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Abstract

Several stories in the popular media have speculated that it may be possible to infer from the brain
which word a person is speaking or even thinking. While recent studies have demonstrated that
brain signals can give detailed information about actual and imagined actions, such as different
types of limb movements or spoken words, concrete experimental evidence for the possibility to
“read the mind,” i.e., to interpret internally-generated speech, has been scarce. In this study, we
found that it is possible to use signals recorded from the surface of the brain (electrocorticography
(ECoQ)) to discriminate the vowels and consonants embedded in spoken and in imagined words,
and we defined the cortical areas that held the most information about discrimination of the
vowels and consonants. The results shed light on the distinct mechanisms associated with
production of vowels and consonants, and could provide the basis for brainbased communication
using imagined speech.

1. Introduction

Recent studies have shown that brain-computer interface (BCI) systems can use brain
signals that are usually related to motor movements or motor imagery [1-5] to select from
different characters or words [6-10]. While this approach is effective, it has distinct
limitations that include a relatively slow communication rate and extensive subject training.
This training requirement could be reduced, and perhaps BCI performance further increased,
if it was possible to directly, i.e., without the use of intermediate choices (such as selection
of characters out of a group), determine what specific word the users wished to
communicate through their brain signals [11]. However, compared to brain signals in the
motor system, which are often governed by relatively simple (e.g., linear or cosine)
relationships with parameters of movements, language processing appears to be more
complex. It involves a widely distributed neural network of distinct cortical areas that are
engaged in phonological or semantic analysis, speech production, and other processes [12—
14]. Nevertheless, recent studies have begun to elucidate the relationship of brain activity
with different aspects of receptive or expressive, auditory or articulatory language function
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[15-19]. For example, functional magnetic resonance imaging (fMRI) of auditory and other
cortices was shown to hold information about different monophthongs (i.e., /a/, /i/, /u/) that
the subjects listened to [17], scalp-recorded electroencephalography (EEG) was shown to
hold information about the rhythm of syllables [19] and some information about individual
vowels (i.e., /a/, /uf) [18], and electrocorticography (ECoG) was used to decode several
spoken words [20]. However, concrete evidence that brain signals could allow for the
identification of components of words has remained largely elusive. Identification of the
neural correlates of speech function could allow for determination of those cortical areas that
allow for discrimination of words or their components. While previous studies have already
demonstrated evidence for the neural basis of differential processing of vowels and
consonants [21-25], this evidence has either been indirect or inconsistent, and has not
pinpointed the anatomical location of consonant-vowel dissociation.

ECoG recordings from the surface of the brain have recently attracted increasing attention
because they combine relatively high spatial with high temporal resolution. Some of these
ECoG-based studies [26—33] have begun to investigate neural correlates of speech
processing. These and other studies [34—38] consistently showed that ECoG amplitude over
anatomically appropriate areas decreased during a task in mu (8-12 Hz) and beta (18-26
Hz) frequency bands and increased in gamma (>40 Hz) bands. Other studies [39-44] have
shown that this information in ECoG can be used to reconstruct or map the different aspects
of motor or language function.

In our present study, we show for the first time that it is possible to decode vowels and
consonants that are embedded in spoken or imagined monosyllabic words from ECoG
signals in humans, and also characterize the cortical substrates involved in the
discrimination within distinct vowels and consonants, respectively.

2. Methods
2.1. Subjects

The subjects in this study were eight patients with intractable epilepsy who underwent
temporary placement of subdural electrode arrays to localize seizure foci prior to surgical
resection. They included two men (subjects F and I) and six women (subjects A, B, C, D, E,
and G). (See Table 1 for additional information.) All gave informed consent for the study,
which was approved by the Institutional Review Board of Washington University School of
Medicine and the Human Research Protections Office of the U.S. Army Medical Research
and Materiel Command. Each subject had an electrode grid (48 or 64 contacts) placed over
frontal, parietal and temporal regions (see Figure 1 for general system setup and Figure 2 for
approximate electrode locations). Grid placement and duration of ECoG monitoring were
based solely on the requirements of the clinical evaluation, without any consideration of this
study. As shown in Figure 2, the location of the implanted grid varied across subjects. These
grids consisted of flat electrodes with an exposed diameter of 2.3 mm and an inter-electrode
distance of 1 cm, and were implanted for about one week. The electrodes for all subjects
except subject G were localized over the left hemisphere. Following placement of the
subdural grid, each subject had postoperative anteriorposterior and lateral radiographs to
verify grid location.

