay in proportion to the strength of the derivative feedback pathway. 

For the case in which there is no positive feedback (Wpos = 0), this leads to an effective 

network decay time constant τeff = τ +Wder (Eq. (1), Fig. 1f).

More generally, negative-derivative feedback can complement positive feedback by 

opposing drifts due to imperfect tuning of positive feedback (Fig. 1c). In this case, the 

network time constant reflects the effects of both positive and negative-derivative feedback 

and, from equation (1), is given quantitatively by

(2)

This relation is illustrated in Fig. 1g, which shows that, as the negative-derivative feedback 

gets stronger (contours of increasing Wder), the system becomes increasingly robust to 
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mistuning of the positive feedback Wpos. We refer to any network containing a strong 

negative-derivative feedback component, as in Figs. 1b and 1c, as a negative-derivative 

feedback network. The special subclass of negative-derivative feedback networks with no 

positive feedback (Wpos=0) are denoted as “purely negative-derivative feedback” networks, 

while those that additionally contain tuned positive feedback (Wpos=1) are denoted as 

“hybrid positive and negative-derivative feedback” networks.

Negative-derivative feedback in neocortical microcircuitry

How can negative-derivative feedback arise from interactions between excitatory and 

inhibitory neurons in neocortical circuits? Mathematically, temporal derivatives are created 

when a signal is subtracted from the same signal offset in time. Likewise, derivative-

feedback can be created in memory networks by feeding back a memory-storing signal 

through positive-and negative-feedback pathways that are equal in strength but have 

different kinetics. When memory activity slips, fast negative feedback mediated by recurrent 

inhibition rapidly opposes this slip, and then slower positive feedback restores the original 

balance of excitation and inhibition in the circuit. The net effect of this fast inhibition and 

slow excitation is a feedback signal that opposes changes, i.e. generates a negative temporal 

derivative, of memory cell activity (Fig. 1b, bottom).

To show how negative-derivative feedback can arise in a neural network, we constructed a 

two-population memory circuit model consisting of excitatory (E) and inhibitory (I) 

populations. The populations were reciprocally connected by synapses of strength Jij and 

time constant τij, where j=E or I denotes the presynaptic population and i denotes the 

postsynaptic population (Fig. 2a, top). This architecture contains a positive feedback loop 

represented by the E-to-E connection of strength JEE, and a negative feedback loop of 

strength JEIJIE/(1+JII) mediated by the E-to-I-to-E pathway and modulated in strength by 

the I-to-I connection (Fig. 2a, bottom).

Mathematical analysis of this network to determine the conditions under which persistent 

activity could be stably maintained revealed two classes of solutions (Supplementary 

modeling). The first class corresponded to the positive feedback mechanism (Wpos=1 in Eq. 

(1)) and was characterized by having a stronger positive feedback pathway than negative 

feedback pathway so that the net feedback offset the intrinsic leakiness of the neurons. The 

second class corresponded to negative-derivative feedback, as expressed mathematically by 

the conditions (see Supplementary modeling for additional inequalities required to maintain 

network stability):

(3)

(4)

Equation (3) expresses the condition for balancing positive feedback and negative feedback 

in strength. Equation (4) ensures that the combination τ+ of synaptic decay time constants 

associated with positive feedback is slower than the combination τ− associated with negative 
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feedback – here, τII acts like a positive feedback contribution because it governs the 

reduction of negative feedback. Thus, together, equations (3)–(4) define the conditions for 

negative-derivative-like feedback. Strictly speaking, the derivative-like behavior is only at 

low frequencies, as high frequencies are low-pass filtered by the synapses (Supplementary 

modeling). This may be advantageous compared to a true derivative, which amplifies high-

frequency noise.

To illustrate this derivative-like feedback, in Figure 2b we show a simulation in which the 

firing rate of the excitatory neuron was clamped by external current injection to go through a 

perfect step from one steady firing rate to another. During the periods of steady persistent 

firing before or long after the step in firing rate, excitation (Fig. 2b, top, blue) and inhibition 

(red) are balanced, so that the net recurrent synaptic input (Fig. 2b, bottom) is zero. 

However, if activity fluctuates, then the different kinetics of the positive and negative 

feedback pathways lead to a large, derivative-like recurrent input that opposes the change in 

network activity (Fig. 2b, black).

Both of the conditions for negative-derivative feedback are present in cortical memory 

networks. A balance between strong excitatory and inhibitory synaptic inputs has been 

observed under a wide range of conditions10, including during sustained activity in 

prefrontal cortex17–18. Slow E-to-E synaptic kinetics have been found due to a prominence 

of slow NMDA-type receptors11–14. When we incorporated these findings in the model, the 

network maintained long-lasting persistent activity that reflected the level of its transient 

input (Fig. 2c, Supplementary Fig. S1f). The network time constant of activity decay, 

τnetwork, increased linearly with the J’s and with the difference between the time constants 

τ+ and τ−, allowing us to directly connect the network parameters to the strength of 

derivative feedback in the simpler model of Eq. (1) through the relation Wder ≈ τnetwork ~ 

J(τ+ − τ−) (Fig. 3c, Supplementary modeling). More generally, the network acted as an 

integrator of its inputs with this same time constant, for example converting steps of input 

into linearly ramping activity (Fig. 2d, Supplementary Fig. S1i).

