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Signal transducers and activators of 
transcription 3 (STAT3) proteins are 

cytoplasmic transcription factors that 
translocate into the nucleus to induce 
transcription following growth factor 
or cytokine stimulation. Besides their 
normal functions, these proteins play an 
important role in cancer cells through 
the abnormal activation of cell cycle 
progression and the deregulation of sur-
vival and senescence pathways. New data 
obtained from the laboratory of Guido 
Kroemer identifies STAT3 as a new 
autophagy regulator. In the cytoplasm, 
in the absence of conventional phos-
phorylation on the tyrosine 705 residue, 
STAT3 interacts with the PKR kinase 
to inhibit eIF2A phosphorylation and so 
reduce autophagic pathways. This new 
and nonconventional function of STAT3 
has an important role in normal cells 
but we suggest that it might also affect 
cancer cells and the response to chemo-
therapy treatment.

Whereas ubiquitination is well known to 
induce the degradation of soluble proteins, 
macroautophagy (also called autophagy) 
has recently emerged as an evolutionarily 
conserved process that degrades misfolded 
protein aggregates, damaged organelles, 
and abnormal mitochondria. This process 
relies on the activation of ATG genes and 
the upregulation of intracellular proteins 
that specifically recognize aggregates, 
target them to specific vesicles known 
as autophagosomes and allow lysosomal 
fusion.1 Protein degradation can be fol-
lowed by catabolic recycling and there-
fore autophagy can be seen as a powerful 
mechanism that allows cell survival in a 
stressful environment such as the one can-
cer cells encounter.
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The role of autophagy in cancer is 
complex. It has been demonstrated that 
the inactivation of Beclin-1 (the human 
ortholog of Atg6, which induces the for-
mation of autophagosomes) is correlated 
with tumor development using mouse 
genetic models or human tumor samples. 
These observations described Beclin-1 as 
a haploinsufficient tumor suppressor gene, 
suggesting that autophagy functions as a 
suppressive pathway.2,3 These results were 
further confirmed by Atg5 and Atg7 dele-
tions in mice, which also led to increased 
tumor initiation.4 This is probably related 
to the accumulation of the p62/SQSTM1 
sequestosome protein, which is normally 
degraded during autophagy. The failure of 
autophagy-deficient cells to eliminate p62 
leads to DNA damage and the abnormal 
activation of the Nrf2 and NFκB pro-
teins.5-7 The upregulation of the NFκB 
transcription factor probably explains why 
autophagy default also leads to inflamma-
tion, as a consequence of the abnormal 
production of cytokines and chemokines 
mediated by NFκB. Interestingly, p62/
SQSTM1 plays an important role in 
ras-mediated transformation and this 
is also correlated with the production of 
cytokines that are induced during onco-
genic stress and senescence escape.8,9 This 
implies that some ras-expressing tumors 
might depend on p62/SQSTM1, whose 
expression can be viewed as a consequence 
of the autophagy downregulation and 
reduced tumor suppression that occur dur-
ing the initial stage of cell transformation.

Important results have also demon-
strated that autophagy is necessary for 
oncogene-induced senescence (OIS). OIS 
is a tumor-suppressor mechanism that 
induces permanent cell cycle arrest in 
response to oncogenic signals.10,11 It relies 



e24353-2 JAK-STAT Volume 2 Issue 3

a chemical library, they have observed 
that many drugs known to block the 
conventional activation of the transcrip-
tion factor induce a significant activation 
of autophagy. Drugs such as Stattic, JSI-
124, and WP1066 induce this mechanism 
and the effect was confirmed using either 
RNA interference or knockout cells. 
STAT3 inhibition leads to LC3+ dots, 
p62/SQSTM1 degradation, LC3 con-
version, and autophagosome formation, 
which are all hallmarks of the autopha-
gic program. In contrast, STAT3 over-
expression induces a downregulation of 
this pathway and, most importantly, this 
was also observed when the authors used 
an Y705 mutated form of the transcrip-
tion factor. Further suggesting a cyto-
plasmic role, no effect was noticed when 
the transcription factor was fused to a 
specific sequence that induces its consti-
tutive nuclear localization. Interestingly, 
the authors identified several potential 
autophagy regulators such as HSP90, 
mTOR, and PKR kinase (EIF2AK2) 
within the STAT3 interactome. Through 
co-immunoprecipitation, mutagenesis, 
and molecular modeling, they show that 
STAT3 interacts with PKR in the cyto-
plasm and that this interaction is medi-
ated by specific residues within its SH2 
domain. In fact, it appears that this SH2 
sequence is similar to a specific domain 
within the eIF2A translational regula-
tor, one of the main targets of the PKR 
kinase. Consequently, the authors demon-
strate that the PKR-eIF2A pathway is an 
important inducer of autophagy and that 
STAT3 inactivates this pathway through 
its binding to PKR and the inactivation 
of eIF2A phosphorylation. Interestingly, 
other inducers of autophagy such as palm 
oil are also regulated by the cytoplasmic 
form of the transcription factor and their 
effect on autophagy induction correlates 
with the dissociation of the STAT3-PKR 
complex. Other reports have proposed 
that STAT3 can regulate this pathway 
and as stated above we can speculate that 
this transcription factor regulates the 
transcription of ATG genes, perhaps in 
association with NFκB.23 The study by 
Kroemer and colleagues describes the pro-
tein’s nonconventional cytoplasmic role 
in the regulation of autophagy, further 
illustrating that STAT3 has functions in 

