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Abstract
One way to enhance therapeutic development is through the identification and development of
evaluative tools such as biomarkers. This review focuses on putative diagnostic,
pharmacodynamic, and predictive biomarkers for smoking cessation. These types of biomarkers
may be used to more accurately diagnose a disease, personalize treatment, identify novel targets
for drug discovery, and enhance the efficiency of drug development. Promising biomarkers are
presented across a range of approaches including metabolism, genetics, and neuroimaging. A
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preclinical viewpoint is also offered, as are analytical considerations and a regulatory perspective
summarizing a pathway toward biomarker qualification.

Tobacco remains the leading preventable cause of death worldwide. Up to one-half of
regular tobacco users will eventually die of a tobacco-related disease. Globally, smoking
kills more than 5 million people each year and is a risk factor for six of the eight leading
causes of death.1 Domestically, smoking takes the lives of more than 440,000 individuals
each year and is the leading cause of premature death.2 It is estimated to cost the United
States more than $200 billion each year in health-care and other related costs, such as
diminished worker productivity. Whereas preventive and regulatory strategies, including
harm warnings and product taxation, have significantly decreased smoking incidence and
prevalence over the past 50 years, smoking prevalence has remained close to 20% over the
past decade.3 In 2009 alone, there were more than 45 million active smokers, or
approximately one of every five US adults, 70% of whom said they wanted to quit.4 Several
approved drug products are available to aid in smoking cessation, including bupropion
(Zyban), varenicline (Chantix), and various types of nicotine-replacement therapy (NRT);
however, these treatments confer only a two- to threefold increase in quit-success rates over
placebo, and only ~15–20% of treatment-seeking smokers are able to remain abstinent after
1 year.5,6 is suggests that more effective antismoking treatments are needed to reduce the
lingering prevalence of smoking.

In general, the development of safe and effective medications for indications such as
nicotine dependence poses significant challenges. Less than 7% of central nervous system
(CNS) drug candidates have reached the market in the past decade.7 As such, there is a need
to enhance the decision-making efficiency by which potential therapeutic options can be
more easily translated to the marketplace. One of the most important ways to enhance drug
development processes is via the identification and qualification of novel evaluative tools
such as biomarkers. A biomarker has been defined as “a characteristic that is objectively
measured…as an indicator of normal biological processes, pathogenic processes, or
biological responses to a therapeutic intervention.”8 Biomarkers in particular are well suited
for “high-risk” translational areas involving mechanistically heterogeneous diseases7—
nicotine dependence being a prime example.

Biomarkers are often identified from a mechanistic understanding of the disease
pathophysiology and observed correlations with a particular clinical outcome. the Institute
of Medicine proposes a three-part iterative framework for the development of biomarkers,
including the following (Figure 1):

1. Analytical validation (i.e., is the biomarker able to be accurately, precisely, and
reliably measured?)

2. Qualification (i.e., assessment of available evidence on associations between the
biomarker and disease states)

3. Utilization (i.e., is there adequate evidence to support applying the biomarker for a
specific use?)

The US Food and Drug Administration (FDA) has established a process for biomarker
development and qualification in the Center for Drug Evaluation and Research that differs
from that recommended by the Institute of Medicine and is applicable to any use of
biomarkers in the drug development process. In the FDA framework, the biomarker is
qualified for a specific “context of use”. A context of use is defined as a “comprehensive
and clear statement that describes the manner of use, interpretation, and the purpose of a
biomarker in drug development” and includes a detailed description of its measurement,
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purpose, and application. Importantly, the context of use determines the evidence needed for
qualifying a biomarker and also delineates its application for future studies and drug
development programs.

As defined in the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, a
substance use disorder such as nicotine dependence (§305.1) is “a maladaptive pattern of
substance use, leading to clinically significant impairment or distress” characterized by key
features such as tolerance, withdrawal, craving, and persistent use—despite its known
harmful consequences. is review focuses specifically on three types of biomarkers thought to
potentially have the most significant short-term translational impact for nicotine
dependence, including (i) diagnostic biomarkers, which can be used to identify the presence
or absence of a specific disease state and aid in patient selection; (ii) pharmacodynamic
biomarkers, which can be used to report on the downstream effects of a pharmacotherapy;
and (iii) predictive biomarkers, which can be used to select patients who are likely to
respond to therapy (Box 1; ref. 7). is is not a comprehensive review of biomarkers for
nicotine dependence, nor is it a description of biomarkers for tobacco-related harm or
disease. Biomarkers for smoking cessation, as considered herein, are those that may be
useful for the development of drugs as aids to smoking cessation and that are delineated
across a range of methodologies including metabolism, genetics, and neuroimaging.
Analytical and regulatory perspectives are also described. Finally, it is important to note that
more than 4,000 compounds can be created when a cigarette is burned. Of these myriad
compounds, nicotine—even though it is generally recognized as the most addictive
substance in smoke—represents only one. erefore, although this review focuses on
biomarkers for nicotine dependence and their translational potential for enhancing the
development of smoking-cessation medications, biomarkers not involving nicotine should
also be considered for future development.

Box 1

The three major types of biomarkers considered herein to enhance
therapeutic development of smoking-cessation medications

1. Diagnostic biomarker for patient selection

• Definition: a diagnostic biomarker described herein is defined as a measure of
an underlying (patho-) physiological process as it relates to the course of a
specific clinical outcome. A diagnostic “patient selection” biomarker is used to
identify/qualify key biological aspects of a disease and optimally stratify patient
populations into the most appropriate phenotype for treatment.

• No therapeutic intervention is involved.

• This type of marker could be identified via either retrospective or prospective
analyses.

• Some diagnostic biomarkers for smoking currently exist; one example of a
diagnostic biomarker for smoking status is a measure of carbon monoxide in
exhaled air.

