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Background: Increased PP2A levels have been linked to autoimmunity in SLE patients and transgenic mice.
Results: In T cells, PP2A overexpression increases the transcription of proinflammatory genes and facilitates chromatin acces-
sibility at the Il17 locus.
Conclusion: Increased levels of PP2A promote the inflammatory capacity of T cells.
Significance: PP2A dysregulation may contribute to SLE by directly affecting lymphocyte gene expression.

Protein phosphatase 2A (PP2A) is a heterotrimeric serine/
threonine phosphatase involved in essential cellular functions.
T cells from patients with systemic lupus erythematosus (SLE)
express high levels of the catalytic subunit of PP2A (PP2Ac). A
mouse overexpressing PP2Ac in T cells develops glomerulone-
phritis in an IL-17-dependent manner. Here, using microarray
analyses, we demonstrate that increased expression of PP2Ac
grants T cells the capacity to produce an array of proinflamma-
tory effector molecules. Because IL-17 is important in the
expression of glomerulonephritis, we studied the mechanism
through which PP2Ac dysregulation facilitates its production.
Wereport thatPP2Ac is involved in the regulationof the Il17 locus
by enhancing histone 3 acetylation through a mechanism that
involves activation of interferon regulatory factor 4. Increased his-
tone 3 acetylation of the Il17 locus is shared between T cells of
PP2Ac transgenicmice andpatientswithSLE.Wepropose that, by
promoting the inflammatory capacity of T cells, PP2Ac dysregula-
tion contributes to the pathogenesis of SLE.

Protein phosphatase 2A (PP2A)4 is an evolutionarily con-
served and ubiquitously expressed serine/threonine phospha-
tase (1). Its assembly requires a scaffold, a catalytic subunit, and
a regulatory subunit (2, 3). The scaffold (subunit A) and cata-
lytic (subunit C) proteins form a heterodimeric core that can
associate with various regulatory (B) subunits thought to deter-
mine the substrate specificity of the holoenzyme (4). PP2A reg-

ulates a large number of cellular processes, including cell cycle
and apoptosis (5–7), and modulates several signaling cascades,
including the PI3K-AKT-mammalian target of rapamycin (8,
9),MAPkinase (10), andNF-�B (11) pathways. Defects in PP2A
expression and/or function have been linked to cancer (12),
neurodegenerative diseases (13, 14), and systemic lupus erythe-
matosus (SLE) (15, 7).
Patients with SLE develop a chronic autoimmune response

that leads to multiorgan inflammatory damage (16). The
immune response in SLE is affected at several levels, but evi-
dence from human patients and lupus-prone mice implicate T
cells as a key element in the development of disease and in the
instigation of inflammation (17). T cells from patients with SLE
exhibit a number of phenotypic alterations. However, it has
been difficult to attribute a pathogenic role to these defects.
Levels of the catalytic subunit of PP2A (PP2Ac) are higher in T
cells from SLE patients than in T cells from healthy controls
(15), and this has been linked to T cell defects that include abnor-
mal cytokine production (15).We demonstrated previously that a
mouse overexpressing PP2Ac in a T cell-specific manner devel-
oped florid glomerulonephritis in response to antiglomerular
basementmembrane antibodies, a process that was dependent on
IL-17 (18). The clinical relevance of these findings is further signi-
fied by the fact that T cells from patients with SLE produce large
amounts of IL-17 and infiltrate the kidneys (19, 20).
To understand how dysregulation of PP2A grants T cells an

increased capacity to amplify autoimmune pathology, we per-
formed unbiased gene expression profile analyses. We present
evidence that increased levels of PP2Ac induce a broad proin-
flammatory program that includes, but is not limited to, unre-
strained IL-17 production. In addition, we reveal that aberrant
chromatin remodeling, associated with increased activity and
DNAbinding of interferon regulatory factor 4 (IRF4), underlies
the heightened capacity of PP2Ac transgenic T cells to produce
IL-17 in response to TCR stimulation in a manner that resem-
bles observations made previously in T cells from patients with
SLE (21, 22).