A potential concern is that the opposition to firing rate changes provided by the negative-

derivative feedback mechanism might keep the network from responding to external inputs. 

However, external inputs comparable to the recurrent inputs in strength, as would be 

expected if the strengths of both recurrent and external inputs scale with population size, can 

overcome the derivative feedback and transiently imbalance excitation and inhibition, as 

observed experimentally during transitions between different levels of sustained 

activity17–18 (Supplementary modeling). Furthermore, appropriate arrangement of the 

external inputs can reduce the derivative feedback by amplifying this transient imbalance 

(Supplementary modeling)19.

Reinterpretation of the NMDA-hypothesis for working memory

In traditional positive feedback models4–5,20–21, NMDA-mediated synaptic currents 

computationally serve to provide a non-specific, slow kinetics process in all feedback 

pathways. Consistent with this role, NMDA-mediated currents in such models are typically 

present equally in all neurons, both excitatory and inhibitory. Our model suggests an 

additional role for NMDA-mediated currents in providing the slow positive feedback 
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component of a derivative-feedback signal. This requires that the contribution of NMDA-

mediated currents be stronger in positive-feedback than in negative-feedback pathways.

To investigate this revised NMDA-hypothesis for memory circuits, we extended our 

network models to include both NMDA-mediated and non-NMDA (AMPA-mediated) 

currents at all excitatory synapses (Fig. 3a). Experimentally, recent measurements of the 

AMPA and NMDA-driven components of excitatory transmission have identified two 

means by which NMDA may contribute more strongly to positive feedback than negative 

feedback pathways. First, NMDA-mediated currents can be a higher fraction of total 

excitatory synaptic currents in excitatory-to-excitatory than excitatory-to-inhibitory 

connections11,13. Second, the NMDA-driven component can have slower kinetics11–14 in 

excitatory neurons than inhibitory neurons. Below, we show quantitatively how this 

asymmetry in excitatory time constants contributes to negative-derivative feedback.

The model with multiple components of excitatory transmission is shown in Fig. 3a. All 

excitatory synapses contained both NMDA- and AMPA-type synapses so that both the 

positive and negative feedback loops contained slow and fast synaptic components. 

Nevertheless, we found that the conditions for derivative feedback-mediated persistent 

activity followed the same principles identified in the simple network model of Fig. 2, that 

is, a balance between the total positive and negative feedback in strength and slower positive 

feedback on average. More precisely, the conditions for negative-derivative feedback are 

still represented by equations of the form of equations (3) and (4) above. However, JEE and 

JIE in Eq. (3) now represent the sum of the strengths of NMDA- and AMPA-mediated 

synaptic currents onto excitatory and inhibitory neurons, respectively, and the time constants 

τ+ and τ− of positive and negative feedback in Eq. (4) now represent the weighted average 

of the synaptic time constants contributing to positive and negative feedback, respectively 

(Methods, Supplementary modeling).

Thus, even in the presence of slow kinetics in the negative feedback (E-to-I) pathway or fast 

kinetics in the positive feedback (E-to-E) pathway, negative-derivative feedback arises when 

the positive feedback is slower than the negative feedback on average. As in the simpler 

networks, the time constant of decay of network activity increases with the difference 

between the average time constants of positive and negative feedback (Fig. 3b, c). This 

slower positive than negative feedback can be achieved either with a higher fraction of 

NMDA-mediated currents (qEE> qIE, Supplementary Fig. S2a) or with slower NMDA 

kinetics ( , Supplementary Fig. S2b) in the E-to-E connection. Thus, this work 

suggests a revised NMDA hypothesis that highlights the experimentally observed11–14 

asymmetric contribution of NMDA receptors in positive and negative feedback pathways as 

a basis for negative-derivative feedback control.

Robustness of memory performance to common perturbations

A prominent issue in models of neural integration and graded persistent activity is their 

requirement for tuning of network connection strengths, and lack of robustness to 

perturbations that disrupt this tuning. Several biologically motivated solutions have been 

proposed to mitigate this problem; for example, a large body of work has shown that the 
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tuning requirements can be greatly reduced if network feedback mechanisms are 

complemented by cellular22–24 or synaptic25–27 persistence mechanisms. However, a largely 

neglected question in these discussions is whether biological systems are designed to be 

robust against all types of perturbations and, if not, what types of circuit architectures are 

robust against the most commonly experienced perturbations.

In traditional positive feedback models of analog working memory and neural integration, 

both inhibition (through disinhibitory loops) and excitation mediate positive feedback (see 

Fig. 6a, b). As a result, many natural perturbations – loss of cells, change in cell 

excitabilities, or changes in the strengths of excitatory or inhibitory synaptic transmission –

change the net level of positive feedback in the network and grossly disrupt persistent firing 

(Fig. 4a–f). By contrast, in models based upon derivative feedback (Fig. 4g–l), each of these 

natural perturbations leads to offsetting changes. For example, because excitatory cells drive 

both positive feedback (through E-to-E connections) and negative feedback (through E-to-I 

connections), loss of excitatory cells or decrease of excitatory synaptic transmission does not 

disrupt the balance of positive and negative feedback underlying derivative feedback (Fig. 