2. A pharmacodynamic (PD) biomarker for optimal dosing

• Definition: a PD biomarker described herein is defined as a “response indicator”
for a pharmaco- therapy and is used to assess its potential dose– response in
vivo.

• If there were strong modulation of the target by the pharmacotherapy, there
would be a noted associa- tion with the clinical outcome, probably due to the
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drug interacting with its biologically intended tar- get; however, if there were
minimal/no engagement of a pharmacotherapy with its biologically intended
target, there would be little/no noted association with the clinical outcome,
probably due to other factors (e.g., unfavorable properties of the drug,
insufficient dosing).

• A PD biomarker of smoking cessation, for example, could be used to define a
clear qualitative physio- logical drug response and thereby improve decision-
making processes (e.g., go/no-go decision points for a drug development
project).

3. Predictive biomarker for therapeutic efficacy

• Definition: a predictive biomarker described herein is defined as a measure used
to identify before treatment those patients who might respond to a particular
therapeutic.

• Predictive biomarkers correlate the response to a therapeutic intervention,
positive (efficacy) and/or negative (safety/toxicity), with a clinical outcome
before administration of the intervention but are not necessarily associated with
disease progression.

• Molecular features in particular are likely to identify specific features of a
disease that may differentiate/target an efficacious (or harmful) therapy a priori.

• One example of a predictive biomarker for smoking cessation may be the
nicotine metabolic ratio– predicted quit success with transdermal nicotine-
replacement therapy (refs. 22–24).

METABOLIC BIOMARKERS
The nicotine metabolic ratio as a diagnostic biomarker

e substantial variability in smoking behaviors and cessation is attributable, in part, to
heritable differences in the clearance rates of nicotine. Nicotine, the primary addictive
compound in tobacco, is metabolized primarily by the hepatic enzyme CYP2A6 to cotinine
(COT) and then exclusively by CYP2A6 to 3′-hydroxycotinine (3HC).9 the gene encoding
this enzyme is highly polymorphic, resulting in large variation in rates of nicotine metabolic
inactivation. Because of the major role that CYP2A6 plays in nicotine’s metabolism, genetic
variation in CYP2A6 alters total nicotine clearance, non-renal plasma clearance, and
nicotine plasma half-life.10 Genetically slow metabolizers are less likely to be smokers;
those who are smokers are less dependent and smoke fewer cigarettes per day.11,12

Dependence scores differ significantly by CYP2A6 genotype12 and by nicotine metabolic
ratio (NMR)13; for example, the individuals in the first quartile (i.e., slow metabolizers) had
Fagerström Test for Nicotine Dependence (FTND) scores of 4.6, whereas those in the upper
three quartiles had scores of 5.7–6.1. the slow-metabolizer genotype is also found more
often among shorter-duration smokers,11 former smokers,14 and those responding to placebo
or patch treatment.15 ese smokers also have a lower risk for tobacco-related illnesses,
including lung cancer.12 One difficulty in genotyping individuals, however, is the
complexity of the CYP2A6 gene loci; there are numerous characterized and uncharacterized
alleles that vary in frequency across world populations. Whereas genotypic variation
accounts for a substantial portion of the variation in CYP2A6 activity, other influences not
captured by genotype include gender, body mass index, and some drugs. Accordingly, a
non-invasive assessment of CYP2A6 activity that could be measured in smokers would
expedite translation of data to the clinic.

Bough et al. Page 4

Clin Pharmacol Ther. Author manuscript; available in PMC 2013 September 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A biomarker for CYP2A6 activity has been proposed on the basis of the exclusive role that
CYP2A6 plays in COT metabolism to 3HC and the high correlation of this to total nicotine
clearance. the ratio of 3HC/COT, referred to as the NMR, reflects CYP2A6 genetic variation
and environmental factors influencing nicotine clearance in vivo. COT has a long half-life
(averaging 16 h), making its assessment a relatively robust indicator of the “time to last
cigarette.” By comparison, 3HC has a shorter half-life (averaging 5 h). Among regular
smokers, because levels of COT reach steadystate, the elimination of 3HC is CYP2A6
formation-dependent, and the NMR ratio is stable over time.16 the reliability coefficient for
stability tests of log-transformed NMR was 0.92. Assessments of NMR in two different
laboratories were consistent (ratio: 1.06), and observed measures were within the outside
limit of agreement of mean bias ±2 SDs. the reliability coefficient for repeated
measurements of NMR over 44 weeks (i.e., repeated sampling of individuals over time) was
0.85.16 the NMR can be measured in the saliva, urine, or plasma of smokers and has been
validated as a biomarker of nicotine clearance.17 the NMR is also closely related to
CYP2A6 genotype and more recently has been used to characterize novel CYP2A6
alleles.18

New data on the reproducibility and reliability of the NMR are emerging. the saliva NMR
does not vary with time of day.19 Moreover, recent experiments have documented the
concordance of NMR values across two analytical laboratories, stability of the NMR assays
using plasma and saliva stored at room temperature and in blood at 4 °C, concordance of
blood NMR with saliva and plasma NMRs, and excellent reliability for repeated plasma
NMR measurements in smokers over 44 weeks of sampling.16 erefore, genetically
distinguishing fast vs. slow metabolizers using the NMR diagnostic biomarker may be an
efficient approach to differentiate less dependent smokers from more dependent smokers
and personalize their smoking cessation treatment accordingly.