2.2. Experimental Paradigm

During the study, each subject was in a semi-recumbent position in a hospital bed about 1 m
from a video screen. In separate experimental runs, ECoG was recorded during two different
conditions: overt or covert word repetition in response to visual word stimuli. Throughout
the paper, we will refer to these two tasks as ‘Overt’ and ‘Covert.” The visual stimuli
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consisted of 36 monosyllable words that were presented on a video monitor for 4 seconds,
followed by a break of 0.5 seconds during which the screen was blank. Each of these 36
words was composed of one of four different vowels (i.e., /¢/, /ee/, /i:/ and /u:/, which are
well separable in formant space) and one of nine consonant pairs (i.e., /b_t/, /c_n/, /h_d/, /
I_d/,Im_n/, Ip_pl, Ir_dl, [s_t/, It_n/, which were chosen to create actual words, rather than
pseudowords, in combination with the vowels). These vowels and consonants were
integrated in a consonant-vowel-consonant (CVC) structure (see Table 2 for the list of all
words.) This structure allowed us to group the words based on either the vowel within the
word (_V_) or the leading/trailing consonant pair (C_C). In other words, each word was
uniquely identified by its vowel and consonant pair.

2.3. Data Collection

In all experiments, we recorded ECoG from the electrode grid using the general-purpose
software BC12000 [45, 46] that was connected to five g.USBamp amplifier/digitizer systems
(9.tec, Graz, Austria). Simultaneous clinical monitoring was achieved using a connector that
split the cables coming from the subject into one set that was connected to the clinical
monitoring system and another set that was connected to the BC12000/g.USBamp system.
Thus, at no time was clinical care or clinical data collection affected. All electrodes were
referenced to an inactive electrode. In a subset of subjects (B, C, D, E, F), the verbal
response was recorded using a microphone; in the remaining subjects, speech onset was
detected using the g. TRIGbox (g.tec, Graz, Austria). ECoG signals and the microphone
signal were amplified, bandpass filtered (0.15-500 Hz), digitized at 1200 Hz, and stored by
BCI2000. We collected 2—7 experimental runs from each subject for each of the two
conditions (i.e., overt or covert word repetition). Each run included 36 trials (140 trials total
per condition, on average). All eight subjects participated in the experiments using overt
word repetition; a subset of six subjects (A, B, C, D, E, F) participated in experiments using
covert word repetition. The subjects completed 72-216 trials for overt speech (140 on
average) and 72-252 trials for covert speech (126 on average). Each dataset was visually
inspected and all channels that did not contain clean ECoG signals (e.g., ground/reference
channels, channels with broken connections, etc.) were removed, which left 47-64 channels
for our analyses.

2.4. 3D Cortical Mapping

We used lateral skull radiographs to identify the stereotactic coordinates of each grid
electrode with software [47] that duplicated the manual procedure described in [48]. We
defined cortical areas using Talairach's Co-Planar Stereotaxic Atlas of the Human Brain [49]
and a Talairach transformation (http://www.talairach.org). We obtained a 3D cortical brain
model from source code provided on the AFNI SUMA website (http://afni.nimh.nih.gov/
afni/suma). Finally, we projected each subject's electrode locations on this 3D brain model
and generated activation maps using a custom Matlab program.

2.5. Feature Extraction and Classification

We first re-referenced the signal from each electrode using a common average reference
(CAR) montage [39]. Then, for every 50 ms and for each channel, we converted the time-
series ECoG signals of the previous 333 ms into the frequency domain using an
autoregressive (AR) model [50] and an empirically determined model order (25)1. Using
this AR model, we calculated spectral amplitudes between 0 and 200 Hz in 2-Hz bins. We
then averaged these spectral amplitudes in three different frequency ranges, i.e., 8-12 Hz,
18-26 Hz, and 70-170 Hz (excluding 116-124 Hz). Figure 3B shows an example of