functions are generally characterized dur-
ing acute ras signaling, in the early stage 
of oncogenic signaling. This is a different 
situation compared with established cell 
lines, which are growing with established 
ras mutations. These cells have by defini-
tion inactivated the suppressive mecha-
nisms induced by the oncogene19,20 and are 
addicted to various survival, metabolic, 
and dedifferentiation pathways as we 
recently demonstrated in colorectal cancer 
cells.21 In these two different contexts, we 
can speculate that autophagy has different 
functions, suppressive in the early stages 
of cancer initiation and oncogenic in cells 
that have bypassed senescence and cell 
death protections.

In addition to many studies on ras 
signaling, the role of autophagy has also 
been characterized in other intracellular 
signaling pathways. Signal transducers 
and activators of transcription 3 (STAT3) 
proteins are latent cytoplasmic transcrip-
tion factors that translocate into the 
nucleus to induce gene transcription.22 
Binding growth factors to their recep-
tors activates intracellular kinases such as 
Janus or Src, which then phosphorylate 
STAT3 on its 705 tyrosine residue (Y705). 
Although it was initially believed that 
dimerization and Y705 phosphorylation 
lead to the only active form of STAT3, it 
is now recognized that STAT3 can exert 
numerous nuclear or cytoplasmic func-
tions in the absence of this phosphory-
lation.23,24 STAT3 plays an important 
role in tumorigenesis and its constitutive 
activation has been reported in several 
primary cancers and many oncogene-
transformed cells.22,25-27 Importantly, 
we and others have also shown that this 
oncogene plays an important role in the 
response to chemotherapy treatment.28,29 
Many studies have described the effect of 
STAT3 on cell transformation, apoptosis 
deregulation, and angiogenesis, using in 
vitro approaches, growth in two dimen-
sions, in spheroid30 or in vivo mice mod-
els.31 As an oncogene, STAT3 is expected 
to deregulate suppressive pathways32 but 
the transcription factor’s effect on autoph-
agy largely remains to be characterized. 
A study by Kroemer and colleagues has 
recently shown that the cytoplasmic 
form of STAT3 plays a key role in regu-
lating this catabolic mechanism.33 Using 

on the combined activation of the p53-
p21waf1 and p16-Rb pathways to induce 
cell cycle arrest and the transcriptional 
repression of proliferative genes through 
heterochromatin formation. Young et al. 
have demonstrated that OIS induction is 
preceded by autophagy and the activation 
of ATG genes.12,13 In response to the ras 
oncogene, the inactivation of these genes 
by RNA interference reduced senescence 
as a consequence of autophagy inhibi-
tion. During the successive steps that lead 
to protective growth arrest in response 
to the ras oncogene, the Akt-mTOR 
pathway is inactivated and this inhibits 
phosphorylation of the Foxo3a transcrip-
tion factor and the ATG proteins, ULK1, 
Atg13, and Beclin-1.14,15 The lack of Akt/
mTOR-mediated phosphorylation of 
Foxo3 allows its nuclear translocation and 
the transcriptional activation of the ATG 
genes such as ULK1. In parallel, the lack 
of Akt/mTOR-mediated phosphoryla-
tion of ULK1, Atg13, and Beclin-1 pro-
motes Ambra/Beclin/PI3KC3 association, 
which is essential for autophagosome 
formation. These results have been con-
firmed by a different study showing that 
ras leads to the upregulation of Beclin-1 
and the consequent formation of autopha-
gosomes.16 In these different experimental 
conditions, growth arrest was also inhib-
ited following Beclin-1, Atg5, and Atg7 
inactivation. Altogether, these observa-
tions illustrate the role of autophagy in the 
context of tumor suppression if we agree 
that senescence is always a suppressive 
pathway.17

As stated above, the role of autophagy 
in cancer is complex and important stud-
ies have demonstrated that its upregula-
tion is necessary for tumor cell survival. 
Autophagy is expected to play an impor-
tant role in the condition of hypoxic 
growth or nutrient privation. In this con-
text, catabolic recycling may be a power-
ful mechanism that allows cell growth in 
a difficult cancer microenvironment. In 
line with this hypothesis, when performed 
in growing cell lines expressing the ras 
oncogene, the inactivation of ATG genes 
is associated with a significant decrease in 
cell survival.18 These observations do not 
necessarily contradict the role of autoph-
agy as a tumor suppressor in the initial 
stages of cell transformation. Suppressive 
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Given the very complex role of autoph-
agy in cancer cells, we believe that it will 
be important to distinguish two cases in 
these further studies. During cancer ini-
tiation and senescence induction, the role 
of autophagy is probably not the same as 
in the functions in transformed cells that 
inactivate tumor suppressive pathways. 
Consequently, we also expect STAT3 
phosphorylation, localization, and func-
tions to vary during the successive stages 
of tumor progression. Therefore, further 
experiments are required to determine if 
STAT3 regulates autophagy to the same 
extent in primary cells, during senescence 
and in established cells that have escaped 
suppressive pathways (see Fig. 1 for a pro-
posed hypothesis). The characterization of 
STAT3 in the different cell compartments 
based on its post-translational modifica-
tions and partners might be the key to 
understanding different STAT3 functions 
during the successive stages of cancer 
progression.