4j). Similarly, changes in intrinsic neuronal gains do not imbalance the positive and negative 

feedback received by cells (Fig. 4i; Supplementary Fig. S1), and changes in inhibitory 

synapses or loss of inhibitory neurons produce offsetting changes in positive (I-to-I) and 

negative (I-to-E) feedback pathways (Fig. 4k). Mathematically, the origin of this robustness 

is that the tuning condition for the derivative-feedback networks (Eq. (3)) is ratiometric, 

with the excitation and inhibition received by and projected by a cell population appearing 

in both the numerator (positive feedback contributions) and denominator (negative feedback 

contributions).

The negative-derivative feedback models are not robust against perturbations that break the 

balance of inhibition and excitation. For instance, perturbations that differentially affect 

excitatory-to-excitatory versus excitatory-to-inhibitory synaptic transmission, or inhibitory-

to-inhibitory versus inhibitory-to-excitatory transmission will disrupt persistent firing. For 

example, because NMDA-mediated currents are relatively stronger onto excitatory neurons 

than onto inhibitory neurons, disruptions in such currents break the balance between positive 

and negative feedback (Fig. 4l), with the precise size of the disruption being dependent upon 

how asymmetrically NMDA receptors are distributed between the two pathways 

(Supplementary Fig. S3, Supplementary modeling). Such relative frailty to perturbations that 

break the E-I balance forms a prediction for the derivative feedback models (see 

Discussion).

We note that the negative-derivative feedback and positive feedback mechanisms are not 

mutually exclusive. Hybrid models receiving strong negative-derivative feedback and tuned 

positive feedback (Fig. 4m–r) can be obtained by increasing the strength of net excitatory 

feedback enough to offset the intrinsic decay of the neurons (Fig. 4m). Doing so leads to 

networks that are both perfectly stable when properly tuned and, due to the strong and 

approximately balanced negative-derivative feedback, decay only mildly when mistuned 

(Fig. 4n–q).
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Irregular firing in spiking graded memory networks

A major challenge28 to existing models of working memory has been generating the highly 

irregular spiking activity observed experimentally during memory periods (Fig. 5a). In 

traditional positive feedback models, the mean synaptic input is suprathreshold and therefore 

drives relatively regular firing. Previous theoretical29 and experimental10 work instead 

suggests that the irregular activity seen in cortical networks results from strong inhibitory 

and excitatory inputs that mostly cancel on average but exhibit fluctuations that lead to a 

high coefficient of variation of the inter-spike intervals (CVisi).

To demonstrate irregular firing across a graded range of firing rates in the negative-

derivative feedback model, we constructed a recurrently connected network of integrate-

and-fire neurons consisting of excitatory and inhibitory populations with random, sparse 

connections between and within the populations30. The averaged excitation and inhibition 

between the populations satisfied the same balance condition, JEE~JEIJIE/JII, as in the firing 

rate models. Inhibitory currents were mediated by GABAA receptors. Recurrent excitatory 

currents were mediated by a mixture of AMPA and NMDA receptors (Fig. 5b), with a 

greater proportion of and slower kinetics of NMDA receptors in the excitatory feedback 

pathways11–14.

As in the simpler two-population model, the network exhibited graded persistent activity 

whose level reflected the strength of input (Fig. 5c–h) and integrated steps of input into 

ramping output (Supplementary Fig. S4). At each maintained level, the mean synaptic inputs 

to each population exhibited a close balance between inhibition and excitation, with spikes 

triggered primarily by fluctuations away from the mean input (Fig. 5i–k). This led to the 

observed highly irregular activity and, as observed experimentally, a CVisi distribution 

whose mean value exceeded 1 (Fig. 5l–n). This irregular Poisson-like firing might serve a 

valuable computational purpose, as Bayesian network models have suggested that Poisson 

firing statistics may enable probability distributions from different inputs to be combined 

efficiently31–32.

Circuits with a push-pull architecture: predictions

Above, we considered a single excitatory and inhibitory population. However, neuronal 

recordings during parametric working memory (e.g. [33]) or neural integration (e.g. [34–

35]) typically show a functional “push-pull” organization in which competing populations of 

cells exhibit oppositely directed responses to a given stimulus. Here, we show that a push-

pull organization is consistent with the derivative-feedback mechanism, has additional 

robustness to perturbations in external inputs, and generates predictions that differentiate the 

derivative-feedback and traditional positive-feedback models.

To construct a push-pull derivative-feedback network, we interconnected two of our two-

population models (Fig. 6c, E1 and I1; E2 and I2) through mutual inhibitory connections 

(Fig. 6c, E1 to I2 and E2 to I1). When the circuit was tuned to have a balance of slow positive 

and faster negative feedback (Supplementary modeling), the circuit maintained a graded 

range of persistent firing, with the left population increasing its firing rate when the right 

population decreased and vice-versa (Fig. 6f, black points, different levels of sustained 
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activity; Fig. 6l, example firing rate traces). Persistent activity was robust to common 

perturbations, as in the simpler 2-population models (Fig. 4), even when the perturbations 

were applied only to a single population (Fig. 6l, Supplementary Fig. S5). In addition, global 

shifts in background input, such as might be caused by system-wide changes in excitability, 

did not change the stability of persistent activity (Supplementary Fig. S5d) and noise caused 

temporally local jitter but was largely averaged out over the long time scales of integration 

(Supplementary Fig. S5h). The former result differs from simpler models based upon a 

single E and I population, which improperly exhibit ramping activity in response to global 

shifts in external input; this has been suggested as a fundamental reason for the observed 

push-pull architectures of integrator and graded short-term memory networks36.