This model order typically maximized identification of task-related ECoG activity in offline analyses of this and other experiments.
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normalized ECoG time-frequency spectrograms recorded from the location marked in
Figure 3A (channel 38, superior temporal gyrus, Brodmann Area 22) for Subject A. The two
spectrograms in this figure were generated across responses for all word stimuli containing /
i:/ and /s/, respectively. Figure 3C shows an example of the distributions of samples in two-
dimensional feature space (i.e., ECoG spectral amplitude within 70-170 Hz between 900-
1233 ms, and within 8-12 Hz between 1100-1433 ms, respectively). In this study, we chose
70-170 Hz as the gamma frequency band, which is the same band we used in a different
study using the same dataset [51]. Different groups or studies have selected different
frequency bands (e.g., Crone’s group used 80-100 Hz [26, 27], Knight’s group used 80-200
Hz [29]). In general, a large number of ECoG studies have shown that functional activation
of cortex is consistently associated with a broadband increase in signal power at high
frequencies, i.e., typically >60Hz and extending up to 200 Hz and beyond [52]. These high
gamma responses have been observed in different functional domains including motor [53],
language [27], and auditory [26, 31], and different choices of frequency bands have yielded
comparable results [54, 55]. At the same time, recent evidence suggests that this view of a
broadband phenomenon may be an oversimplification [56]. In addition to these
frequencybased features, we also derived the local motor potential (LMP) [39], which was
calculated as the running average of the raw time-domain signal at each electrode. These
four sets of features were derived between 500-2500 ms after stimulus onset using a
window size of 333 ms (50 ms stepping size). We extracted from each trial a total of 136
features (four different sets of features and 34 samples per feature). Because we only used
ECoG information after 500 ms, and because no subject had coverage of visual areas, our
ability to infer vowels or consonants was mainly based on interpretation of neural processes
involved in overt/covert word repetition rather than of processes involved most directly with
stimulus presentation.

Then, separately for each channel and analysis (overt or covert speech, vowels or
consonants), we ranked the ECoG features using the MRMR (Maximum Relevance and
Minimum Redundancy) criterion [57]. We submitted the best (35 or 40 for decoding
consonants or vowels, respectively) features at each location to a Naive Bayes classifier and
used the optimized features to decode from each trial the vowel and consonant pair group for
the target word of that trial, respectively.

We first asked if we could determine from the brain signals in each trial which of the four
vowels (i.e., /e/, I/, [i:/, Ju:l) was present in the spoken or imagined word. For each vowel,
the classifier was constructed and evaluated using ten-fold cross-validation. To do this, each
dataset was divided into ten folds, the parameters of the Bayes classifier were determined
from 9/10t" of the dataset as training set and tested on the remaining 1/10t" test set. This
procedure was then repeated ten times — each time, a different 1/10™ of the dataset was used
as the test set. The decoder for each vowel (i.e., including all nine different words with
different consonant pairs) was constructed by modeling ECoG features associated with that
vowel using a Naive Bayes classifier.

Then, using the same methods, the classifier identified the consonant pair in each trial (e.g.,
B_T,H_D,L_D,orP_P). To allow for a better comparison of the results between vowels (4
possible vowels) and consonants (9 possible consonant pairs), we selected groups of four
different consonant pairs for classification, and repeated the process for all possible
combinations of four out of nine pairs (i.e., 126 combinations). The classification result for
each combination of consonant pairs was the average result achieved for ten-fold cross
validation. We reported accuracies of the averaged results across all possible combinations
for the best location.

J Neural Eng. Author manuscript; available in PMC 2013 September 13.
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Finally, we determined which vowel or consonant pair was most accurately identified by the
procedures above. To do this, we first determined the actual and decoded vowel or
consonant for each trial using the analyses described above. Then, we simply tabulated the
frequency that any actual vowel/consonant resulted in decoding of any of the vowels/
consonants. The results are shown in the confusion matrices in Tables 4-7, separately for
vowels and consonant pairs and for overt and covert speech. These confusion matrices give
indications which vowels/consonants were most similar or most discriminative.

Discriminative Mapping

For each subject, we derived a measure of classification accuracy from each electrode.
Therefore, we were able to ask which cortical locations held the most information about
discrimination of the vowels or consonants, i.e., which electrodes had a classification
accuracy that was least likely due to chance.