The NMR as a predictive biomarker
The NMR also has value as a predictive biomarker. the NMR has been utilized in several
clinical trials as a genetically informed marker of CYP2A6 activity.20,21 In the first study of
the clinical utility of the NMR, treatment-seeking smokers were randomized to transdermal
nicotine or nicotine nasal spray. the NMR predicted quit success with transdermal NRT;
however, the NMR did not predict quit success for those prescribed nicotine nasal spray,
presumably because smokers were able to titrate the dose of nasal spray on the basis of
differential metabolism.22,23 the NMR was validated as a predictor of quit success in an
independent sample of more than 500 smokers after 8 weeks of transdermal nicotine
treatment, for which the NMR was a better predictor of quitting than cigarettes per day,
FTND, or baseline COT.24 On the basis of these results, the efficacy of extended (6-month)
transdermal nicotine therapy vs. the standard 8-week therapy was examined. ose with
reduced rates of metabolism were found to benefit more from extended therapy than from
the standard 8-week therapy as compared with normal metabolizers.15

To determine whether the predictive validity of the NMR is specific for transdermal nicotine
therapy, another study evaluated this biomarker in a 10-week placebo-controlled randomized
trial of bupropion, a drug not metabolized by CYP2A6 (ref. 25). Fast metabolizers, as
determined by the NMR, had significantly lower quit rates than slow metabolizers if treated
with placebo (i.e., counseling only) but had quit rates equivalent to those of slow
metabolizers if treated with bupropion.25 In a clinical trial of African-American light
smokers, slow metabolizers, as determined on the basis of the nicotine metabolite ratio, had
higher quit rates than fast metabolizers treated with nicotine gum or placebo.26 ese
retrospective data suggest that slow metabolizers, as defined by the NMR, have a greater
success with transdermal nicotine, nicotine gum, or with counseling only, whereas fast
metabolizers would not be ideal candidates for these treatments. For fast metabolizers, a
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nonnicotine therapy such as bupropion may be most efficacious. Evidence for the efficacy of
higher-dose patch therapy for fast metabolizers is modest. However, these hypotheses
remain to be tested in a prospective head-to-head clinical trial before establishing NMR
cutoffs and metrics that can be used for clinical integration.

As part of the Pharmacogenomics Research Network, an ongoing prospective stratified
clinical trial of more than 1,300 smokers is currently evaluating the efficacy and clinical
utility of the NMR as a biomarker of response to placebo, transdermal nicotine, and
varenicline. Estimates of sensitivity, specificity, predictive value, and optimized cutoff
points will be established from this trial. If favorable, the NMR test could begin to be
utilized within clinical practice as a point-of-care predictor to tailor an individual’s smoking-
cessation treatment.

PHARMACOGENOMIC BIOMARKERS
Twin studies have consistently indicated that there are genetic contributions to an
individual’s ability to quit smoking (e.g., ref. 27). ere have been a number of
pharmacogenomic investigations of quit success in individuals who quit in community
settings or in clinical trials with FDA-approved medications (e.g., refs. 20, 28–30). No major
gene effects have been found in this work, although findings with 10−2 > P > 10−8 have been
obtained. Variants in candidate genes that appear to influence the numbers of cigarettes
smoked per day provide only modest effects on an individual’s overall ability to quit when
their influences on smoking quantity itself are statistically corrected for.31,32 Variants in the
CHRNα5-α3-β4 gene cluster may predict a therapeutic response for smoking-cessation
treatments, but the proportion of variance accounted for is small.31,33 Although pathway- or
systems-based genomic analysis may provide a biologically comprehensive approach for
pharmacogenomic research on smoking cessation,34,35 the required sample sizes to detect
gene–gene–drug interactions can be rate-limiting. A recent genome-wide association study
meta-analysis of a retrospective smoking-cessation phenotype identified a number of genes
of interest; however, only rs3025343 near the dopamine β-hydroxylase (DBH) gene reached
genome-wide significance.36 is finding has been replicated in at least one candidate-gene
case–control study.37 Other DBH variants have been examined with mixed results in some
clinical trials (for review, see ref. 38). To our knowledge, the genome-wide significant
association of rs3025343 with cessation has yet to be evaluated in prospective clinical trial
samples. is should be pursued in future investigations.

The “v1.0 quit success score” as a predictive biomarker
Genome-wide association studies for smoking-cessation clinical trials using 500,000 to 1
million single-nucleotide polymorphism (SNP) markers30,39–41 have provided groups of
clustered SNPs that display 10−2 > P > 10−8 differences between successful and
unsuccessful quitters treated with either NRT or bupropion. the chromosomal regions and
genes identified by these clustered, nominally significant SNPs from different samples
overlap much more than would be expected by chance. ese studies identify several genes,
including, for example, those that encode cell adhesion molecule cadherin 13, that have been
reported from multiple, independent studies. More than 12,000 SNPs displayed 10−2 > P >
10−8 associations with the ability to quit in at least one of three initial clinical trials.30 ese
SNPs were weighted based on their P value and number of samples in which the association
occurred to form a “v1.0 quit success score.” Modeling studies supported substantially
increased power of phase II–sized clinical trials if participants were genomically stratified
based on the v1.0 quit success score that identified even half of the genetic influences on
quit success.40 Indeed, this marker has been found to predict quit success in two
independent, prospective, double-blind clinical trials39 as well as in a recently reported trial
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in which NRT doses were matched to a level of dependence; the v1.0 quit success scores
estimate an area under the receiver–operator curve of 0.67.42

An NRT-induced reduction in smoking (i.e., as measured by a reduction in exhaled carbon
monoxide concentration) before a targeted quit date also provides robust ability to predict
quit success that is not well captured by the v1.0 quit success score. When combined with
the v1.0 quit success score, the precessation smoking reduction associated with a higher rate
of short-term smoking abstinence provides a more robust “biosignature,” or combination of
biomarkers. Together, this combination of physiological and genetic biomarkers provides an
example by which two distinct biomarkers capture a “more comprehensive biological
snapshot,” leading to a somewhat enhanced clinical predictive validity with an area under
the receiver–operator curve of 0.73.42 As this genotype-based quit-success score is tested in
populations of disparate genetic backgrounds, we will learn whether the application of this
biosignature is generalizable.