EXPERIMENTAL PROCEDURES

Mice—The PP2Ac transgenic mice were generated as
described previously (18). Mice were housed in specific patho-
gen-free conditions in accordance with the Beth Israel Deacon-
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ess Medical Center Institutional Animal Care and Use Com-
mittee and bred with C57BL/6J (The Jackson Laboratory)mice.
Non-transgenic littermates were used as controls. Mice used in
experiments were between 8 and 12 weeks old.
T Cell Isolation and Stimulation—TCR-��� CD4� CD25�

CD62L� naïve T cells were isolated from spleens and periph-
eral lymph nodes (axillary and inguinal) of transgenic and
control mice by magnetic cell sorting (CD4� CD62L� T cell iso-
lation kit II, Miltenyi Biotec). Post-sorting cell purity was �
95%. Cells were cultured in RPMI 1640 supplementedwith 10%
FCS and antibiotics. When indicated, serum-free medium was
used (X-vivo 10, Lonza). T cells were stimulated with plate-
bound goat anti-hamster antibodies (MP Biomedicals) and sol-
uble anti-CD3 (0.25�g/ml, clone no. 145-2C11, Biolegend) and
anti-CD28 (0.5 �g/ml, clone no. 37.51, Biolegend) antibodies.
For T cell differentiation studies, cells were cultured during 4
days in the presence of the following cytokines that were
replenished every 48 h: Th0, IL-2 (100 units/ml); Th1, IL-12 (10
ng/ml), and IL-2 (100 units/ml); and Th17, IL-6 (25 ng/ml),
TGF-� (2.5 ng/ml), and IL-23 (10 ng/ml).
Microarray Analyses—Naïve CD4 T cells (CD3�CD4�CD25�

CD62L�) from six transgenic and six wild-type mice were
sorted in a FACSAria II (BD Biosciences) (� 98% purity). Cells
were lysed directly or after stimulation with anti-CD3 and anti-
CD28 for 6 or 24 h. RNA was labeled and hybridized to
Affymetrix Mouse Gene 1.0 ST microarrays. Raw data were
background-corrected and normalized using RMAExpress.
Data were analyzed with R (23). Functional annotation cluster-
ing was performed using the Database for Annotation, Visual-
ization, and Integrated Discovery (DAVID). False discovery
rate control was performed using the Benjamin correction (24,
25). p � 0.001 was considered significant in this analysis.
RNA Isolation and Real-time PCR—RNA was isolated using

TRIzol (Invitrogen). cDNA was produced from 500 ng of RNA
(reverse transcription system, Promega). Real-time PCR was
performed using SYBR Green (LightCycler 480 SYBR Green I
Master, Roche). Primer sequences and amplification condi-
tions are available upon request.
Antibodies and Reagents—The following antibodies were

used for Western blot and/or ChIP experiments: anti-PP2A C
(clone no. 1D6, Millipore), anti-Stat3 (clone no. 124H6, Cell
Signaling Technology), anti-phospho-Stat3 (Tyr-705, catalog
no. 9131, Cell Signaling Technology), anti-H3K4me3 (catalog
no. ab8580, Abcam), anti-H3K9me3 (catalog no. ab8898,
Abcam), anti-H3K27me3 (catalog no. 07-449, Millipore), anti-
acetyl-H3 (catalog no. 06-599, Millipore), and anti-IRF4 (cata-
log no. sc-6059 X, Santa Cruz Biotechnology).
Western Blot Analysis—Naïve CD4 T cells were lysed in

radioimmune precipitation assay buffer. Cell lysates were sep-
arated in either conventional acrylamide gels or in SuperSep
Phos-tag (Wako Pure Chemical Industries) acrylamide gels to
retard the migration of phosphorylated proteins. Proteins were
transferred to a PVDF membrane and blotted with the indi-
cated antibodies.
ROCK Activity Quantification—Activated naïve CD4 T cells

were lysed in radioimmune precipitation assay buffer. ROCK
kinase activity was measured in cell lysates using Rho kinase

