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Living organisms possess biological clocks that resonate with
environmental cycles in light, temperature, and food availabil-
ity. Recently, circadian oscillations in the redox state of perox-
iredoxin have been described as an additional non-transcrip-
tional timekeeping mechanism. Of note, this redox cycle is
conserved in both prokaryotes and eukaryotes. How the classi-
cal “transcription-translation feedback loop” model and this
redox oscillation are related is still poorly understood. In this
minireview, we describe the most recent evidence pointing to
cross-talk between the circadian clock and the redox status of
the cell.

The integration of biological clocks into cellular physiology
has represented an important evolutionary advantage for mul-
ticellular and unicellular organisms, allowing them to antici-
pate and adapt to cyclical changes in environmental cues such
as light, temperature, and food availability (1). The advantage
conferred by resonating with environmental cycles has been
technically challenging to demonstrate. However, pioneering
experiments have shown that coordination with light/dark
cycles can improve fitness in bacteria, flies, and plants (2–5).
In mammals, the timing system is composed of a series of

biological clocks organized in a hierarchical manner. The main
clock, also known as the “master pacemaker,” resides in the
paired suprachiasmatic nuclei (SCN)2 of the hypothalamus,
which receive and process light signals to achieve synchroniza-
tionwith the external environment. Through the release of hor-
mones and neuropeptides, the SCN coordinate several other
clocks distributed in different tissues and organs. These periph-
eral clocks in turn generate local self-sustained circadian
rhythms (from Latin circa diem, about a day) of physiological
processes to control tissue-specific functions (6–8).
The first insights into the molecular mechanism of cellular

rhythmicity came from relatively recent studies in Drosophila

and Neurospora crassa. These studies showed that rhythmic
oscillations in the expression of clock-controlled genes are gen-
erated by transcription-translation feedback loops (TTFLs) and
that they are necessary to coordinate behavioral rhythmicity (9,
10). Similar timekeeping logic was later described in other
organisms, althoughwith different genes involved and different
levels of complexity in the transcriptional circuits (11, 12). In
mammals, for example, two positive activators, CLOCK (circa-
dian locomotor output cycles kaput) and BMAL1 (brain and
muscle Arnt-like protein 1), initiate transcription of the Peri-
od1/2 (Per1/2), Cryptochrome1/2 (Cry1/2), Ror� (retinoic acid
receptor-related orphan receptor �), and Rev-erb�/� genes.
When the level of expression of PER and CRY proteins reaches
a particular threshold, they translocate into the nucleus and
inhibit the transcriptional activity of the CLOCK-BMAL1 het-
erodimer, thereby blocking their own transcription. An addi-
tional loop is created by the REV-ERB�/� and ROR� proteins,
which instead repress or activate transcription of the Bmal1
gene, respectively (Fig. 1) (13). This classical model based on
transcription has been slightly revisited in light of new data
showing that proteasomal degradation, epigenetic modulation
of gene expression, and post-translational modifications of
mRNA play a key role in keeping rhythmicity (11, 14–16). For
example, the turnover of PER and CRY is controlled by phos-
phorylation-mediated ubiquitination processes (17–21).
Although conserved inmany organisms, the TTFL cannot be

considered as a universal building block for circadian clocks
(11). For instance, the yeast Saccharomyces cerevisiae and the
worm Caenorhabditis elegans show circadian rhythms but do
not express the classical “clock genes” (22–24). Also, the cyano-
bacterium Synechococcus elongatus and the filamentous fungus
N. crassa tend to favor protein phosphorylation as their basic
timing mechanism (25, 26). Very recently, biochemical oscilla-
tions of the redox state of the protein peroxiredoxin (Prx) have
been described as an additional timekeeping mechanism con-
served in both eukaryotes and prokaryotes (12, 27, 28). These
findings have thus revealed an intriguing link between the
redox status of the cell and circadian clocks. We will discuss
what we know about clock-relevant redox control systems and
the reciprocal regulation between the redox state of the cells
and circadian clocks.