At this time, the drug products investigated most widely in pharmacogenetic and
pharmacogenomic studies, including many cited above, are bupropion and NRTs. Feasibility
and diffusion studies are needed to explore the challenges, logistics, and patient-centered
outcomes germane to implementation in real-world health-care organizations. BEACON
(Behaviorally Enhanced Counseling on Nicotine Dependence), a US-based feasibility study
of a treatment protocol, used a single-marker approach as a simple proof of concept to
genetically tailor smoking-cessation treatment to patients in a health-care setting to either
bupropion (rs1800497 CC genotype) or a nicotine patch (rs1800497 TT/TC genotype). is
study randomized patients in the Group Health Cooperative integrated delivery system to
receive theoretically grounded genetic feedback or standard care.43 the results of the
BEACON study suggested that telephone-based counseling combined with genetically
matched treatment is feasible, with high patient satisfaction and no evidence of adverse
psychological impact. Similar results were found in the much larger, UK-based,
Personalised Extra Treatment (PET) trial. is trial randomized smokers to increased dosing of
NRT by OPRM1 rs1799971 AA genotype ((6 mg)/GA; AA genotype (12 mg)) vs. dosing
NRT by FTND score (score < 8 (6 mg); ≥8 (12 mg)) but found no evidence of adverse
psychological or behavioral impact of genetic feedback in the context of genetically tailored
smoking-cessation treatment.44

NEUROIMAGING BIOMARKERS
Although it has become increasingly appreciated that drug dependence is a CNS disease of
dysregulated learning and memory, the modifications that have occurred as a consequence
of addiction remain poorly understood. Which observed neuroadaptations are specific to
nicotine dependence? Are they transient or long-lasting? Why might neuroimaging measures
serve as potential biomarkers of such drug-induced neuroplasticity and addiction? ere are at
least three key roles for neuroimaging biomarkers. First, given that they can index brain
structure and function, imaging biomarkers can serve as putative endo-phenotypic measures
that intermediate distal biomarkers (e.g., DNA, gene expression) with more proximal
biomarkers (e.g., behavior, self-report) and their clinical outcomes, ideally correlating
meaningfully with the phenotypes on the causal path of a disease or a biological response to
a therapy. As such, whereas the outcome of a particular treatment may be related to genetic
factors or the effects of the treatment on self-reported craving, there may be multiple
pathways that underlie the influence of a gene or genes on outcome, or multiple pathways
that mediate the subjective experience of craving (e.g., salience of cues, self-awareness).
Measures of brain function may provide assessment of the relative contribution of these
pathways to clinical course and/or outcome. Second, again reflecting their position as a
potential endophenotype, neuroimaging markers can potentially provide a simultaneous
assessment of both dynamic, acute-state (e.g., withdrawal, craving) and more chronic trait-
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like (e.g., addiction severity) markers relevant to addiction outcomes. ird, based on brain
regions identified as involved in clinical phenotypes, such as withdrawal symptoms or cue-
elicited craving, modification of activity within these regions can subsequently serve as
directed mechanistic interventional targets and predictive surrogates of smoking behavior.

Acute prequit reductions in smoking-cue brain reactivity as predictive biomarkers
e relatively few studies using neuroimaging as a potential biomarker have focused on
imaging as a predictive marker for smoking cessation. For example, acute pre-quit
reductions in smoking-cue reactivity within the thalamus and ventral striatum are associated
with improved cessation outcomes;45 pre-quit activation in the insula and anterior cingulate
in response to smoking cues during a distraction-based task, predicted postquit slips;46 and
larger hippocampal volumes are predictive of poorer cessation outcomes.47 Although few in
number and of limited sample size, these studies provide preliminary evidence that
neuroimaging measures may be useful predictive biomarkers for smoking cessation.

Other studies have focused on behavioral and/or pharmacological manipulations. For
example, studies have examined the effects of pharmacological and behavioral interventions
on brain reactivity to visual smoking cues.45,48–50 ree of these studies48–50 showed that
interventions with putative effects on reactivity to smoking cues decreased brain responses
to these cues in ventral aspects of the anterior cingulate cortex and/or medial orbitofrontal
cortex. ese studies suggest that changes in braincue reactivity, particularly in ventromedial
structures, may serve as a possible pharmacodynamic biomarker and, if further qualified,
may be used to define a clear, qualitative drug response.

Large-scale, brain-network interactions as a diagnostic biomarker
Assessment of functional magnetic resonance imaging signals in the absence of a task
reveals patterns of coherent, low-frequency, spontaneous fluctuations that may more clearly
indicate underlying pathophysiological changes of a substance use disorder such as nicotine
dependence. the patterns of large-scale networks observed at “rest” are largely consistent
with, and constrained by, anatomical connections and appear to comprise the full set of
networks activated when an individual performs specific cognitive tasks. One such network,
the so-called default mode network (DMN), which includes the medial prefrontal cortex,
medial temporal lobes, and posterior cingulate cortex, is deactivated during task
performance and is thought to reflect episodic memory, ruminations, or “mind wandering.”

Although used to investigate a wide range of psychiatric disorders including depression and
attention-deficit hyperactivity disorder, resting-state functional connectivity is increasingly
being utilized to assess nicotine dependence and its possible applications to smoking-
cessation treatment. For example, it has been demonstrated that anterior cingulate cortex–
ventral striatal functional connectivity strength is negatively correlated with nicotine usage
and is unaltered by acute NRT, although other more “cognitively” related cingulate-cortical
circuits are enhanced by nicotine, suggesting the existence of a potential “addiction circuit”
diagnostic biomarker for nicotine dependence. A very similar circuit is moderated by
variation in the α5 nicotine receptor subunit gene.51 Furthermore, improvement in cognitive
withdrawal symptoms in abstinent smokers is related to the degree of negative correlation
between executive control and DMNs.52 Among nonsmokers, nicotine simultaneously
decreases activity within the DMN while increasing visual attention networks.53 Taken
together, these findings are consistent with the hypothesis that nicotine acts by enhancing
executive control and focusing attention toward external stimuli.