(ROCK) activity assay according to the instructions of theman-
ufacturer (Millipore).
Chromatin Immunoprecipitation—The MAGnify ChIP sys-

tem (Invitrogen) was used following the instructions of the
manufacturer. Briefly, between 1 and 3million cells were cross-
linked with 1% formaldehyde for 10 min at 37 °C. The reaction
was stopped with glycine for 5 min, and the samples were lysed
and sonicated to obtain 200- to 500-bp fragments. Immunopre-
cipitation was performed with the indicated antibodies and
protein A/G Dynabeads (Invitrogen). Cross-linking was
reversed, and DNA was eluted and purified using DNA puri-
fication magnetic beads (Invitrogen). Enrichment of specific
DNA sequences was quantified by real-time PCR and nor-
malized against the input.
Statistical Analyses—Student’s two-tailed t tests and Mann-

WhitneyU tests were used. p� 0.05was considered significant.
Results are expressed as the mean � S.E. unless noted
otherwise.

RESULTS

Increased PP2Ac Levels Skew T Cell Gene Expression toward
Inflammation—To investigate whether PP2Ac overexpression
modifies the transcriptional profile of CD4 T cells, we isolated
naïve CD4 cells from PP2Ac transgenic mice and WT litter-
mates and performed microarray analyses in untreated and
stimulated cells for 6 and 24 h (Fig. 1). PP2Ac overexpression
affected a relatively small number of genes (n � 130), a great
majority of which were up-regulated in the transgenic com-
paredwith theWTCD4Tcells (Fig. 1A). Todeterminewhether
the set of genes up-regulated by PP2Ac was enriched in mole-
cules associated with particular biological functions, we per-
formed a functional gene clustering analysis that yielded 89
categories of biological processes. After the p value was
adjusted by the Benjamin correction, only seven biological pro-
cesses remained associated with the PP2Ac gene set in a statis-
tically significant manner (p � 0.001) (Fig. 1B). The three most
significant associations were with immune response (p� 4.9�
10�17), defense response (p � 3.7 � 10�13), and inflammatory
response (p � 1.2 � 10�11). Of the 124 genes up-regulated in
the PP2Ac transgenic CD4 T cells, 25 (�1 of 5) were found
higher in all conditions and 58 (�1 of 2) only in activated cells
(data not shown). As predicted by the functional clustering
analysis, the latter encoded primarily for immune response
effector molecules, including cytokines and chemokines
(Fig. 1C).
These results reveal that even though PP2Ac is known to

control a large variety of fundamental cellular functions, such as
cell cycle and apoptosis (1), its overexpression in T cells facili-
tates the transcription of proinflammatory genes.
PP2Ac Allows Rapid IL-17 Transcription Independently of

Known Th17-related Factors—In a previous report, we showed
that the presence of increased PP2Ac levels in T cells exacer-
bates autoimmune glomerulonephritis in an IL-17-dependent
manner (18). Because the gene expression data indicated that
transcription of molecules functionally related to IL-17 was
increased in the transgenic T cells, including Il17a, Il17f, and
Il1a (Fig. 1), we chose to analyze the mechanisms through
which increased PP2Ac facilitated Il17 transcription.

PP2A Grants T Cells Inflammatory Capacity
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For this purpose, we performed a time course experiment to
determine the kinetics of transcription of Il17a in the PP2Ac
transgenicmice.As shown in Fig. 2A, ll17amRNAwas detected
in transgenic mice as soon as 3 h after CD3/CD28 stimulation,
and IL-17 levels reached a plateau at 6 h. In sharp contrast, T
cells fromWT mice produced no detectable amounts of IL-17
during the first 24 h after activation.
Transcription of IL-17 in CD4 T cells is restricted to acti-

vated Th17 cells (26). This specificity is achieved by epigenetic

control of the Il17 locus that is normally inaccessible to tran-
scription factors in naïve cells (27). Remodeling of chromatin at
the Il17 locus is driven by the combined action of TGF-� and
inflammatory cytokines, including IL-1�, IL-6, and IL-23 (28–
30), and depends on the presence of certain lineage-determin-
ing transcription factors, such as retinoic acid receptor-related
orphan receptor � (ROR-�t) (31) and signal transducer and
activator of transcription 3 (STAT3) (32–35). In addition, other
transcription factors regulate the Th17 program. These include
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IRF4 (36, 37), aryl-hydrocarbon receptor (Ahr) (38, 39), runt-
related transcription factor 1 (Runx1) (40), B-cell-activating
transcription factor (Batf) (41), and I�B� (42).
We found no differences in the expression values of these