Oxidative State and Redox Control Systems

The cellular redox environment is determined by the balance
between the generation of oxidants and free radicals and the
level of reducing agents. The most common oxidants are the
reactive oxygen species (ROS), which are generated by intracel-
lular enzymes during metabolic reactions. Some examples
include superoxide anion (O2

. ), hydroxyl radical (HO�), and
hydrogen peroxide (H2O2). To avoid oxidative damage, cells
have adopted several detoxification strategies. Non-enzymatic
mechanisms involve the synthesis of antioxidant molecules
such as ascorbate, tocopherols (including vitamin E), and reti-
nol (vitamin A). Enzymatic mechanisms include proteins such
as superoxide dismutase, which catalyzes the dismutation of
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superoxide into oxygen and hydrogen peroxide, and catalase,
which mediates the decomposition of hydrogen peroxide to
water and oxygen. Additional redox buffering systems are pro-
vided by oxidize/reduced GSH and oxidized/reduced thiore-
doxin (Trx) (Fig. 2).
GSH is a low molecular weight antioxidant involved in the

reduction of disulfide bonds and in the reduction of hydroper-
oxides by GSH peroxidases. Oxidized GSH (the disulfide
GSSG) is potentially dangerous for the cell (29, 30), but it is
normally reduced to GSH by GSH reductases via an NADPH-
dependent reaction. Disulfide bridges in proteins are also
reduced by glutaredoxins (Grxs), which rely on GSH for their
non-enzymatic regeneration. GSH can also be conjugated to
Cys residues on proteins by GST in a process called glutathio-
nylation, which protects proteins from oxidation (31, 32). Sim-
ilar to Grx, Trx proteins facilitate the reduction of several pro-
teins by cysteine thiol-disulfide exchange. Oxidized Trxs are
eventually reduced by Trx reductases via NADPH-dependent
reactions. Among these antioxidant systems, Prxs have recently
emerged has key players in the control of circadian rhythms.

Prx Cyclical Oxidation as the Prototype for Redox-
regulated Cytosolic Clocks

Prxs are a highly conserved family of antioxidant proteins
classified as class 1-Cys and class 2-Cys depending on the num-
ber of Cys residues involved in catalysis. In their catalytic site,
Prxs contain a “peroxidatic” Cys residue that can be oxidized to
a sulfenic acid (Cys-SOH) by an incoming peroxide (Fig. 2). In
class 2-Cys Prxs after oxidation, this residue reacts with a
“resolving” Cys residue to form an intermolecular (typical and
atypical class 2-Cys) or intramolecular (atypical class 2-Cys)
disulfide bond, which is eventually reduced by Trx. Typical
class 2-Cys Prxs can undergo further oxidation (termed hyper-
oxidation), which generates sulfinic (Cys-SO2H) and sulfonic
(Cys-SO3H) acid forms of the catalytic cysteine (33–35). The

sulfinic acid form is catalytically inactive but can be reactivated
by sulfiredoxin (Srx) through an ATP-dependent reduction
reaction (36). In contrast, the sulfonic acid form is irreversibly
oxidized, and its physiological occurrence is controversial
(37, 38).
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FIGURE 1. Mammalian TTFL. The mammalian clock is sustained by a series of feedback loops involving several genes and the proteins that they encode. The
two positive activators, CLOCK and BMAL1, initiate the transcription of the clock genes Per1/2, Cry1/2, Ror�, and Rev-erb�/�. PER1/2 and CRY1/2 proteins
accumulate, dimerize, and translocate into the nucleus, where they bind to the CLOCK-BMAL1 dimer, thereby inhibiting its transcriptional activity. Eventually,
proteasomal degradation of PER1/2 and CRY1/2 relieves the transcriptional repression on the CLOCK-BMAL1 complex, and the cycle can restart again. An
additional loop involves the nuclear receptors ROR� and REV-ERB�/�, which activate and repress the transcription of Bmal1, respectively. RORE, retinoic acid
receptor-related orphan receptor response element.

