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Abstract
Background—Nonhuman primates (NHPs) are an important model organism for studies of HIV
pathogenesis and pre-clinical evaluation of anti-HIV therapies. The successful translation of NHP-
derived data to clinically relevant anti-HIV studies will require better understanding of the viral
strains and NHP species used, and their responses to existing antiretroviral therapies (ART).

Methods—Five pigtailed macaques (M. nemestrina) were productively infected with the SIV/
HIV chimeric virus SHIV-1157ipd3N4 following intravenous challenge. After 8 or 27 weeks,
ART (PMPA, FTC, Raltegravir) was initiated. Viral load, T-Cell counts, and production of SHIV-
specific antibodies were monitored throughout the course of infection and ART.

Results—ART led to a rapid and sustained decrease in plasma viral load. Suppression of plasma
viremia by ART was independent of the timing of initiation during chronic infection.

Conclusions—We present a new NHP model of HIV infection on antiretroviral therapy, which
should prove applicable to multiple clinically relevant anti-HIV approaches.
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INTRODUCTION
Nonhuman primates represent the best available animal model of HIV infection in vivo, and
provide important pre-clinical data for various anti-HIV intervention strategies. Over the
past decade, the pigtailed macaque (M. nemestrina) model has emerged as a useful system in
which to study viral pathogenesis, host immune response, and vaccine efficacy
[2,9,10,13,16,19,28,31,34,37,41,53]. Additionally, this species of macaque serves as a well-
established large animal model of hematopoietic stem cell transplant gene therapy
[3,5,48,52]. However, use of M. nemestrina models for anti-HIV gene therapy and related
approaches will require a better understanding of the viral kinetics of various simian
immunodeficiency virus (SIV) and simian/human immunodeficiency (SHIV) strains.

Viral replication kinetics for several SIV strains have been previously discussed in the M.
nemestrina model [4,11,55]. More recently, several strains of SHIV have also been shown to
productively replicate in vivo in the pigtail model [7,17,48,49]. Importantly, relative to the
better-established rhesus macaque model, less is known about the response of various SIV
and SHIV strains to antiretroviral therapy regimens in pigtails [1,14,22,26,27,35,41,51].
Establishing a model of ART-suppressed HIV infection in pigtail macaques is an essential
component in the preclinical evaluation of anti-HIV therapies, namely gene therapy
approaches.

SHIVs containing an HIV envelope (env-SHIVs) are a useful challenge virus for macaque
models of HIV infection, and avoid complications associated with alternate coreceptor usage
by SIV envelopes [25,29,42,45]. Previously, infectivity of the CCR5-tropic env-SHIV virus
SHIV-1157ipd3N4 was evaluated in the pigtailed macaque model [18]. Following a single
intrarectal inoculation, four animals exhibited peak viral loads nearing 107 RNA copies/mL
plasma. One animal was euthanized during acute infection. Of the remaining three animals,
two progressed to chronic infection with viral set points in the range of 104–105 copies/mL,
while the third animal controlled infection to below the level of quantification. In the
chronically infected animals, CD4+ T-cell depletion was most robust in the gut, and the
virus was shown to be highly CCR5-tropic.

To examine the response of SHIV-1157ipd3N4-infected pigtailed macaques to 3-drug ART,
we administered SHIV to five animals by single intravenous inoculation and initiated ART
at either 8 weeks or 27 weeks post-SHIV challenge. Our pre-ART data closely resemble the
viral kinetics previously demonstrated for this species and virus following intrarectal
challenge. Initiating our 3-drug ART at either 8 or 27 weeks post-infection led to durable
suppression of plasma viremia, suggesting that our regimen is able to antagonize viral
replication in vivo, independent of the timing of administration during chronic infection.
These results demonstrate that the SHIV-1157ipd3N4/M. nemestrina model will be suitable
for preclinical studies of anti-HIV therapies for infected patients on ART.