Th17-related transcription factors between transgenic and
control mice in the microarray analyses. In fact, the abundance
of their transcripts was not modified at the early time points
analyzed (6 and 24 h), with the exception of Irf4 whose tran-
scription was strongly induced by activation in both WT and
transgenic mice (Fig. 2B). Levels of these factors were also ana-
lyzed with quantitative PCR, and the absence of significant dif-
ferences was confirmed (Fig. 2C).
The ability of STAT3 to act as a Th17-inducing factor is

controlled by the phosphorylation of its tyrosine residue 705
(35). To rule out the possibility that differential phosphoryla-
tion of STAT3 facilitated IL-17 production in naïve CD4T cells
from transgenic mice, we analyzed Tyr-705 STAT3 phosphor-
ylation induced by IL-6 and by TCR activation. IL-6-induced
pSTAT3was not different in transgenic andWTmice, suggest-
ing that high levels of cellular PP2Ac do not facilitate cytokine-
induced STAT3 phosphorylation (Fig. 2D). In time course
experiments of TCR activation, STAT3 phosphorylation was
only detected at late time points and was not different in trans-

genic and WT cells (Fig. 2E), suggesting that pSTAT3 was not
involved in the early IL-17 production observed in transgenic
mice. Taken together, these results indicate that the overex-
pression of PP2Ac allows rapid transcription of Il17a upon
TCR stimulation without affecting the induction of Th17-asso-
ciated transcription factors.
Increased PP2Ac Levels Allow Non-Th17 Cells to Produce

IL-17—To determine whether PP2Ac overexpression facili-
tated the differentiation of CD4 T cells into the Th17 helper
subset, we stimulated naïve CD4 T cells from WT and trans-
genic mice in non-polarizing (Th0) and Th17-polarizing con-
ditions for 5 days.At the endof theTh0 stimulation period, cells
from transgenicmice produced�30-foldmore Il17a (p� 0.03)
and �15-fold more Il17f (p � 0.05) than WT cells. Transcrip-
tion of Rorc was modestly increased in transgenic cells (�3-
fold, p � 0.03), whereas abundance of Il21 did not differ (Fig.
3A).When Th17 differentiation was induced, the differences in
expression of the analyzed genes were minimized as WT cells
acquired the Th17 genetic profile.
To determine whether high levels of PP2Ac affected other

effector T cell subsets, we stimulated naïve CD4 T cells under
Th1- or Th17-polarizing conditions. After 5 days, the produc-
tion of the signature cytokines IFN-� and IL-17Awas analyzed.
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As shown in Fig. 3B, production of IFN-� was not different in
cells fromWT and transgenic mice, indicating that under Th1
or Th17 polarization, the transcriptional regulation of this
cytokine is not altered. In contrast, similar to what we observed
in non-polarized cells (Th0), transcription of Il17a was signifi-
cantly increased (p� 0.02) in the Th1-differentiated transgenic
cells, indicating that the inhibitory effectmediated byTh1 cyto-
kines (i.e. IFN-�) on IL-17 production was incomplete in the
presence of high levels of PP2Ac.
PP2Ac IncreasesChromatinAccessibility at the Il17 Locus—T

cells acquire the capacity to produce signature effector cyto-
kines during helper subset differentiation by epigenetic modi-
fications of chromatin at the corresponding cytokine loci (27).
This, along with the fact that Il17a and Il17f, both affected by
high PP2Ac levels, are encoded in the same locus and share
common regulatory elements (43), suggested that the effect of
PP2Ac could be exerted by chromatin remodeling. Histones
undergo posttranslational modifications that determine the
accessibility and, thus, the transcriptional activity of neighbor-
ing genes (44). For this reason, we determined the levels of
permissive and repressive histone modifications known to be
important for the regulation of the Il17 locus (43, 45). To this