FIGURE 2. Redox systems. Shown is a schematic representation of the cellu-
lar redox systems and main antioxidant enzymes. A, GSH-Grx system. B, Trx
system. C, Prx system. substrate-SG, glutathionylated substrate; GR, GSH
reductase; ox., oxidized; red., reduced; TrxR, Trx reductase.
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It has been recently demonstrated that Prxs follow circadian
cycles of oxidation. In a recent study, in fact, the levels of
dimeric Prx-SO2/3H were shown to oscillate with a period of
24 h with peaks of hyperoxidation at 12 h (circadian time) (27).
Strikingly, these oscillations were demonstrated to occur in
RBCs, which do not possess DNA, showing that Prx oscillations
occur even in the absence of gene transcription (27). Oscilla-
tions in Prx have also been found in the small protistOstreococ-
cus tauri, which, contrary to RBCs, possesses an endogenous
clock driven by transcription and translation of recognized
plant clock genes (39). Importantly, oscillations in Prx could be
detected also when this organism was shifted into a dark envi-
ronment, a condition under which gene transcription of
O. tauri is known to stop (28). In addition, when the organism
was brought back to light, the clock did not reset, suggesting
that amechanismmust be in place to keep track of time even in
the absence of gene transcription. These studies therefore show
that Prx redox cycling events could be an importantmechanism
for timekeeping.
Of note, circadian oxidation of Prx has been foundnot only in

eukaryotes (including algae, fungi, flies, worms, and mammals)
but also in archaea and bacteria (12, 24, 27, 28), suggesting that
these oscillations might have been integrated early in evolution
and likely coevolved with differing TTFLs in each organism. A
key unanswered question is what determines Prx oscillations.
Srx, which reduces the inactive sulfinic acid form into the active
sulfenic acid form, might indeed account for these oscillations.
However, some organisms that display oscillations in Prx do
not express Srx homologs (i.e. C. elegans and N. crassa), sug-
gesting that other mechanisms might be in place.
Given the highly conserved redox component of circadian

oscillations, it is an important goal to now understand the rela-
tionship between the classical TTFL and Prx oscillations (12).
Interestingly, when the transcriptional machinery is disrupted
(e.g. in behavioral arrhythmic Drosophila mutants or in
N. crassamutants exhibiting a lengthened period), Prx oscilla-
tions are perturbed in phase, suggesting that gene transcription
is not necessary but is related to cellularmetabolic cycles. Along
the same lines, when the Prx clock system is abolished, as
occurs in mutants of S. elongatus and Arabidopsis thaliana
deficient in well annotated 2-Cys Prx genes, circadian rhythms
of clock genes persist with the same period as in control organ-
isms, but are perturbed in either phase or amplitude (12). Taken
together, these studies show that TTFL andPrx cycles are inter-
twined but potentially autonomous components of the circa-
dian system. These results also raise the possibility that the
redox status of the cell fluctuates and that these oscillations
have critical and as yet incompletely understood biological
consequences.

The Reciprocal Relationship between the Redox State
and Circadian System

Initial hints that redox metabolism might be linked to the
circadian clockwere provided bywork done by Rutter et al. (40)
in which the ratio between oxidized and reduced forms of NAD
and NADP cofactors was shown to regulate the DNA-binding
activity of the CLOCK/NPAS2 (neuronal PAS domain protein
2)-BMAL1 heterodimer. However, these studies were purely

biochemical, based solely on the use of purified recombinant
proteins, and used concentrations of reactants much higher
than is seen physiologically, making their wider interpretation
difficult, especially in an in vivo context. More recently, in vivo
oscillations in the redox state of FAD and NADPH have been
described in organotypic slices of SCN (41). This study demon-
strated that the redox state of SCN oscillates in a self-sustained
fashion and that these oscillations contribute to determining
the excitability of SCN neurons via non-transcriptional regula-
tion of potassium channels. However, the connection between
the transcriptional clock and redox oscillations in this tissue
requires further investigation. Whether redox fluctuations are
an output of circadian rhythmsorwhether they can act as input,
or indeed both, is still under intense investigation.
In favor of amechanistic link between redox fluctuations and