A prediction for how the derivative feedback model can be distinguished from traditional 

positive feedback models is provided by examination of the intracellular currents onto the 

excitatory cells in each network. In the derivative feedback models, these currents are 

balanced and therefore positively covary across different levels of sustained activity (Fig. 

6i). By contrast, in traditional positive feedback models, inhibition is either driven by the 

opposing population of excitatory neurons (Fig. 6a) or receives equal strength connections 

from both populations (Fig. 6b). In the former case, synaptic inhibition reflects the firing 

rates of the opposing population (Fig. 6d, black) and is anti-correlated with the excitatory 

inputs arriving from the same population (Fig. 6g). In the latter case, inhibitory neuron firing 

represents an average of the activity in the competing excitatory populations – if the 

activities of the competing excitatory populations vary symmetrically about a common 

background level, inhibitory neuron firing will vary only weakly with different levels of 

activity (Fig. 6e, red), leading to minimal correlations between inhibitory and excitatory 

inputs (Fig. 6h). If instead the dominant (higher firing rate) population varies its activity 

more than the non-dominant population34, then the summed inhibition will follow the 

activity of the dominant population, switching when the opposite population becomes 

dominant and leading to a non-monotonic pattern of synaptic input correlations when 

viewed across the entire firing rate range (data not shown).

Discussion

Here we demonstrated a new mechanism for short-term memory based on negative-

derivative feedback control. Networks based upon this mechanism maintain activity for long 

durations following the offset of a stimulus and more generally act as temporal integrators of 

their inputs. The core requirement for negative-derivative feedback is that the pathways 

mediating positive and negative feedback be balanced in strength, but with slower kinetics 

in the positive feedback pathways. We showed that these two conditions lead to a balance 

between excitation and inhibition during steady persistent firing, and that this balance can be 

transiently disrupted by external inputs in order to allow a circuit to change its firing rates.

Compared to previously proposed memory networks based upon positive feedback, 

negative-derivative feedback networks have several advantages. First, negative-derivative 

feedback networks inherently incorporate the observation that frontal cortical circuits have 

both positive and negative feedback pathways, with an asymmetry in the time constants of 

synaptic excitation onto excitatory versus inhibitory neurons11–14. Second, negative-
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derivative feedback networks are robust against many commonly studied perturbations to 

synaptic weights that grossly disrupt memory performance in positive feedback models. 

Third, negative-derivative feedback networks inherently generate irregular firing across a 

graded range of persistent activity levels. These advantages are still attained in hybrid 

networks containing both positive and negative-derivative feedback; thus, negative-

derivative feedback is complementary to positive feedback and both mechanisms are likely 

to be used together in many circuits. A balance between excitation and inhibition has been 

suggested as a general principle underlying the dynamics of a wide variety of cortical 

circuits.

Physiologically, for cortical cells with large numbers of synaptic contacts and 

experimentally measured postsynaptic potential amplitudes, a close balance between 

excitation and inhibition may be essential to avoid saturation or total silencing of firing 

rates37–38. In sensory systems, the balance between inhibition and excitation includes the 

contribution of the external excitation driving the circuit30,39, and activity does not persist 

following the offset of the stimulus. By contrast, in the present work, the balance is obtained 

in the absence of external driving input and depends purely on recurrent synaptic inputs (or 

possibly a tonic background input). In bistable memory circuits, balanced excitation and 

inhibition40–41 has been proposed to explain the irregular firing activity observed during 

elevated (UP) states of network activity16. However, these models used identical time 

constants for the positive feedback and negative feedback pathways so that there was no 

derivative feedback. As a result, they could not achieve both irregular firing activity and the 

graded range of persistent firing rates observed during parametric working memory and 

temporal integration.

A major challenge to models of graded persistent activity is maintaining the tuning of 

network connection strengths. In positive feedback networks, the quantity to be tuned is the 

net level of network positive feedback. In negative-derivative feedback networks, the tuned 

quantity is the balance between excitation and inhibition. Previous foundational work in 

positive feedback networks has shown that the severity of this requirement may be markedly 

decreased if circuit mechanisms are complemented by cellular persistence mechanisms such 

as slow synaptic facilitation25–27 or dendritic plateau potentials generated by NMDA or 

other voltage-activated inward currents3,22–24,42. Similar results hold for the derivative 

feedback models if the slow process is in the excitatory-to-excitatory connections, and both 

dendritic plateau potentials and slow synaptic facilitation have been observed 

experimentally at such connections3,26,42. In addition, tuning of negative-derivative 

feedback can be accomplished locally if neurons can monitor their balance of excitatory and 

inhibitory inputs. Indeed, recent experimental43–44 and theoretical45 work suggest that both 

homeostatic and developmental processes regulate this excitatory-inhibitory balance, even at 

the level of localized dendritic compartments43. The learning rules underlying the 

maintenance of this balance are currently unknown experimentally and are an important 

issue for future exploration. However, preliminary investigations suggest that a previously 

proposed differential Hebbian learning rule46 may suffice to maintain the tuning of both the 