end, ChIP was performed in resting and stimulated naïve CD4
T cells using antibodies that bind specifically to different his-
tone 3 (H3) posttranslational modifications. H3 configuration
was analyzed at several conserved non-coding sequences
throughout the Il17 locus (43) and also within the Il17a and
Il17f genes (Fig. 4). As shown in Fig. 4B, an increase in H3
acetylation (a permissive mark) was observed throughout the
Il17 locus, particularly in the proximal promoter region (PrPr)
of both Il17a and Il17f. This effect was already present in
unstimulated cells and increased after stimulation. In sharp
contrast, other H3 modifications, including trimethylation of
lysines 9 (H3K9, repressive), 4 (H3K4, permissive), and 27
(H3K27, repressive) were not different in WT and transgenic
cells regardless of the stimulation status of the cells (Fig. 4B).
Together, these results indicate that high levels of PP2Ac are

associated with increased accessibility to the Il17 locus enabled
by constitutively high local H3 acetylation. This is similar to
what has been observed in T cells from patients with SLE that
have an increased abundance of PP2Ac (15), produce high
amounts of IL-17 upon activation, and have higher levels of H3
acetylation at the IL17 locus (21).
H3 Acetylation at the Il17 Locus in PP2Ac Transgenic Mice

Does Not Require Th17-inducing Cytokines—The differentia-
tion of Th17 cells requires chromatin remodeling at the loci of
specific effector genes, such as Il17a and Il17f. These changes
eliminate epigenetic restrictions and allow rapid transcription
of key cytokines upon T cell activation by increasing the acces-
sibility of the loci to transcription factors (46–48). During the
initial period of Th17 differentiation, permissive chromatin
changes occur at the Rorc locus that will facilitate the produc-
tion of this signature transcription factor (31). At later time
points, opening of the Il17 locus occurs. Because naïve CD4 T
cells from PP2Ac transgenic mice were able to produce high
levels of IL-17A and IL-17F during the first 24 h following TCR
activation alone (Fig. 2A) (18), we hypothesized that increased
levels of PP2Ac could induce epigenetic changes similar to
those observed during Th17 differentiation. For this purpose,
we stimulated naïve CD4 T cells in the absence or presence of
Th17-polarizing cytokines (TGF-� and IL-6) and, after 18 h,
analyzed the acetylation and Lys-4 trimethylation of H3 in the
Rorc and Il17 loci. InWTmice, addition of TGF-� and IL-6 was
associated with a significant increase in acetylated and Lys-4
trimethylated H3 at the Rorc promoter region (Fig. 5A). As pre-
dicted by the normal ROR-�t levels (Fig. 2), PP2Ac mice
showed a normal remodeling pattern at theRorc locus (Fig. 5A).
As expected in this early time point, no H3 modification was
observed in the Il17 locus ofWTmice even when the cells were
stimulated in the presence of TGF-� and IL-6 (Fig. 5B). In con-
cordance with our previous findings, overexpression of PP2Ac
was associatedwith a robust enrichment of acetylatedH3 in the
absence of Th17-inducing cytokines. Moreover, addition of
TGF-� and IL-6 to transgenic cells had a negligible effect on the
already acetylated H3 of the Il17a promoter region (Fig. 5B).
These results indicate that increased PP2Ac levels cause H3

acetylation in a manner independent of Th17-inducing cyto-
kines. Moreover, they suggest that high levels of PP2Ac are
specifically associated with increased H3 acetylation.
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PP2Ac Transgenic CD4 T Cells Exhibit Increased IRF4
Recruitment to the Il17 Locus—IRF4 is one of the earliest tran-
scription factors recruited to the Il17 locus during Th17 cell
differentiation and has been shown to mediate the local initial
chromatin remodeling events (46, 47). IRF4 activity is post-
translationally regulated by Rho kinases (ROCK) through ser-
ine phosphorylation (49). Abnormally high activity of ROCK
has been linked to aberrant T cell phenotypes in patients with
SLE (22, 50). To determine whether IRF4 facilitated IL-17 pro-
duction in PP2Ac transgenic mice, we performed ChIP assays
in unstimulated and anti-CD3/CD28-stimulated naïve CD4 T
cells. As shown in Fig. 6A, IRF4 recruitment at the Il17a locus
was enriched in PP2Ac transgenic T cells both before and after
TCR stimulation. This was associated with increased levels of
phosphorylated IRF4 in PP2Ac transgenic T cells, as shown in
Fig. 6B using an acrylamide gel where phosphorylated proteins
migrate more slowly. As a control, we show that PP2Ac phos-
phorylation did not differ between WT and transgenic T cells
and was unaffected by CD3/CD28 stimulation. Finally, ROCK