the regulation of gene expression, studies in zebrafish demon-
strated that changes in redox state actively control the expres-
sion of light-dependent genes. Light, which is the key entrain-
ing stimulus in this organism, generates H2O2, which in turn
regulates the expression of the clock genes zCry1 and zPer2.
Interestingly, oscillations in themRNA levels of these genes are
paralleled by antiphasic oscillations in mRNA and the activity
of catalase (42), suggesting that this enzyme is involved in the
control of H2O2-mediated circadian gene expression. Recently,
LdpA (light-dependent period A), a component of the cyano-
bacterial circadian clock, was proposed to act as a redox sensor
and to be used by the clock to adjust the period length (43).
LdpA contains iron-sulfur centers and can sense the redox state
of the cell, which correlates with the amount of light (high light
correlates with a reduced redox state, whereas low light is asso-
ciated with an oxidized redox state). Interestingly, on the basis
of the light conditions, LdpA modulates the levels of CikA and
KaiA, the latter of which is a key component of the central
oscillator (44), thereby affecting the period length. Further-
more, cyanobacteria exposed to high light conditions show
short periods, whereas cyanobacteria exposed to low light con-
ditions display long periods. Finally, the effects of altered ROS
and the circadian clock have also been observed in N. crassa
(45, 46) and in the cyanobacteriumMicrocystis aeruginosa (47),
in which H2O2 has been shown to impact on the daily expres-
sion pattern of clock genes as well as clock-controlled genes,
including those involved in coordinating photosynthesis. These
results clearly show that fluctuations in the redox state of the
cells have an impact on the expression of clock-related genes in
multiple diverse systems.
This scenario is further complicated by the finding that clock

genes can in turn regulate the expression of antioxidant
enzymes, thus providing an important and novel feedback loop
(Fig. 3). For instance, in A. thaliana, the circadian clock coor-
dinates ROShomeostasis andROS-responsive genes, andH2O2
production and scavenging exhibit diurnal rhythms (48).
Importantly, mutations in the core clock regulator CCA1 (cir-
cadian clock-associated 1) or in other components of the TTFL
affect this time of the day specific pattern. In addition, it was
observed that ROS can feed back to affect the transcription of
clock-regulated genes. The importance of this cross-talk has
been underlined in Drosophila melanogaster, in which the per
gene has been shown to be essential for maintaining antioxi-
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dant defense. Indeed, flies exposed to H2O2 show daily mortal-
ity rhythms and are more susceptible during the late light
phase. Mutation in the per gene abolishes this time of the day
sensitivity and renders flies more susceptible to oxidative stress
in general (49). Bmal1�/� mice show higher accumulation of
ROS in several tissues compared with wild-type animals. This
impairment in ROShomeostasis correlateswith early aging and
age-dependent pathologies. These data again suggest a connec-
tion between the circadian clock and redox homeostasis (50).
More recently, the circadian system has been shown to also
modulate the pathways involved in production and utilization
ofGSH (51).Wild-typeCanton S flies showdaily rhythms in the
mRNA levels of glutamate-cysteine ligase, the rate-limiting
enzyme in GSH biosynthesis, and GSTD1, which utilizes GSH
in cellular detoxification. Importantly, mutants lacking the
clock genes per and cyc show no rhythms in the expression of
these proteins, underlying the link between GSH metabolism
and the circadian system.

Compartmentalization of Oxidative State and Redox
Signaling: Future Perspectives

An emerging feature of redox signaling is its spatial and tem-
poral compartmentalization. Recent developments highlight
that different ROS signaling and redox buffering systems are
spatially segregated and can have unique compartmentalized
functions (Fig. 4) (52–55). For example, pools ofmitochondrial,
cytosolic, and nuclear GSH are separated within cells, and the
trafficking of GSH, from the cytosol to the mitochondrial
intramembrane space, is tightly regulated by porins in their
membranes (56). Importantly, the maintenance of localized
redox states is critical for cell function. Mitochondria-specific
depletion of GSHmakesmitochondriamore sensitive to oxida-
tive damage (57), whereas overexpression of the mitochondrial
glutaredoxin Grx2 protects against oxidative stress to prevent
apoptosis (58). The nuclear redox state is similarly pivotal for

the activation of several redox-regulated transcription factors
such as CLOCK and NPAS2 (40), NF-�B (59), Nrf2 (nuclear
factor (erythroid-derived 2)-like 2) (60), and Rev-erb� (61).