A model-based approach has recently been proposed for the use of resting-state functional
connectivity. is model, which incorporates the interactions between large-scale networks and
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alterations in the addiction trajectory, might profitably serve as a diagnostic biomarker of
addiction. is model centers on the interoceptive monitoring role of the insula, which,
together with the anterior cingulate cortex, is thought to direct attention toward either
internal or external stimuli by mediating dynamic activity between two large-scale brain
networks, the DMN and the executive control network. ese networks interact competitively
during task performance, whereby suppression of DMN activity is often associated with
optimal behavioral outcome. During nicotine abstinence, the insula may track withdrawal-
induced bodily sensations (e.g., perceived as cravings) and, in turn, direct attention toward
the homeostatically salient internal state via increased interactions with the DMN at the
expense of decreased exogenously directed attention mediated by executive control network.
is resting-state functional connectivity circuitry model warrants further empirical testing and
validation.

A number of practical issues need to be considered in assessing neuroimaging as a potential
drug development tool. First, short- and intermediate-term longitudinal imaging studies
should be performed, with multiple measures of cessation-treatment outcome, to determine
whether specific brain circuits and networks change as a function of alterations in addiction
severity that occur with extended abstinence during treatment. Second, future studies that
evaluate putative biomarkers need to include former smokers. is cohort is understudied and
needs to be examined in order to answer questions of possible long-term recovery of
function. ird, genetic markers should be used to complement the power of, and individual
differences in, imaging biomarkers. Fourth, negative results need to be reported/shared
among investigators. Fifth, there must be a novel, multimodal, composite set of imaging and
behavioral testing batteries, standardized for use across multiple sites. For example, whether
task-based or task-independent, most neuroimaging studies to date have relied on group
analysis, mostly due to the intrinsic low sensitivity of the functional magnetic resonance
imaging signal. Low signal-to-noise ratios have generally precluded the use of individual
subject analysis, something required for an analytical tool to be clinically useful as a
biomarker. It remains to be seen whether this biophysical limitation will preclude its routine
application. Finally, small sample sizes, cost, and reliability and reproducibility issues
remain concerns for neuroimaging, as they do for any potential biomarker assay. the
incorporation of standard research methods across laboratories and development of large-
scale databases may help overcome sample-size issues. Whereas MRI-based neuroimaging
measures are currently expensive to obtain, their potential usefulness in predicting treatment
response may outweigh these costs when considered against the cost of addiction at the
individual and societal level. In addition, increased knowledge of the mechanisms that
underlie nicotine dependence can lead to new and refined, and relatively less expensive,
behavioral or electroencephalogram-based markers that may be more easily transferred into
clinical practice.

ANALYTICAL CONSIDERATIONS
Development of biomarkers requires defining optimal methods for data analysis. For
instance, characterization of heterogeneity in treatment response for smoking cessation,
using biomarkers, presents specific statistical challenges. “Subgroup analyses” that evaluate
outcome as a function of the interaction of a baseline covariate (subgroup indicator) and
treatment are not without controversy. Evaluating the degree to which biomarkers account
for heterogeneity in treatment response raises concerns regarding type I and II errors,
leading to recommendations favoring a Bayesian approach. the Bayesian method permits
estimation of a “posterior distribution” that summarizes evidence regarding the existence of
a subgroup effect. is posterior distribution is a function of investigators’ prior information
and the data observed in the current study. Inspection of the posterior distribution for the
interaction term permits statements regarding the probability that an interaction effect of
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some magnitude exists given the data. Two points are salient: (i) inspection of the posterior
distribution permits direct evaluation of the alternative hypothesis, a feature that is not
available via conventional frequentist statistical reasoning, and (ii) the posterior distribution,
the Bayesian method, permits the estimation of the probability that a given treatment confers
benefit or harm as a function of a specified subgroup variable. Recognizing that
investigators may disagree regarding the state of the prior evidence, specification of multiple
priors representing distinct perspectives (e.g., optimistic, neutral, or skeptical) is possible. is
formalization, termed a “community” of priors, permits evaluation of the degree to which
the data should result in revision of differing levels of preexisting skepticism.54,55 Such
properties permit evaluation of the degree to which convincing evidence for a biomarker
effect exists.

Statistical analysis of multiple, diverse biomarkers
Recent advances in technology now make it feasible to obtain numerous biomarkers,
ranging from genetics to imaging to behavior, for the more complete evaluation of subgroup
effects. In this context, the discovery of noteworthy subgroups and the investigation of
potential interactive effects dramatically increase the number of statistical tests evaluated.
Often these tests are viewed solely in the context of the total number of tests or investigators
rely on post hoc justification of preconceived ideas.

For high-dimensional data analysis, formal Bayesian approaches ofter a statistical approach
that formalizes the prior knowledge and balances the trade-off between that knowledge and
the data. With regard to genome-wide association studies, rankings may be expanded upon
using methods that incorporate prior information into the determination of the false-
discovery rate—a weighted false-discovery rate56 or a Bayesian false-discovery
probability.57 For effect estimation and model building, hierarchical models and Bayesian
stochastic search approaches may be used.58 Hierarchical modeling has the advantage of
formalizing prior knowledge into predictor variables that describe potential relationships
between the factors. In genetics, this could define simple variables systematically extracted
from public databases and ontologies, such as gene annotation and the pathway in which
each gene is thought to be active. In addition, more experimentally derived information can
be used, such as eQTLs or ChIP-seq,36,59 in silico predictions based on evolutionary
conservation or predicted effect on protein conformation60 or predictions from simulations
of the pathway.61 Moreover, because there may also exist a hierarchy across all factors,
separate sets of priors can be constructed for SNPs within a linkage disequilibrium block,62

genes and genes within pathways,63 or for main effects and interactions.64 Finally,
hypothesized biological pathways may be used to construct a “prior topology” or
combination of factors that then informs the model search and evaluation by giving greater
prior probability to combinations of factors in the data that are more closely related to the
prior structure or biological mechanism.65