Specifically, we first computed, for a given number of samples, the parameters (i.e., mean
and standard deviation) of the normal distribution of accuracy values expected for a
fourclass problem using a randomization test. In this test, we produced 10000 subsets of
samples, where each sample had one of four random labels. We then calculated the accuracy
of each subset of samples by comparing the random labels to the true labels. Based on these
distributions (i.e., one distribution for each possible number of samples in our evaluations)
of 10000 accuracy values, we calculated the expected mean and standard deviations of
accuracy values. We then derived a z-score for the observed accuracy level as the difference
of that accuracy to the mean in units of standard deviation. Finally, we used a custom
Matlab program to project the z-scores at all locations on to a three-dimensional template
cortical brain model (i.e., cortical discriminative maps).

2.7. Spatial Overlap

3. Results

We then asked to what extent the cortical areas that were involved in the processing of
vowels and consonants or of overt and covert speech overlapped with each other. To do this,
we quantitatively evaluated the spatial overlap of the respective cortical discriminative maps
using the reshuffling technique described in a recent study [58]. Specifically, we first
determined the z-score at each location as described above, and set all z-scores below an
empirically derived threshold (that is listed below) to zero. Second, we quantified the spatial
overlap between two conditions (e.g., overt and covert) by calculating the dot product of the
two sets of z-score values. This calculation was confined to those locations that had non-
zero z-scores for at least one of the two conditions. Third, we created a surrogate distribution
of dot product values by randomly reshuffling electrode positions for one of the two
conditions, calculated the dot product, and repeated this process 106 times. Finally, we used
this surrogate distribution to estimate the statistical significance of the overlap value that we
observed for the correct (i.e., unshuffled) locations. We computed these significance values
for individual subjects (using a z-score threshold of 1.64, which corresponds to a p-value of
0.05) and also combined for all subjects (i.e., simply by concatenating locations and z-scores
across all subjects, using a z-score threshold of 2, which corresponds to the threshold shown
in Fig. 2).

3.1. Decoding Performance

The average classification accuracies for decoding vowels across all subjects were
40.7+£2.7% (overt speech) and 37.5+5.9% (covert speech) (see Figure 4 and supplementary
material Video 1). For decoding consonants, the average classification accuracies across all
subjects for best location were 40.6+8.3% (overt speech) and 36.3+9.7% (covert speech)

J Neural Eng. Author manuscript; available in PMC 2013 September 13.
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(see Figure 4). These classification accuracies were substantially better than those expected
by chance (i.e., 25% for vowels and also for consonants) as evaluated using the
parameterized bootstrap resampling test with 10000 repetitions that is described above. In
particular, for overt speech, accuracies were significant in all subjects (p<0.004) for vowels
and in most subjects (7/8 subjects, p<0.0022) for consonants (see Table 3 for details). For
covert speech, accuracies were significant in most subjects (5/6 subjects, p<0.007) for
vowels and in the majority of the subjects (4/6 subjects, p<0.03) for consonants (see Table 3
for details). Statistical analyses using paired Wilcoxon signed-rank test for eight subjects
(overt speech) and six subjects (covert speech) did not reveal significant differences in
accuracy for consonants and vowels or overt and covert speech.

The classification accuracies for each vowel and consonant pair are shown in confusion
matrices that are presented in Tables 4—7. These results show that the best averaged
classification performance across all subjects, for both overt and covert speech, was
achieved for the vowel /u:/ and the consonant pair ‘R_D’. The corresponding accuracies
were 39%, 43% and 33%, 28% (i.e., vowels/overt, vowels/covert, consonants/overt,
consonants/covert, respectively), all of which were above chance level (i.e., 25% for four-
vowel matched groups classification and for nine-consonant-pair matched groups
classification).

These results demonstrate that it is possible to infer the vowels and consonant pairs
independently in spoken and imagined words using ECoG signals in humans.