2-population and 4-population derivative-feedback networks (Supplementary Fig. S6).
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A separate question of robustness, focused upon here, is what types of perturbations 

biological networks typically experience and most need to be robust against. A principle of 

robust control theory is that systems cannot be robust against all possible perturbations, but 

should be robust against common perturbations47. Implicitly invoking this principle, 

previous work has justified positive feedback models as robust in the sense that random 

perturbations of connectivity only minimally affect the mean level of positive feedback36,48, 

and the same argument applies to the derivative-feedback models. However, many other 

common perturbations such as loss of cells or changes in neuronal gains severely affect 

positive feedback models. By contrast, derivative-feedback models can be dramatically 

more robust to these perturbations because they produce offsetting changes in the positive 

and negative feedback pathways (Fig. 4). Derivative-feedback models are susceptible to 

perturbations that disrupt the E-I balance of neurons, and this difference in robustness to 

different types of perturbations provides useful predictions. For example, we predict that 

completely silencing a subset of excitatory neurons would be less disruptive than silencing 

their synaptic inputs onto only their excitatory or only their inhibitory targets, consistent 

with a recent pharmacological perturbation study that showed severe disruption of persistent 

activity following selective targeting of NR2B-subunit containing NMDA receptors in 

prefrontal cortex that are primarily located at E-to-E synapses14. Similarly, we predict that 

globally perturbing GABAergic transmission from a subset of inhibitory neurons would be 

less disruptive than perturbing this input only onto its excitatory or only onto its inhibitory 

targets.

Slow excitation specifically in the positive feedback pathway of negative-derivative 

feedback networks suggests a revision of the NMDA-hypothesis for working memory 

storage4–5,20–21 and deficits in schizophrenia49. Previously, the assumed role of NMDA 

receptors had been to provide a non-specific, slow cellular time constant in all excitatory 

pathways4–5,20–21. By contrast, recent experimental studies11–14 reported asymmetric 

contributions of NMDA receptors in different feedback pathways. Building upon these 

studies, we demonstrate an additional role of NMDA receptors in providing the delayed 

excitation required for negative-derivative feedback, and suggest that future efforts to 

develop drugs for working memory disorders consider the differential contributions of 

NMDA receptors onto excitatory versus inhibitory target neurons.

In summary, this work provides a new paradigm for the storage of short-term memory based 

on corrective negative feedback. Negative feedback is a common principle of engineering 

control systems, in which a fundamental tenet is that strong negative feedback leads to 

system output (for example, an integral) that reflects the inverse of the feedback signal (for 

example, a derivative). Our work suggests that a similar principle is used by neocortical 

microcircuits for the accumulation and storage of information in working memory.

Online Methods

In the main text, we proposed a neocortical circuit architecture for short-term memory 

storage based upon having a balance in strength of positive and negative feedback pathways, 

but with positive feedback pathways exhibiting slower kinetics. These networks implement 

an error-correcting signal of the form of negative-derivative feedback that enables the 
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networks to maintain persistent activity. This principle was realized in both firing rate 

models composed of one or multiple excitatory and inhibitory populations (Figs. 2–4 and 6; 

Supplementary modeling 1, 2) and in spiking models consisting of recurrently connected 

integrate-and-fire neurons (Fig. 5, Supplementary modeling 3). Below, we describe the 

network structure and equations governing the dynamics of each of these network models.

Firing rate model of one excitatory and one inhibitory population

The firing rate models of Figure 2 were used to describe the dynamics of the average 

activities of, and synaptic interactions between, networks composed of one excitatory and 

one inhibitory population. We denote the mean firing rates of the excitatory and inhibitory 

populations by rE and rI, respectively, and the synaptic state variables for the connections 

from population j onto population i by sij. These firing rate and synaptic state variables are 

governed by the equations:

(5)

where the dot over a variable indicates differentiation with respect to time. Thus, the mean 

firing rate ri approaches fi(xi) with intrinsic time constant τi, where fi(xi) represents the 

steady-state neuronal response to input current xi. In the paper, we consider two types of 

neuronal response functions: linear f(x) = x (top panels of Fig. 2c, d and Figs. 3, 4, and 6) 

and a nonlinear neuronal response function (bottom panels in Figs. 2c, d and S1, S6) having 

the Naka-Rushton50 form

(6)

where M represents the maximal neuronal response, xθ represents the input threshold, x0 

defines the value of (x − xθ) at which f(x) reaches its half-maximal value, and h(x) denotes 

the step function h(x) = 1 for x ≥ 0 and h(x) = 0 for x < 0.

Inputs xi to each population include the synaptic current Jijsij from population j to population 

i and the external current JiOi(t), where the function i(t) (not to be confused with the 

subscript i) denotes the temporal component of the external current. Jij represents the 

synaptic connectivity strength onto postsynaptic neuron i from presynaptic neuron j, and the 

synaptic variables sij approach the presynaptic firing rate rj with time constant τij. We 

assume that one external source provides the external input to the excitatory and inhibitory 

populations, with JiO representing the strength of the input onto population i. To model in a 

simple manner how stimuli are smoothed before their arrival at the memory network, we 

assume that the externally presented pulses of duration twindow =100 ms (Fig. 2c) or step 

inputs (Fig. 2d) are exponentially filtered with time constant τext =100 ms.