The Bayesian analytical approach to characterizing heterogeneity in treatment effects as a
function of biomarkers confers a number of benefits. Bayesian analyses permit direct
estimates of the probability that subgroup effects exist and of the degree to which treatment
may incur benefit or harm as a function of a subgroup variable, and it may do so in the
context of sample sizes too small to register an effect using conventional frequentist
methods. The Bayesian approach permits evaluation of the degree to which the data might
sway investigators articulating reasonable differences of opinion. Empirically derived prior
information can improve the precision of resulting subgroup estimates. For subsequent trials,
evaluating the probability of obtaining a meaningful outcome conditional on the estimate of
the subgroup effect and its corresponding uncertainty should provide a more robust
prediction of the decisiveness of a planned trial than conventional power analysis.
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PRECLINICAL TRANSLATION
As a tool for drug development (Figure 2), animal models may be used at three stages of the
drug discovery process: first, animals may be utilized early in the drug development process,
during the “target validation” stage. is sometimes sophisticated and multifaceted process
serves to increase the understanding of a particular drug target and may help investigators
determine whether a particular drug target meets criteria for initiation into a drug-screening
campaign. Second, when pharmacological agent(s) that target a system of interest are
uncovered, they can be examined in an animal model of nicotine dependence to obtain
“proof of concept” that the compounds show some degree of efficacy. Positive (or negative)
results may then be taken into consideration when deciding whether a potential project is
worth pursuing further. ird, animal models of nicotine dependence may also be used later in
the drug development process. ese types of models can be used to advance efforts when
several agents within one class or different classes of compounds have been developed.
Likewise, animal models may play an important, multifaceted role in guiding iteratively the
development of compounds into the clinic for testing.

Although not without potential drawbacks, it is reassuring to note that varenicline decreases
intravenous nicotine self-administration behavior in rodent models.66 the utility of the self-
administration procedure, as well as other animal models of nicotine dependence that may
be used to support drug development efforts, would be further validated by the identification
of reliable biomarkers that, optimally, predict the efficacy of smoking-cessation agents in
human smokers.

Translational utility
Biomarkers may prove useful in the evolution of preclinical animal models to better
encapsulate various aspects of nicotine dependence and, in the long-term, enhance decision
making during drug development. Indeed, it can be envisioned that modifications of an
animal model based on the response of a qualified biomarker in human smokers may help
drive animal model development closer to the human condition, possibly improving
predictive power for drug development. Such bio-markers could also be used to stratify/
prioritize animal models and potentially identify those animal tests that specifically model
aspects of nicotine dependence that have the most predictive power for identifying
efficacious smoking-cessation medications in human smokers. us, cross-species biomarkers
may help guide and validate the development of animal models for human nicotine
dependence.

Animal models of nicotine dependence are critical for the development of novel smoking-
cessation medications. the translatability of available animal models could be substantially
increased if reliable, cross-species biomarkers of nicotine dependence that have diagnostic,
pharmacodynamic, and/or predictive uses could be identified in human smokers. is is
especially relevant for CNS diseases such as nicotine dependence, in which the direct
assessment of brain tissue is costly and impractical. Translatable biomarkers may capture
key aspects of nicotine dependence that help characterize the underlying mechanism(s) and
can be used to validate measures for more efficient drug development. Biomarkers may also
prove useful in the conception of improved animal models, which better reflect the human
condition, and/or be used to stratify/rank pre-clinical models, potentially identifying those
animal tests that specifically model causal features of nicotine dependence with the most
predictive power for identifying efficacious smoking-cessation medications in human
smokers. us, confirmation of biomarkers across species may not only help advance their
qualification but also serve to guide the development and prioritization of superior animal
models.
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FUTURE DIRECTIONS
Biomarker discovery—Readily measurable biomarkers from peripheral fluids (e.g.,
plasma or urine) that could reproducibly reflect pathologically and/or pharmacologically
induced processes in the brain would provide a significant step toward elucidating further
underpinnings of the disease, identifying putative targets, confirming pharmacological target
effect, and so on, all from a “surrogate” tissue. One promising discovery approach for novel
biomarkers may arise from the proteomic or transcriptomic analysis of circulating proteins/
nucleic acids in the blood of cigarette smokers. A recent proteomic analysis of serum-bound
proteins in the blood of humans with a history of alcohol abuse revealed a discrete protein
expression profile relative to control subjects, including dysregulated expression of gelsolin,
selenoprotein P, serotransferrin, tetranectin, hemopexin, histidinerich glycoprotein, plasma
kallikrein, and vitronectin.67

Another innovative and important area of research that is likely to yield useful biomarkers
for nicotine dependence is that of circulating microRNAs (miRNAs). miRNAs are small
(~21–25 nucleotides) regulatory RNAs that are emerging as powerful biomarkers of disease.
Recent evidence suggests that miRNAs can be readily detected in blood, urine, saliva,
amniotic fluid, and pleural fluid, with expression levels similar across different individuals
matched for health status.26 As an example of the potential utility of miRNAs as sensitive
biosignatures of physiological processes, the placenta-associated miRNAs miR-527,
miR-526a, miR-141, and miR-149 were significantly elevated in the sera of pregnant
women as compared with non-pregnant subjects,26,29 with the magnitude by which these
miR-NAs were upregulated being correlated with pregnancy stage.26 the identification and
validation of blood miRNA may offer a viable approach to develop biomarkers for tobacco
dependence. Importantly, however, alterations in circulating miRNAs in response to a
pathophysiological state may not only represent diagnostic tools but also provide insight into
disease processes that may co-occur in more distal tissues. is could potentially occur through
at least two mechanisms: first, miRNAs whose expression is dysregulated in diseased tissues
(e.g., miRNAs in prostate cancer tissues; miRNAs in hepatocytes during drug-induced
hepatic toxicity) may be “released” from the site of damage directly into circulation. is may
be particularly important in the case of lung damage. Indeed, genome-wide association study
profiling has revealed miRNA diagnostic signatures of non–small cell lung cancer; 12
specific miRNAs have been shown to be robustly overexpressed in diseased lung tissue and
to have prognostic utility for estimating life expectancy.68 Specifically, miR-17-3p, miR-21,
miR-106a, miR-146, miR-155, miR-191, miR-192, miR-203, miR-205, miR-210, miR-214,
and miR-212 were upregulated in diseased lung tissue as compared with normal lung tissue.
miR-21 levels in particular were closely correlated with a positive prognosis and overall
survival of lung cancer patients.68 Hence, serum-based miRNAs can serve as biomarkers for
tobacco dependence, but the same miRNAs may also reveal insights into the progression of
tobacco-associated diseases.