kinase activity was significantly higher in activated PP2Ac
transgenic T cells compared with their WT counterparts (Fig.
6C). Taken together, our results indicate that increased levels of
PP2Ac in T cells are associated with enhanced ROCK activity
and subsequent IRF4 activation that binds to the Il17a and pro-
motes its transcription.

DISCUSSION

In this report, we show that dysregulation of the serine/thre-
onine phosphatase PP2A induces the expression of a proin-
flammatory genetic profile in T cells characterized by increased
transcription of chemokines and cytokines upon TCR activa-
tion.We also demonstrate that increased levels of PP2Acmod-
ify the epigenetic landscape of the Il17 locus, allowing unre-
stricted transcription of Il17a and Il17f. This phenomenon is
explained by heightened IRF4 activity that is associated with
increased H3 acetylation of the Il17 locus that is poised to
undergo rapid transcription following T cell activation.

Il17a

- 1.5 kb
PrPr

+ 2.6 kb

32 4 5 6 Il17f

+ 3.5 kb
PrPr

- 1.7 kb

7 8

Conserved non-coding sequences (CNS)

A

H3 acetylation
C

N
S2

-1
.5

 k
b

Pr
Pr

+2
.6

 k
b

C
N

S3

C
N

S6

+3
.5

 k
b

Pr
Pr

-1
.7

 k
b

C
N

S7

0

1

2

3

4

R
el

at
iv

e 
bi

nd
in

g 
(T

g:
W

T)

B

Il17a Il17f

H3K9 trimethylation

C
N

S2

-1
.5

 k
b

Pr
Pr

+2
.6

 k
b

C
N

S3

C
N

S6

+3
.5

 k
b

Pr
Pr

-1
.7

 k
b

C
N

S7

0

1

2

3

4

R
el

at
iv

e 
bi

nd
in

g 
(T

g:
W

T)

H3K4 trimethylation

C
N

S2

Il1
7a

 P
rP

r

C
N

S3

C
N

S4

C
N

S5

C
N

S6

C
N

S7

C
N

S8

0

1

2

3

4

R
el

at
iv

e 
bi

nd
in

g 
(T

g:
W

T)

Il17a Il17f

H3K27 trimethylation
C

N
S2

Il1
7a

pr
pr

C
N

S3

C
N

S4

C
N

S5

C
N

S6

C
N

S7

C
N

S8

0

1

2

3

4

R
el

at
iv

e 
bi

nd
in

g 
(T

g:
W

T)

Unstimulated αCD3 + αCD28

FIGURE 4. PP2Ac increases chromatin accessibility at the Il17 locus. A, the mouse Il17 locus is depicted. The conserved non-coding sequences as well as the
sites within the Il17a and Il17f genes that were amplified during the ChIP experiments are indicated. B, naïve CD4 T cells were stimulated and fixed, and ChIP
was performed for acetylated H3, H3K9me3, H3K4me3, and H3K27me3. Shown is relative binding (PP2Ac:WT ratio) in resting (blue) or stimulated (red) cells.
Data were normalized to the corresponding input DNA and are representative of three or four independent experiments, each with � 3 mice/group. PrPr,
proximal promoter.