In Figure 2b, we performed a firing rate clamp experiment to illustrate how recurrent 

excitatory and inhibitory inputs provide negative-derivative-like feedback in response to a 

change in firing rate. In this experiment, in which rE steps between two fixed levels, the 
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external input to the excitatory population in Eq. (5) is adjusted so that the profile of rE 

becomes a step function h(t). The remaining variables then are allowed to vary following the 

equations given in Eq. (5).

In Figures 3 and 4, we consider networks with a mixture of two different types of synapses, 

NMDA-type and AMPA-type, in both of the excitatory pathways (from E to E and E to I). 

Thus, the excitatory and inhibitory populations receive both types of excitatory synaptic 

inputs and the model is given by

(7)

Here, the superscripts N and A denote NMDA-type and AMPA-type synapses, respectively, 

and all other variables are the same as in Eq. (5). In Fig. 3a, the strengths of total excitatory 

synaptic currents and the fractions of NMDA-type synapses are represented by JiE and qiE; 

that is,  and  for i = E or I. In the purely negative-derivative 

feedback models of Fig. 4g–l, the network connectivity is tuned to have no net positive 

feedback by setting the strengths of positive and negative feedback to be precisely equal 

through the relation JEE = JEI JIE/(1+JII). On the other hand, in the hybrid models of Fig. 

4m–r, excess positive feedback is tuned to precisely cancel the leakage by setting JEE − JEI 

JIE/(1+JII) = 1.

Throughout the paper, the intrinsic time constants of excitatory and inhibitory neurons, τE 

and τI, are set to 20ms and 10ms, respectively51. The time constants of GABAA-type 

inhibitory synapses, τEI and τII, are set to 10ms52–53. Based upon experimental 

measurements of excitatory synaptic currents in prefrontal cortex13, the time constants of 

excitatory synaptic currents and the fractions of NMDA-mediated synaptic currents are set 

as follows: in the networks with a mixture of NMDA- and AMPA-mediated excitatory 

currents (Figs. 3, 4),  and  in excitatory neurons, and  and 

 in inhibitory neurons. Note that these time constants reflect the kinetics of 

postsynaptic potentials observed to be triggered by activation of NMDA- or AMPA-type 

receptors, and likely include the effects of additional intrinsic ionic conductances since these 

experiments were performed without blocking intrinsic ionic currents13. The fractions of 

NMDA-mediated synaptic currents in excitatory neurons and inhibitory neurons, qEE and 

qIE, were set to 0.5 and 0.2, respectively. The time constants of excitatory synapses for 

networks with only a single type of synaptic current for each connection in Fig. 2 were set to 

τEE =100ms and τIE = 25ms in order to satisfy the average excitatory kinetics 

 and . Note that, since τEE > τIE, this 

provides slower positive than negative feedback (see Eq. (4)). The synaptic strengths Jij 

were set to satisfy the balance conditions given by Eq. (3) and Supplementary modeling 4.

We note that the model presented here can similarly be extended to include both fast 

(GABAA) and slow (GABAB) components of synaptic transmission. In this case, the 

conditions for negative-derivative feedback have the same form as considered previously, 
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but with replacement of τII and τEI by  and 

, where the superscripts GA and GB denote the fast (GABAA) 

and slow (GABAB) components and qEI and qII denote the proportion of GABAB currents. 

Supplementary Figure S3 shows an example simulation with inclusion of such a slow, 

inhibitory component of synaptic transmission.

Firing rate model of two competing populations

In Figure 6, we compare networks of competing populations utilizing positive feedback 

control versus negative-derivative feedback control. The connectivity between populations 

varies in different models but the dynamics of the firing rates and the synapses are the same 

as in Eq. (5),

(8)

Here, E and I stand for excitatory and inhibitory populations, respectively, and the subscript 

1 or 2 is the index of the population. The temporal component of i(t) is the same transient 

pulse-like input as in the firing rate model of Eq. (5) and Ji,tonic is the strength of the tonic 

input.

In the positive feedback network with direct mutual inhibition (Fig. 6a, d, g, j), population Ei 

receives recurrent excitatory input JEiEisEiEi and inhibitory input JEiIisEiIi from the same 

population, and external inputs JEiOi(t) and JEi, tonic. The inhibitory sub-population Ii, for i = 

1 or 2, receives only the excitatory inputs JIiEjsIiEjfrom the opposing population (j = 2 or 1, 

respectively).

The positive feedback network with a common inhibitory pool (Fig. 6b, e, h, k) is composed 

of three populations - two excitatory populations E1 and E2, and the common inhibitory 

population I. Ei receives recurrent excitatory input JEiEisEiEi from itself, inhibitory input 

JEiIsEiI, and external inputs JEiOi(t) and JEi, tonic. The common inhibitory population I 

receives input JIE1sIE1 from E1 and input JIE2sIE2from E2.

In the negative-derivative feedback model with two competing populations (Figs. 6c, f, i, l 

and S6, S7e–h), each population has the same structure as in the single population in Eq. (5). 

Connections between the two competing populations are mediated by projections from the 

excitatory cells of each population that project weakly onto excitatory cells of the opposing 

population and more strongly onto inhibitory cells of the opposing population. Thus, the 

excitatory sub-population Ei receives inputs JEiEisEiEi and JEiIisEiIi from the same side, 

JEiEjsEiEj from the opposite side, and external inputs JEiOi(t) and JEi, tonic. Similarly, the 

inhibitory sub-population Ii receives inputs JIiEisIiEi and JIiIisIiIi from the same side, and 

JIiEjsIiEjfrom the opposite side.