Although evidence suggests that ROS are bona fide signaling
molecules, some skepticism has been raised because of their
high reactivity and low substrate specificity. However, there is
evidence of tight coupling of ROS generators to the activity of
antioxidant buffering systems and to specific targets, which
would explain how the specificity of ROS signaling is brought
about (62–64). In the adrenal gland, for example, H2O2 is
involved in a feedback control loop to regulate corticosteroid
synthesis (65). In the last phase of adrenocorticotropic hor-
mone-induced steroidogenesis, cholesterol is imported in
mitochondria, where cytochrome P450 enzymes catalyze the
oxidative cleavage of its side chain. As a byproduct of their
activity, cytochromes generate H2O2, which is eliminated by
Prx3. During the catalytic cycle, Prx3 can occasionally be inac-
tivated by hyperoxidation. Its activity is normally reverted by
Srx. However, when corticosteroid synthesis increases, so does
H2O2, and Srx activity is no longer sufficient to reduce and
reactivate Prx3. This causes a further increase in H2O2 levels
and the overflow of H2O2 in the cytosol. This last event triggers
a signaling cascade involving p38 MAPK, which eventually
inhibits corticosteroid synthesis. Of note, the levels of inacti-
vated Prx3, activated p38 MAPK, and Srx exhibit circadian
oscillations. In addition, tissue-specific ablation of Srx results in
suppression of the adrenal circadian rhythms of corticosterone
production, suggesting that Prx hyperoxidation, corticosteroid
synthesis, and the circadian clock are interconnected.
Interestingly, oxidative signals can cause selective oxidation

of specific redox couples. For example, EGF-mediated ROS sig-
naling selectively oxidizes the cytosolic pool of Trx1 but not the
mitochondrial pool of Trx2 (Fig. 4) (66, 67), suggesting that
these pools are independently regulated. Furthermore, one of
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FIGURE 3. Cross-talk between the circadian clock and redox homeostasis. The circadian clock and the redox state of the cell are interconnected. The
expression level and activity of antioxidant enzymes determine the levels of intracellular ROS, which have been shown to impinge on the expression pattern
of clock genes. In addition, some antioxidant enzymes have been shown to follow a circadian pattern of expression, suggesting that the clock system can
regulate redox homeostasis.
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the major transcription factors activated by oxidative stress,
Nrf2 can be differentially activated by redox signals: its translo-
cation is promoted by a redox switch of Keap1 (Kelch-like
ECH-associated protein 1), which is controlled by GSH,
whereas its nuclear activity is under the control of Trx1 (Fig. 4)
(60).
It is tempting to speculate that different redox systems are

strategically located within the cell not only to protect sub-
strates from excessive oxidation but also to regulate specific
signaling pathways. In addition, different redox couples might
act in concert to specifically modulate the response to ROS
signals in proximity of key redox-sensitive proteins. Determin-
ing how this compartmentalized nature of cellular redox sys-
tems links to the clockwork will be critical to fully understand
how the cell enmasse keeps daily time.We believe that this will
be an exciting area of investigation in the next few years.

Conclusions

Substantial evidence highlights the capability of living organ-
isms to resonate with environmental cycles, which confers an
evolutionary advantage because perturbing the clockwork
reduces fitness. However, the biological mechanisms underly-
ing the regulation of circadian rhythms are still elusive in the
light of new insights coming from redox biology. In the post-
genomic era, the dominance of gene regulation at the heart of
circadian rhythms needs to be reconciled with mounting evi-
dence demonstrating the importance of redox cycles and post-
transcriptional/post-translational modifications (68).
It now appears that control of ROS signaling is deeply inter-

twined in the circadian clock system. Disruption of circadian
rhythms in humans has been linked to several diseases such as
breast cancer, obesity, diabetes, sleep disorders, and neurode-
generative diseases (69). Given the role of ROS in humanpatho-
physiology, it is tempting to speculate that some of the pathol-
ogies associated with the deregulation of clock signaling are
partially caused by alteration in redox signaling and possibly
their compartmentalized nature. Thus, we propose that the

understanding of how localized ROS production affects the
activity of oscillators within cells will have important conse-
quences for the development of dedicated therapies aimed at
restoring aberrant signaling.
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