PP2A Grants T Cells Inflammatory Capacity

26780 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 288 • NUMBER 37 • SEPTEMBER 13, 2013



SLE is a complex inflammatory disease that develops in
genetically predisposed individuals.Multiple immune andnon-
immune factors synergize to promote a chronic autoimmune
response directed toward a multitude of self-antigens. This
process manifests as target organ disease when products of the
autoimmune response, such as activated T cells and autoanti-
bodies, cause inflammation. Severalmolecules have been linked
to SLE either by genetic associations or functional studies (16).
The complexity of the disease has hindered the efforts to iden-
tify whichmolecules are causal and how they impact pathology.
We have established previously that PP2Ac dysregulation has
an independent role in the expression of lupus-related pathol-
ogy. By studying a mouse that has increased levels of this phos-
phatase in T cells in the absence of other autoimmunity-asso-
ciated abnormalities, we were able to demonstrate in vivo that
high levels of PP2Ac inT cells facilitate autoimmune inflamma-
tion in an IL-17-dependent manner (18). Here we have shown
that PP2Ac dysregulation shifts the T cell gene expression pat-
tern toward a proinflammatory phenotype. The study of PP2Ac
expression solely in T cells reveals a mechanism through which
a single molecular abnormality contributes to autoimmune
pathology. It also defines in a reductionist manner the relative
contribution of PP2Ac overexpression to the development of
SLE.
Healthy T cell function relies on the capacity of the T cell to

interpret external cues and mount adequate responses. These
are shaped through the modulation of gene expression and are
imprinted through epigenetic changes. This concept is illus-
trated by the inability of naïve T cells to produce effector cyto-
kines, such as IFN-�, IL-4, or IL-17, that is overcome when

access to the respective loci is granted during activation and
differentiation in the presence of lineage-determining cyto-
kines (51, 52). Alterations in epigenetic regulatory mechanisms
are well described in T cells from patients with SLE and have
been attributed a pathological role (53, 54). The fact that the
aberrant epigenetic changes associated with high PP2Ac levels
are present in a constitutive manner could affect, importantly,
the response of theT cell to antigen or other external cues.Here
we have associated the rapid production of inflammatory cyto-
kines by naïve T cells as well as the incomplete suppression of
IL-17 production during Th1 differentiation with high levels of
PP2Ac. This phenotypic anomalymay be relevant in the setting
of SLE, where PP2Ac is overexpressed in T cells (15) and pro-
duction of large amounts of IL-17 is observedupon activation in
the absence of classical IL-17-inducing factors (19, 22, 55–57).
Moreover, abnormally high levels of H3 acetylation in the IL17
locus have been associated with increased IL-17 production in
T cells from patients with SLE (21).
Rho kinases have been associated to lupus (22) through their

capacity to regulate cytoskeletal proteins (50) and to activate
the transcription factor IRF4 (49). The importance of IRF4 in
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the pathogenesis of lupus is supported by work performed
in animal models where IRF4 deficiency (58) or its pharma-
cological inhibition (59) abrogate lupus pathology, whereas
increased function of IRF4 causes autoimmunity (60, 49). Our
results suggest that PP2Ac dysregulation may contribute to
IRF4 increased activity by promoting ROCK activation. IRF4
colocalizes with histone acetyltransferases such as p300 to
modulate chromatin remodeling at the Il17 locus (46). We
believe that activated IRF4 may be responsible for the recruit-
ment of histone acetyltransferases to the Il17 locus in the
PP2Ac transgenic mice (Fig. 7).
PP2A regulates a large number of cellular processes (1).

However, dysregulation of PP2Ac mainly affected immune
response genes, as shown in the functional clustering analysis.
This may reflect the fact that in T cells, the regulation of basic
cellular processes, including cell cycle andmetabolism, are inti-
mately involved in determining T cell effector functions (61–
64). PP2A has been implicated in the regulation of gene expres-
sion through various mechanisms, including direct association
with chromatin remodeling complexes (65–67). However, we
could not detect the presence of PP2Ac on the Il17 locus (data
not shown). We demonstrate, though, a novel pathway by
which PP2Ac promotes the transcription of Il17 that depends
on IRF4. This mechanism is probably not responsible for the
whole spectrum of gene transcriptional effects because most of
the genes affected by PP2Ac are not known to be regulated by
IRF4 (47, 68). Whether PP2Ac overexpression induces the rest
of the observed proinflammatory changes by modifying funda-
mental evolutionary conserved cellular processes or directly by
its association to molecular complexes that regulate gene
expression will be the focus of future work.
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