Finally, this new function of the STAT3 
oncogene in autophagy might also play an 
important role in chemotherapy response. 
As stated above, we and others have shown 
that STAT transcription factors play an 

not phosphorylated on its Y705 residue, as 
recently shown in the case of ras-express-
ing cells, then we can speculate that 
STAT3 could in this case interact with 
PKR to block the induction of autoph-
agy. In ras-expressing cells, it is strik-
ing to note that the cytoplasmic form of 
STAT3 has been described as a regulator 
of mitochondrial functions.34 Given the 
very close links between autophagy, mito-
chondrial functions, and apoptosis, these 
observations could lead to the hypothesis 
that the STAT3-mediated inhibition of 
PKR during autophagy might somehow 
be connected to its mitochondrial activ-
ity in ras-transformed cells. In addition, if 
a monomeric form of STAT3 that inter-
acts with PKR is effectively oncogenic, we 
expect that the resulting reduced autoph-
agy would lead to an enhanced expres-
sion of p62/SQSTM1. As stated above, 
this protein activates the NFκB pathway 
and a permanent autocrine loop induced 
by NFκB maintains STAT3 activation in 
tumor cells.37 In this context, the STAT3-
mediated activation of p62/SQSTM1 
would provide an additional means of 
reactivating NFκB and maintaining a 
secreted survival loop.

the absence of Y705 phosphorylation and 
does not always act as a classic transcrip-
tion factor.

This new study concerns the normal 
functions of STAT3 and does not address 
the oncogene’s role in autophagy regula-
tion. This is an important issue since this 
protein allows cell survival through the 
upregulation of proteins such as Bcl-Xl, 
mcl1, and survivin. In addition, it has 
recently been suggested that the cytoplas-
mic form of STAT3, not phosphorylated 
on its Y705 residue, plays an important 
role in cells expressing the ras oncogene.34 
Considering the links between autophagy 
and cancer, it will be very interesting to 
determine the effect of the oncogenic 
form of STAT3 on autophagy. If we are 
convinced that its oncogenic form is phos-
phorylated on its 705 residue and dimeric, 
and that its main role is to activate cancer 
genes, then the nuclear form of STAT3 
is not expected to interact with PKR. 
Consequently, tumor cells expressing this 
dimeric form should express an active PKR 
and show enhanced phosphorylation of 
eIF2-α. This would probably be the same 
if STAT3 interacts with NFκB to exert its 
oncogenic activity. In this case, the for-
mation of the complex is also expected to 
prevent the interaction with PKR since its 
main function would be to regulate the 
transcription of genes involved in cancer 
progression. Interestingly, it has recently 
been demonstrated that NFκB plays an 
important role in the process of p27-medi-
ated autophagy through the regulation 
of the skp2 protein.35,36 Whether this is 
related to its interaction with STAT3 
and the consequent activation of PKR 
remains to be clarified. By allowing the 
cytoplasmic activation of the PKR kinase, 
these two oncogenic forms of STAT3 are 
expected to induce a normal activation 
of autophagy and therefore reduce the 
expression of p62/SQSTM1. Although 
this remains to be demonstrated, it can be 
suspected that some ATG genes are also 
targeted by the STAT3-NFκB complex. If 
this hypothesis is correct, it will be inter-
esting to determine if autophagy is a pro-
tective or tumor-suppressor mechanism 
when tumor cells express a conventional 
tyrosine-phosphorylated form of STAT3.

However, if we believe that the onco-
genic form of STAT3 is cytoplasmic and 

Figure 1. Schematic representation of autophagy regulation by STAT3 and proposed hypothesis. 
In normal conditions, latent cytoplasmic STAT3 binds to PKr, inhibits its activity, and reduces 
autophagy levels through eIF2A inhibition. Conventional STAT3 oncogenic activation relies on its 
705 phosphorylation, dimerization, and consequent nuclear translocation. Further experiments 
are therefore needed to determine if the STAT3 dimer releases the PKr kinase, which would then 
become available to phosphorylate eIF2A and induce macroautophagy.
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important role in the response to treat-
ment, either through their expected role 
on survival or through nonconventional 
functions on DNA repair or DNA damage 
signaling.29,38-40 Since autophagy can also 
be considered an adaptation mechanism 
allowing chemotherapy escape, it will 
be interesting to determine if autophagy 
inhibitors can potentiate the effects of the 
various drugs developed to inactivate the 
STAT3 pathway.41 These drugs might also 
be useful to prevent the survival effect of 
this oncogene in response to conventional 
genotoxic treatments. These are important 
issues to address, given the problem of 
tumor resistance in the field of oncology.
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