3.2. Cortical Discriminative Maps

Figure 5 shows the cortical discriminative maps that indicated the areas that held the most
information about vowels and consonants from all subjects. Figure 6 and Figure 7 show the
same results for individual subjects. The results shown in Figure 5 demonstrate that the
cortical areas that best discriminated vowels or consonants in the overt speech tasks were
located in primary motor cortex (PMC, Brodmann’s Area (BA) 4), premotor cortex (BA 6),
Broca’s area (BA 44/45) and also posterior superior temporal gyrus (STG, i.e., the posterior
part of BA 22). For covert speech tasks, the best cortical areas were localized over small foci
in temporal and frontal regions. In addition, for decoding consonants, optimal sites tended to
be located surrounding Wernicke’s area, whereas for vowels, optimal sites tended to be
centered surrounding the premotor regions with smaller involvements of Broca’s and
Wernicke’s areas. The results shown in Figure 6 indicate that the discriminative maps are
relatively consistent for overt word repetition. Discriminative information is mainly located
in the frontal lobe (premotor cortex and Broca’s area) and also in superior temporal regions.
In contrast, the discriminative maps shown in Figure 7 are more distributed and variable
across subjects for covert word repetition.

Finally, we asked whether the discriminative cortical maps for overt and covert speech or for
vowels and consonants were different from each other. Using the same reshuffling technique
described above, our results demonstrate that for both individual subjects and also for all
subjects combined, the cortical discriminative maps did not overlap between vowels and
consonants (p>0.26 and p=1, for overt and covert speech, respectively), or between overt
and covert speech (p>0.94 and p>0.37, for vowels and consonants (except for Subject A,
p<0.05 when evaluating subjects individually), respectively). These results suggest that the
neural substrates involved in discrimination of vowels and consonants during overt and
covert speech tasks are different. However, the fact that these areas are statistically different
does not preclude the possibility that they do not share some commonalities. In fact, Figure
5 shows that the cortical patterns for vowels and consonants during overt speech tasks
involve some common areas over premotor cortex and parts of middle temporal regions.
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4. Discussion

In this study, we showed that ECoG signals can be used to decode vowels and consonants in
spoken or imagined words. Discriminating different components of speech, such as
phonemes, vowels, consonants, or words, could provide an approach for rapid selection of
one of multiple choices that may be quite intuitive. Thus, the results presented here may
ultimately lead to speech-based BCI systems that may provide effective communication with
only little training.

In this context, it is interesting to note that the decoding accuracies that we reported in this
study were similar for overt and covert speech tasks. At the same time, these decoding
accuracies reflect accuracies achieved for individual locations. The discriminative maps
shown in Figure 5 suggest that overt speech allows for discrimination in larger cortical areas
(i.e., not only auditory areas, but also motor areas) than does covert speech. This is
consistent with a recent report that found that covert speech does not engage motor areas
[51]. The fact that multiple locations, and not just one, hold information about vowels or
consonants also points to a straightforward way to further improve the classification
accuracies shown here.

We also began to elucidate the neural substrate associated with vowel and consonant
production. Previous behavioral studies based on lesion cases and lexical decision tasks have
shown that the brain dissociates vowel and consonant processing [21, 22], which could be
explained by the differential demands on prosodic and lexico-semantic processing placed by
vowels and consonants [21], respectively. Our results give quantitative evidence that
production of different vowels and consonants is associated with different ECoG activity
patterns. These differential patterns are predominantly located in premotor and motor areas
for spoken vowels/consonants, and in different speech-related areas for imagined vowels/
consonants. This finding supports the notion that overt word repetition is composed partly of
motoric processes of speech production [29, 30, 59-61] that contribute less to covert word
repetition. Moreover, these results suggest that covert word repetition consists at least in part
of imagining the perceptual qualities of the word (i.e., imagining what the word sounds like)
rather than of processes that simulate the motor actions necessary for speech production.
This is in marked contrast to recent findings [58] that demonstrated that overt and covert
motor performance results in similar ECoG activation patterns. One should keep in mind,
however, that it is unclear whether our results will generalize to speech tasks other than the
word repetition task used here.