A second mechanism through which serum-based miRNAs may provide information
concerning molecular events in distal diseased tissues is if the same signaling events that
occur in diseased tissue are conserved in nucleated blood cells such that the same
complement of miRNAs is altered in both tissues. Indeed, patterns of gene expression in
nucleated blood cells are remarkably consistent across healthy individuals,36 and many of
the same signal transduction cascades are conserved in nucleated blood cells that are present
in other cells, including neurons. erefore, it is possible that exposure to nicotine and other
components of tobacco smoke may initiate the same signal transduction cascades in
nucleated blood cells as those that are engaged in neurons localized within addiction-
relevant brain circuits, resulting in the sample complement of miRNAs dysregulated in brain
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and blood. erefore, in addition to their clinical benefits, identification of circulating miRNA
biomarkers could reveal those that are mechanistically important to addiction.

Finally, a characteristic of miRNAs that makes them particularly attractive as putative
biomarkers is their remarkable stability within a peripheral (i.e., within a non-CNS,
“surrogate”) tissue. It has been shown that serum-expressed miRNAs are resistant to
endogenous ribonuclease activity, stable at room temperature, and resistant to degradation
by freeze–thaw cycles.69,70 Importantly, it has been shown that the expression levels of
miRNAs in serum, which are easy to collect and more readily available from archived
samples, are highly correlated with levels in plasma samples from the same human
subjects.70 erefore, the stability of miRNAs, their relatively simple separation from other
nucleic acids in blood serum, and their easy accessibility from within a “surrogate,” non-
CNS peripheral tissue, all suggest that proteomic and/or transcriptomic approaches to
analyzing circulating blood-based protein or nucleic acids, particularly miRNAs, may yield
reliable biomarkers for nicotine dependence.

Biosignatures
A surrogate biomarker has been defined as a single biomarker “intended to substitute for a
clinical endpoint…and predict clinical benefit (or harm).”8 In terms of the development of
smoking-cessation medications, a surrogate marker is already in use; clinical benefit is
inferred when assessed through 4 weeks of self-reported abstinence, confirmed with
periodic, exhaled carbon monoxide breath levels. What is likely to be of additional value in
future drug development will be the application of a combination of biomarkers, or
biosignature, which can more accurately capture the heterogeneous biologic and/or
pharmacologic responses associated with a clinical end point. is may be especially true if the
putative biosignature incorporates nonoverlapping approaches combining proximal and
distal biomarkers (Figure 3). Together, these data would increase the sensitivity (true
positive) and/or specificity (true negative) of the assay. A biosignature such as this is more
likely to assess risks (i.e., off-target, nonpathway effects) and benefits (i.e., intended targeted
pathway activation/repression) and more accurately reflect a clinical end point (Figure 4).
For example, genetic and neuroimaging data, when combined, can be used to more clearly
suggest which CNS circuits are affected, better elucidate underlying pathophysiological
mechanisms, and characterize which neurochemical processes might contribute causally to
nicotine dependence (see “Neuroimaging Biomarkers” above; refs. 51,71). A second
example would be the combination of a physiological measure (NRT-induced reduction in
carbon monoxide before a targeted quit date) with the “quit success” score with its ability to
predict robustly the quit success for populations across diverse clinical settings (see
“Pharmacogenomic Biomarkers” above; ref. 39). As robust assays for biosignatures like
these are prioritized, validated, and developed (Table 1, Figure 1), their application as drug
development tools (Figure 2, Box 1) will become more generally applicable to drug
development studies.

CONCLUSION
It is estimated that by 2030, tobacco will kill more than 8 million people worldwide each
year.1 the vast majority of smokers want to quit, yet many are unable to remain abstinent
using existing therapeutic options. More effective antismoking treatments are needed to
address this large medical need. To get there, however, the translational efficiency by which
pharmaceutical development can be achieved needs to be improved. Biomarkers, as a drug
development tool, hold significant promise in this regard.

To enhance our potential for translating these potential biomarkers, some of the approaches
described herein might also be used to define more clearly various aspects of addiction. If,
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for example, various aspects of nicotine dependence were broken down into (i) reward, (ii)
withdrawal, and (iii) relapse, the qualification of a specific smoking-cessation biomarker/
biosignature could perhaps be honed and correlated with a risk-of-relapse clinical outcome
measure that the putative biomarker most accurately reflects.72 is would theoretically help to
circumvent complications that may arise due to the diverse influences on smoking cessation
as a clinical outcome and thereby boost the efficiency by which biomarkers are identified
and accepted.

Although some of the approaches described herein outline the first step(s) in biomarker
development (Figure 1; Table 1), the discovery and development of putative biomarkers in
general are not without issues. First, the term “biomarker” in general is overused; because
evidence collection in the past has not been assembled in a standardized manner, there are
diverse methodological approaches (e.g., imaging, genetics, physiological, and “omics”) and
varied applications (e.g., diagnosis, prognosis, prediction), and the term has frequently been
applied haphazardly. Second, biomarkers are frequently considered individually; there is a
need for future studies to validate findings in both the clinic and the laboratory. ird, the
pathway for biomarker evaluation is still evolving.73 Collectively, these issues have worked
to further complicate the already multifaceted evidentiary process of linking biomarker data
to a clinical outcome. A plan for the development for smoking-cessation biomarkers that
circumvents many of these issues is presented in Table 2.