MATERIALS AND METHODS
Animal Welfare Statement

This study was carried out in strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol
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was approved by the Institutional Animal Care and Use Committees of the Fred Hutchinson
Cancer Research Center and University of Washington.

Virus Stock
SHIV1157-ipd3N4 was kindly provided by Dr. Ruth Ruprecht [46]. The stock used in this
study was passaged in rhesus macaque peripheral blood mononuclear cells (PBMC) and its
infectivity determined at 1.9×104 TCID50/mL in TZM-bl cells. For SHIV challenge, a
single 500μL dose was administered IV to five animals following 6–8 weeks of pre-
inoculation baseline sample collections.

Antiretroviral Therapy
Tenofovir (PMPA) and Emtricitabine (FTC) pure compounds were kindly provided by
Gilead Sciences [Foster, CA]. Raltegravir pure compound was kindly provided by Merck
[Whitehouse Station, NJ]. A dual solution of 40 mg/mL PMPA and 80 mg/mL FTC was
prepared in double-distilled water and dissolved in the presence of NaOH. The solution was
filter-sterilized and warmed to 37 degrees Celsius prior to subcutaneous administration.
Raltegravir pure compound was mixed with food and frozen. Animals were monitored by
veterinary staff to confirm complete consumption of Raltegravir dose.

Tissue Collection and Blood Processing
Endoscope-guided pinch biopsies were conducted as previously described [18]. Briefly,
twenty-three 1mm pinch biopsies were collected, using 3mm biopsy forceps, into ice-cold
RPMI media containing 10% FBS, 25 mM HEPES, 2mM L-glutamine, and 1% pen/strep for
isolation and analysis of T lymphocytes (see below).

Peripheral blood was drawn by venipuncture into EDTA tubes (for isolation of plasma and
PBMC) or serum separation tubes (SST) (for isolation of serum). Plasma for viral load
measurements was obtained from peripheral blood in EDTA by Ficoll centrifugation. Flow
cytometry was conducted from whole blood samples as previously described [18].

Immunophenotyping, Plasma Viral Load, and ELISA Measurements from Blood
Cells were stained with CD3-FITC (SP34-2) and CD4-PerCP-Cy5.5 (L200), and fixed with
1% paraformaldehyde prior to analysis on a FACSCalibur flow cytometer (antibodies and
instrument from Becton Dickinson and Company). Data acquisition and analysis was
conducted as previously described [18]. Viral RNA was isolated from EDTA-plasma,
reverse transcribed, and analyzed by real-time PCR as previously described [40]. Whole
virus SIVmac and HIV-1SF162 gp120-specific antibody titers were measured by ELISA and
analyzed as previously described [20].

Cell Isolation and Immunophenotyping of GI Biopsy Samples
Pinch biopsies in RPMI media were dissociated in the presence of 0.5 mg/mL collagenase
and 1 U/mL DNase I, stained with 7-AAD and anti-CD3-PE antibody (SP34-2), and counted
on a guava cytometer (EMD Millipore). 2×104 cells were stained with CD3-Ax700
(SP34-2), CD4-PerCP-Cy5.5 (L200) and CD8-APC-Cy7 (SK1) antibodies and AVID Aqua
viability dye (Invitrogen) and analyzed on a LSR II flow cytometer (Becton Dickinson and
Company). Live cells were gated for CD3+. Data represent the proportion of CD4+ and
CD4+CD8+ cells from the CD3+ gate.
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RESULTS
Previous reports have demonstrated robust infectivity in multiple macaque species using the
Clade C env chimeric virus SHIV-1157ipd3N4 [18,21,46]. To evaluate the response of
animals infected with this virus to antiretroviral therapy (ART), we first infected two
pigtailed macaques with 9,500 50% tissue culture infectious doses (TCID50) of SHIV1157-
ipd3N4 by intravenous (IV) administration. Peak viremia of 1–2×107 viral RNA copies per
mL plasma was observed in both animals two weeks after infection (Figure 1). Viral set
point was maintained at approximately 1×105 copies/mL, and persisted for 20 weeks in the
absence of antiretroviral therapy. To evaluate the response of our SHIV-infected animals to
a 3-drug ART regimen, we began daily administration of PMPA (20 mg/kg, subcutaneous
injection), FTC (40 mg/kg, subcutaneous injection), and Raltegravir (150 mg, dosed orally
with food two times per day) at 27 weeks post-infection. In both animals, a rapid drop in
viral load of approximately 4 logs was observed over the course of the first two weeks of
ART administration. Subsequently, animal Z09144 maintained suppressed viral loads at or
below 100 copies/mL plasma, while viral suppression in animal Z09087 was slightly less
robust; however, at eight weeks post-ART, both animals’ plasma viral loads were below 50
copies/mL (Figure 1). These results suggest that IV infection of pigtailed macaques with
SHIV1157-ipd3n4 follows similar kinetics to those previously described for intrarectal
challenge, and that 3-drug ART leads to a durable and robust suppression of plasma viremia.