The intrinsic time constants of excitatory and inhibitory neurons and the synaptic time 

constants are the same as in the single population and the remaining parameters are given in 
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Supplementary modeling 4. All the simulations of the firing rate models were run with a 4th-

order explicit Runge-Kutta method using the function ode45 in MATLAB.

Spiking network model with leaky integrate-and-fire neurons

In Figure 5 and Supplementary Fig. S4, we constructed a recurrent network of excitatory 

and inhibitory populations of spiking neurons with balanced excitation and inhibition. We 

showed that this spiking network maintains graded levels of persistent activity with 

temporally irregular firing. Here, we describe the dynamics of individual neuron activity and 

the synaptic currents connecting the neurons.

The spiking network consists of NE excitatory and NI inhibitory current-based leaky 

integrate-and-fire neurons that emit a spike when a threshold is reached and then return to a 

reset potential after a refractory period. These neurons are recurrently connected to each 

other and receive transient stimuli from an external population of NO neurons (Fig. 5b, 

external population not shown). The connectivity between neurons is sparse and random 

with connection probability p so that, on average, each neuron receives NEp, NIp and NOp 

synaptic inputs from the excitatory, inhibitory, and external populations, respectively.

The dynamics of the sub-threshold membrane potential V of the lth neuron in population i, 

and the dynamics of the synaptic variable  onto this neuron from the mth neuron in 

population j are given as follows:

(9)

(10)

The first term on the right-hand side in Eq. (9) corresponds to a neuronal intrinsic leak 

process such that, without the input, the voltage decays to the resting potential VL with time 

constant τi. The second term is the sum of the recurrent NMDA- and AMPA-mediated 

excitatory synaptic currents as in Eq. (7). The dynamic variables  and  represent 

NMDA- and AMPA-mediated synaptic currents from cell m of the excitatory population. 

The sum of the strengths of NMDA- and AMPA-mediated synaptic currents, and the 

fractions of NMDA- and AMPA-mediated currents, are assumed to be uniform across the 

population and are denoted by J ̃iE,  and , respectively.  is a binary random 

variable with probability p representing the random connectivity between neurons. 

Similarly, the third and fourth terms represent the total synaptic inputs from the inhibitory 

population and the external population. As for the excitatory currents, the dynamic variables 

 and  denote the synaptic currents with strengths J̃iI and J̃iO, respectively, and  and 

 are binary random variables with probability p.
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In the dynamics of  in Eq. (10), a presynaptic spike at time  from neuron m in 

population j causes a discrete jump in synaptic current followed by an exponential decay 

with time constant . Here, the spikes in the external population, representing inputs to be 

remembered, are generated by a Poisson process with rate rO during a time window twindow 

(Fig. 5, with rO =0 during the memory period) or with rate rO after t=0 (Supplementary Fig. 

S4). Note that the strength of , denoted by J̃ij in Eq. (9), corresponds to the integrated 

area under a single postsynaptic potential, not the height of a single postsynaptic potential. 

Furthermore, the connectivity strengths J̃ij were scaled as

(11)

This scaling made the fluctuations in the input remain of the same order of magnitude as the 

mean input as the network size varied30.

In Fig. 5l–n, the coefficients of variation of the inter-spike intervals were computed for 3 

seconds from time 300 ms to 3300 ms using all excitatory neurons that exhibited more than 

5 spikes during this period.

In the simulation, NE = 16000, NI = 4000, NO = 20000, and p = 0.1. The time constants and 

the fractions of NMDA-mediated currents were the same as in the firing rate models: τE = 

20ms, τI =10ms, τEI =τII =10ms, , 

and . The parameters for the synaptic strengths were tuned to achieve a balance 

between excitatory and inhibitory inputs during sustained activity, as shown in 

Supplementary modeling 3. The remaining parameters are given in Supplementary modeling 

4.

The numerical integration of the network simulations was performed using the second-order 

Runge-Kutta algorithm. Spike times were approximated by linear interpolation, which 

maintains the second-order nature of the algorithm54.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Memory networks with negative-derivative feedback. a–c, Simple models of a neural 

population and their energy surfaces with positive feedback (a), derivative feedback (b), and 

hybrid positive and derivative feedback (c). Persistent activity can be maintained at different 

levels (horizontal axis of energy surface) either by a positive feedback mechanism that 

effectively flattens the energy surface (a, c, bottom) or by a negative-derivative feedback 

mechanism that acts like a viscous drag force opposing changes in memory activity (b, c, 

bottom). The wall at the left of the energy surface represents the constraint that activity 

cannot be negative. d, Illustration of how a negative-derivative feedback mechanism detects 

and corrects deviations from persistent activity. e–g, Effective time constant of activity from 

Eq. (2) as a function of the strengths of positive feedback Wpos (e,g) and derivative feedback 