Biomarkers represent a key translational bridge between an improved understanding of the
mechanistic underpinnings of nicotine dependence, preclinical development, and clinical
evaluation. ere is an expectation that biomarkers/biosignatures for smoking cessation will be
able to help guide future therapeutic development processes as well as tailor medical
practice to the individual smoker. the further development of the biomarkers presented here
—diagnostic biomarkers for patient selection, pharmacodynamic biomarkers for optimal
dosing, and predictive biomarkers, which can be used to select patients likely to respond
therapy—represent the crucial first steps toward more efficient development of therapeutic
interventions. the translation and application of smoking-cessation biomarkers should
increase the number of personalized treatment options for smokers who want to quit and, as
such, enhance appreciably general public health.
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Figure 1.
Biomarker development is interdependent. Initially, a measure is “analytically validated” for
its precision and accuracy. An optimal measure would be practical (e.g., robust and cost
effective) and easy to collect (e.g., noninvasive, measured within a surrogate tissue (e.g.,
saliva)). A validated test is required before “qualification,” which is the evidentiary linkage
of the measure with its clinical outcome. Finally, independently corroborated qualification
of biomarkers can be “utilized” for more general purposes. Data from concurrent biomarker
discovery efforts (e.g., “omic”-type projects) can be used to hone further efforts along each
step of development (Table 2). Adapted from ref. 73.
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Figure 2.
US Food and Drug Administration (FDA) drug development tools (DDTs). The DDT
qualification program, including biomarkers, was created by the Center for Drug Evaluation
and Research to guide and prepare drug development efforts for rigorous safety and efficacy
testing and eventual regulatory evaluation.
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Figure 3.
Proximal vs. distal biomarkers. Proximal markers are those biomarkers closely associated
with the underlying molecular mechanisms of a disease; proximal biomarkers are not likely
to capture the disease phenotype in its entirety (e.g., nicotine dependence). Distal markers,
by comparison, are those biomarkers that reflect the endophenotypes further up the
phenotypic “tree”; they are more likely to capture more features of an underlying
pathophysiology or a biological response to a therapeutic intervention. NMR, nicotine
metabolic ratio.
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Figure 4.
A biomarker is an objective measure of a clinical outcome. A biomarker is an objectively
measured indicator of a normal biological process, pathogenic process, or biological
response to a therapeutic intervention. As opposed to other more subjective measures related
to nicotine dependence (e.g., craving, mood) (top circle), an objective biomarker for nicotine
dependence might include a measure collected via a metabolic (e.g., NMR), genetic (e.g.,
quit-success score), physiologic (e.g., precessation response to NRT), or neuroimaging
approach (e.g., rsFC) (see text for details). However, these data may reflect only a single
aspect of a disease phenotype or pharmacotherapeutic response. For example, if combined
as a “biosignature,” two or more biomarkers (e.g., neuroimages + genetics; see text) are
more likely to capture key processes underlying efficacy and/or toxicity along the causal
pathway(s) of a pharmacological process (large “Biosignature” box) that might have
otherwise been missed if a single measure were applied (small “Biomarker” box). In terms
of drug development, this type of data could help assess the overall risk (i.e., off-target,
nonpathway effects) to benefit (i.e., intended targeted pathway activation/repression) ratio
and improve the efficiency by which clinical trials are conducted. NMR, nicotine metabolic
ratio; NRT, nicotine-replacement therapy; rsFC, resting-state functional connectivity.
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Table 2

A suggested plan for biomarker development for smoking cessation

Developmental steps Collective steps

1 Identification:

Diagnostic, pharmacodynamic, and/or predictive biomarkers for smoking cessationa
Purported biomarker biological summary/association → begin to define its context of use

• Applicability to general population? Specific populations? How does it help?

• What is the sample medium?

• How are data collected (i.e., assay type)?

2 Prioritization:

• Minimally or noninvasive collection methods (e.g., saliva)

• Practicality of assay (e.g., easy to detect, affordable)

• Clinical need (i.e., assay’s application will positively impact medical practice)

3 Assay development:
Analytical process is defined and optimized into a robust, reproducible assay/device

• Develop clear parameters for intended use and application of assay

• Define whether assay will be quantitative, semi- quantitative, or qualitative; define the minimum threshold
characteristics for each analyte

• Identify vendors who can supply required instrumentation and reagents manufactured under GMP
guidelines

• Develop standardized sample concentrations and conduct feasibility assessments

4 Regulatory:

• Discuss the scope of putative biomarker’s “context of use” with FDA

• Seek guidance for medical device development, if intended for patient management

• Seek guidance from FDA if intended as a drug development tool

5 Analytical validation:

• Validate analytical protocols utilizing existing (e.g., Society for Research on Nicotine and Tobacco
(SRNT)) guidelines and FDA input (e.g., urine cotinine >50 ng/ml biochemical confirmation of smoking
status)

• Comparison of assay to existing methods, if available

6 Public comment:

• Solicit external appraisal (e.g., SRNT)

7 Clinical validation:

• Execute prospective clinical study incorporating validated assay

8 Regulatory review:
Submit results of analytical validation and clinical study(s) to FDA to

• Enhance the efficiency of drug development decision making

• Facilitate insurance reimbursement

• Enable broader FDA-accepted standards for inclusion as part of regulatory applications

• Enable point-of-care diagnostics to positively impact medical practice

FDA, US Food and Drug Administration; GMP, good manufacturing practice.
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a
See Table 1.

Adapted from ref. 74.
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