To assess the depletion of circulating helper T-cells after SHIV challenge, we quantified
CD3+CD4+ cells in peripheral blood following infection with SHIV1157-ipd3N4.
Consistent with past results, decrease in CD4+ T-cell count following infection in these
animals was modest (Figure 2A). Whereas counts ranged between 600 and 1000 cells/μL
whole blood prior to infection, we observed a nadir count of approximately 500 cells/μL
post-infection, corresponding with peak viral load at 2 weeks post-infection (Figure 1). Cell
counts rebounded to 1100 (animal Z09087) or 1400 (animal Z09144) cells/μL at 4 weeks
post-infection, and gradually declined to 400 cells/μL at week 26 post-infection. These data
are consistent with previous findings in SHIV1157-ipd3N4-infected pigtailed macaques
[18]. Initiation of ART led to an immediate and sustained increase in CD3+CD4+ cells in
peripheral blood. By week 28, levels approximated those found prior to SHIV challenge.
These findings demonstrate that our SHIV-macaque model follows the predicted dynamics
of T-cell depletion in peripheral blood, and that administration of ART restores CD3+CD4+

counts to pre-infection levels.

In rhesus macaques, the depletion of gut-associated CD4+ T-cells following infection with
SHIV1157-ipd3N4 follows a more dramatic course than depletion of T-cells in peripheral
blood [18]. Therefore, we examined the percentage of CD4+ T-cells in gut biopsies taken
from the duodenum and jejunum (“upper GI”) and colon (“lower GI”) of our pigtailed
macaques. As shown in Figure 2B, CD4+ cells made up 26.4% of the total CD3+ cell count
in upper GI biopsy samples, and 33.7% in lower GI biopsy samples for animal Z09087; data
are not shown for animal Z09144 due to a surgical complication during the week 3 GI
biopsy. At week 3 after SHIV challenge in animal Z09087, the proportion of CD4+ T-cells
dropped to 5% in both upper and lower GI. We also measured the proportion of CD3+ cells
that expressed both CD4 and CD8. These CD4+CD8+ double positive cells in the gut have
been previously shown to be highly active, highly CCR5-expressing T-cells that are primary
targets for SIV infection in macaques [36,38,50]. Consistent with these findings, double
positive T-cells from upper and lower GI biopsies were significantly depleted in animal
Z09087. At weeks 11 and 26 post-infection, double positive cells rebounded at a slower rate
relative to CD4 single-positive cells (Figure 2). A final GI biopsy was performed at week 29
post-infection, two weeks after initiation of ART therapy. Proportions of CD4 single-
positive cells from upper and lower GI biopsies displayed a modest increase following
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initiation of ART, while double positive cells increased robustly, especially in duodenum/
jejunum. Collectively, these results confirm that gut associated helper T-cells, especially
double positive cells, are preferential targets for SHIV-dependent depletion, and that ART
restores their levels proportionally.