Wder (f, g). As Wder increases, the network time constant τeff becomes less sensitive to 

changes in Wpos (g).
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Fig. 2. 
Negative-derivative feedback networks of excitatory and inhibitory populations. a, 
Derivative feedback network structure (top) and component feedback pathways onto the 

excitatory population (bottom). b, In response to external input that steps the excitatory 

population between two fixed levels, the recurrent feedback pathways mediate a derivative-

like signal resulting from recurrent excitation and inhibition that arrive with equal strength 

but different timing. c, d, Maintenance of graded persistent firing in response to transient 

inputs (c) and integration of step-like inputs into ramping outputs (d) with linear (top) and 

nonlinear (bottom) firing rate (f) vs. input current (I) relationships.
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Fig. 3. 
Negative-derivative feedback with mixture of NMDA/AMPA synapses in all excitatory 

pathways. a, Derivative feedback network structure. Blue, cyan, and red curves represent 

NMDA-mediated, AMPA-mediated currents, and GABA-mediated currents, respectively. 

qEE and qIE are the fractions of NMDA-mediated synaptic inputs in each excitatory 

pathway. b, Time constant of decay of network activity τnetwork as a function of the average 

time constants of excitatory connections, aver(τEE ) and aver(τIE ). Each average time 

constant is varied either by varying the fractions or the time constants of NMDA-mediated 

synaptic inputs in each connection. The region in the red rectangle corresponds to a set of 

possible aver(τEE ) and aver(τIE ) obtained when varying qEE and qIE while holding the 

synaptic time constants fixed at values matching the experimental observations in [13]. c, 
Time constant of decay of network activity τnetwork as a function of the connectivity 

strengths Jij and the time constants of positive and negative feedback, τ+ and τ−. τnetwork 

increases linearly with the balanced amount of positive and negative-derivative feedback 

Jder ~ JEE ~ JIEJEI/JII, and with the difference between τ+ and τ−, as Wder~Jder(τ+ −τ−).
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Fig. 4. 
Robustness to common perturbations in memory networks with derivative feedback. a–f, 
Non-robustness of persistent activity in positive feedback models. a, Positive feedback 

models with recurrent excitatory (left) or disinhibitory (right) feedback loops. b, Effective 

time constant of network activity, τnetwork, as a function of connectivity strength. Green 

asterisks correspond to 5% deviations from perfect tuning. c–f, Time course of activity in 

perfectly tuned networks (black) and following small perturbations of intrinsic neuronal 

gains (c) or synaptic connection strengths (d–f). g–k, Robust persistent firing in derivative 

feedback models. To clearly distinguish the hybrid models with derivative and positive 

feedback, purely negative-derivative feedback models with no positive feedback are shown. 

All excitatory synapses are mediated by both NMDA and AMPA receptors as in Fig. 3, with 

parameters chosen to coincide with experimental observations [13]. h, τnetwork increases 

linearly with the strength of recurrent feedback J. i–k, Robustness to 5% changes (green 

asterisks in h) in neuronal gains or synaptic connection strengths. l, Disruption of persistent 

activity in derivative feedback models following perturbations of NMDA-mediated synaptic 

currents. m, Hybrid model with positive and derivative feedback. n–q, As the strength of 

negative-derivative feedback is increased, τnetwork decreases less rapidly with mistuning 

than in purely positive feedback models (n) and the network becomes robust against 
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perturbations (o–q, shown for Jder/Jpos=150). r, Disruption of persistent activity in the 

hybrid model following perturbations of NMDA-mediated currents.
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Fig. 5. 
Irregular firing in spiking networks with graded persistent activity. a, Experimentally 

measured irregular firing (coefficients of variation of inter-spike intervals, CVisi, higher than 

1) during persistent activity in a delayed-saccade task. Adapted from [16]. b, Structure of 

network of spiking neurons with negative-derivative feedback. c–k, Network response to a 

brief (100 ms) stimulus applied at time 0. c–e, Raster plots illustrating irregular persistent 

firing of 50 example excitatory neurons. f–h, Instantaneous, population-averaged activity of 

excitatory neurons, computed within time bins of 1 ms (gray) or 10 ms (black). i–k, Balance 

between population-averaged excitation and inhibition following offset of external input. l–
n, Histogram of CVisi of active excitatory neurons during the persistent firing. Note that, for 

activity with strong input, a small subset of neurons fire regularly at high rate and exhibit 

low CVisi (n). This reflects that the heterogeneity resulting from our simple assumption of 

completely randomly connected networks can result in excess positive feedback in some 

clusters of neurons.

Lim and Goldman Page 25

Nat Neurosci. Author manuscript; available in PMC 2014 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Synaptic inputs in derivative feedback and common positive feedback models. a–c, Network 

structures of positive feedback models (a, b) and derivative feedback models (c) with two 

competing populations. d–f, Relation between firing rates of excitatory and inhibitory 

neurons. Firing rates of the E2 (black points) and inhibitory (red points) populations are 

plotted as a function of E1 firing rate. g–i, Relation between excitation and inhibition for 

different levels of maintained firing. X- and y-axes are normalized by the amount of 

excitation and inhibition received when the left and right excitatory populations fire at equal 

levels of 30 Hz. j–l, Persistent activity in the two competing excitatory populations (solid: 

E1; dashed, E2). Perturbing the networks by uniformly increasing the intrinsic gain in E1 

leads to gross disruptions of persistent firing in positive feedback models (green curves in j, 
k), but not negative-derivative feedback models (l). See Supplementary Fig. S5 for 

robustness to other perturbations.
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