As a final measure of our animals’ response to SHIV1157-ipd3N4 challenge and
antiretroviral therapy, we measured anti-SHIV antibodies in serum, using ELISAs directed
against SIVmac239, the backbone of SHIV1157-ipd3N4, and against gp120 from HIV-1
SF162 (Figure 3). Anti-SIVmac239 antibodies were first detected in animal Z09144 at 4
weeks post-infection, and in animal Z09087 at 5 weeks post-infection (Figure 3A). Anti-
HIV gp120 antibodies were detected in both animals 4 weeks after infection (Figure 3B).
Consistent with past results [18], antibody titers increased to approximately 1×105 at 25
weeks post-infection. Following initiation of ART at week 27, these titers dropped by 0.5–1
logs. These data show that humoral immune response to SHIV1157-ipd3N4 arises at the
predicted timepoints post-infection, and is reduced following ART-mediated suppression of
SHIV viremia.

Finally, we investigated whether the time point at which ART was initiated affected the
levels of suppressed plasma viremia in our animals. We challenged three animals with the
same intravenous dose of SHIV-1157ipd3N4 as Z09087 and Z09144, and then initiated
ART at 8 weeks post-infection, rather than 27 weeks post-infection. Figure 4 shows viral
load, peripheral blood CD4+ T-cell counts, and antibody response from these three animals,
Z09179, Z09069, and Z09172. Peak viral load and viral set point in these animals resembled
those recorded for Z09144 and Z09087 (Figure 4A), as did dynamics of CD4+ depletion in
peripheral blood (Figure 4B) and anti-SIV and anti-HIV antibody production (Figure 4C and
4D). Importantly, ART mediated similar kinetics of viral suppression, CD4+ rebound, and
reduction in anti-SHIV antibody response at 8 weeks (Figure 4) as compared to 27 weeks
after infection (Figure 1, 2, 3). One exception was that suppressed viral load took longer to
stabilize in the animals receiving ART 27 weeks post-infection relative to the animals
receiving ART 8 weeks post-infection. In sum, these results suggest that viral evolution
between weeks 8 and 27 post-infection does not significantly impact response to our 3-drug
ART regimen.

DISCUSSION
Here, we show the dynamics of SHIV viremia, CD4+ T-cell counts and serological
responses in five pigtailed macaques prior to and following the initiation of ART. To our
knowledge, this is the first study demonstrating robust response to ART in a pathogenic env-
SHIV model: 3-drug ART is capable of suppressing SHIV viremia in our animal model to
levels approaching those associated with suppression in human patients. Our findings also
suggest that the timing of ART initiation during chronic SHIV infection does not affect the
dynamics of drug-mediated viral suppression. Finally, we observe that viral kinetics
following IV challenge with SHIV-1157ipd3N4 parallel results observed in intrarectally
challenged macaques.

The key finding from these studies is that administration of 3-drug ART consisting of
PMPA, FTC, and Raltegravir results in a four-log decrease in plasma viral load in our
animals. Most recently, 3-drug ART studies in pigtails have focused on the use of PMPA/
FTC/Efavirenz in RT-SHIV infected animals [7,23]. Since our SHIV/macaque model
utilized a virus containing SIV RT, we could not use the non-nucleoside reverse
transcriptase inhibitor Efavirenz in our experiments [54]. Instead, we added the integrase
inhibitor Raltegravir; although this drug has been widely used in rhesus macaques
[15,32,44], this is, to our knowledge, the first demonstration of its efficacy in a pigtail
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model. In combination with PMPA and FTC, Raltegravir showed great success in
suppressing viral loads in vivo using the same dosing parameters as rhesus macaques,
suggesting that drug metabolism is not adversely affected in pigtails versus rhesus. Notably,
PMPA and FTC are much better characterized in the pigtail model than Raltegravir, and thus
the success of these drugs in our model is unsurprising [12,43]. In sum, our 3-drug ART
regimen was effective in suppressing env-SHIV viremia in M. nemestrina. In future
experiments, it will be important to demonstrate that this regimen is equally effective with
other SIV and SHIV strains. Recent experiments have also sought to evaluate various
intensified ART regimens in rhesus macaque models that suppress viral loads to levels
associated with suppression in human patients [44]. It will also be important to evaluate
whether intensification with additional ART drugs is capable of driving plasma viremia to
lower levels in our SHIV/macaque model.

A related finding in this work was that initiation of 3-drug ART following acute infection (8
weeks post-infection) versus during chronic infection (27 weeks post-infection) did not
noticeably affect the extent of ART-mediated viral suppression. A continuing debate within
the field centers on the optimal point at which to start ART in nonhuman primate models;
while earlier initiation likely results in more robust suppression to levels associated with
pharmacological control in human patients, later initiation is more consistent with the time
frame at which patients initiate therapy [8,15,30,39]. Our findings suggest that viral
replication is comparably susceptible to ART administered either 2 months or 6 months
post-infection. Sequencing of the viral population at various time points before and after
ART will be important to better understand viral evolution at various time points pre-ART,
and the ability of our drug regimen to restrict these populations.

Pre-ART data demonstrated that our intravenous SHIV challenge led to peak viral loads,
viral set points, and CD4+ T-cell depletion dynamics that were highly comparable to
previous intrarectal challenge experiments [18]. The extent to which viral sequence [24,33]
and pathogenesis [6,47] varies between mucosally- and intravenously-inoculated subjects
remains unclear. Our results imply that our SHIV-1157ipd3N4 inoculum, which was
expanded on rhesus macaque PBMC prior to inoculation, replicates comparably,
independent of challenge route. We are currently sequencing our viral stocks, as well as
infected animals, to better understand the dynamics of viral evolution and selection in this
model following either intrarectal or intravenous challenge.

In conclusion, we have demonstrated effective suppression of SHIV viremia in pigtailed
macaques after administration of 3-drug ART. The timing of ART initiation up to 6 months
after SHIV challenge had only minor effects on viremic suppression. These findings are
directly applicable to multiple anti-HIV intervention models, including anti-HIV gene
therapy approaches.
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Figure 1. SHIV-1157ipd3N4 Infection Kinetics in Pigtailed Macaques and Suppression by 3-
Drug ART
Following intravenous challenge with 9,500 TCID50 of SHIV-1157ipd3N4, two pigtailed
macaques (ID’s Z09087 and Z09144) plasma viral loads were monitored by real time RT-
PCR at the indicated time points. Arrow denotes time point at which 3-drug ART was
initiated.
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Figure 2. Depletion of CD4+T-Cells in Peripheral Blood and GI Tract Following SHIV
Challenge and Reconstitution Following ART
A) Following IV challenge, CD3+CD4+ T-cells from hemolysed whole blood were
measured by flow cytometry at the indicated time points. B) Gastrointestinal biopsies were
collected from the upper GI tract and lower GI tract of animal Z09087 5 weeks prior to
infection (Dark blue) or 3 weeks (red), 11 weeks (green), 26 weeks (purple) or 29 weeks
(light blue) post-infection. Collagenase-treated biopsy samples were analyzed for CD3+,
CD4+, and CD8+ cells by flow cytometry. Data shown represent the CD4+, and CD4+CD8+

percentages from the CD3+ gate.
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Figure 3. SHIV-Specific Antibody Responses Before and After ART
A) Following IV challenge, serum samples were collected at the indicated time points and
titered for SIVmac-specific antibodies by whole virus ELISA. B) Same as A), except titer
was determined for HIV-1SF162 gp120 env.
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Figure 4. ART Therapy Similarly Suppresses SHIV Viremia in 8-Week Post-Infection Animals
A) Plasma viral load was measured as described in Figure 1A, for three animals receiving
ART 8 weeks after SHIV challenge. B) CD3+CD4+ T-cell counts from hemolysed whole
blood were measured from animals receiving ART 8 weeks after infection. C) SIV-specific
and D) HIV-1SF162 gp120 env-specific antibody responses in 8-week post-infection, ART-
treated animals.
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