No previous study demonstrated that different vowels or consonants that are embedded in
different spoken or imagined words can be discriminated using brain signals. Our results
show that vowels and consonants can be decoded independently, and thus provide additional
evidence for the dissociation within different vowels or consonants. Decoding vowels or
consonants across groups of words is a more complicated problem than, for example, simply
decoding one of four spoken vowels, and also complicates the corresponding interpretations
(e.g., misclassification of /e/ in /u:/ in Table 6 and /&/ in /¢/ in Table 7). At the same time,
our results show that the vowel /u/ overall provided the best classification rates for both
overt and covert speech. This observation supports the hypothesis that formant-based
features may play an important role in brain-based discrimination of the spoken/imagined
different vowels.

In conclusion, the results shown in this paper may ultimately lead to BCI systems based on
overt or covert speech. Furthermore, our findings add empirical evidence that there is not
only cortical dissociation between processing of different vowels or consonants in spoken
and imagined words, but also between processing of vowels and consonants. Further
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research is needed to improve detection accuracy and/or extend these results to more vowel/
consonant categories. In particular, use of information from different locations, and not just
individual locations as done here, should prove useful.

Supplement

ary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic diagram of the experimental setup.
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Figure 2.
Electrode locations in the eight subjects. Electrodes were projected onto the left hemisphere
for subject G.
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Figure3.
Example of ECoG features from one subject. (A) 3D brain template with one location

marked with a green star; (B) Normalized spectrogram of ECoG signals recorded at the
location marked in (A), averaged across all spoken words with the same vowels, i.e., /i:/
(left) and /¢/ (right); (C) Distribution of samples in two-dimensional feature space (i.e.,
gamma and mu amplitudes marked with blue and red ellipses in (B), respectively) for
vowels /i:/ (circles) and /e/ (squares).
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Figure4.

Classification accuracies of the ECoG-based decoding of vowels and consonants during
overt and covert speech, respectively. Red lines: median values. Box plots: standard
deviations. Black lines: minimum/maximum. Chance accuracy is 25%. (A) consonant
decoding accuracy for overt/covert word repetition; (B) vowel decoding accuracy for overt/
covert word repetition.
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OECh

Figureb.
Color-coded cortical discriminative maps for vowels or consonants and for actual or

imagined speech, respectively. The color-coded (see color bar) cortical patterns show the
locations with the best decoding performance and were superimposed for all left-hemisphere
subjects (seven for actual speech and six for imagined speech, respectively). Color gives z-
scores indicating how much better accuracy at the respective location was compared to
chance (p-value: 0.0023 at a z-score of 2). A and B: Discriminative maps for decoding
vowels and consonants during overt word repetition. C and D: Discriminative maps for
decoding vowels and consonants during covert word repetition.

J Neural Eng. Author manuscript; available in PMC 2013 September 13.



Pei et al. Page 16

e\
S0

4
I
0

Figure6.
Cortical discriminative maps for individual subjects and for vowels (left panel) and for
consonants (right panel) in overt speech.
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Figure7.
Cortical discriminative maps for individual subjects and for vowels (left panel) and for
consonants (right panel) in covert speech.

J Neural Eng. Author manuscript; available in PMC 2013 September 13.



Page 18

Pei et al.

NIH-PA Author Manuscript

uonnadal piom HaAQ [eoly Y& d N I
uonnadai pJom LaAQ [esodwisy-Je1aried-jeiuoly ybiy S| 4 Ly 9
uonnadal pIom LaA0D/UBAQ  [edodwidl-[elslied-[ejuoly Ya] d N [ 4q
uonnadal pIoM LBA0D/BAQ  [elodwia)-|eiatied-[eiucl) 1ye o 4 6 3
uonnadal pJom LBA0D/AIBAQ Jejuoly Ya S| Bl 514 a
uonnadal pJom LBA0D/MBAQ lejuoly Ya o 4q 85 o}
uonnadal plom LaA0D/MBAQ  |eJodwia)-[elstied-[ejuot) Ya | 4 a4 <l
uonnadal pIom LBA0D/MBAQ  [edodwis)-[elslied-[ejuoly Yo S| q 9T v
syse L o101 pHo ssupspueH xes 8y 1[gns

T alqel

NIH-PA Author Manuscript

$8]1404d [eAIUID

NIH-PA Author Manuscript

J Neural Eng. Author manuscript; available in PMC 2013 September 13.



Page 19

Pei et al.

NIH-PA Author Manuscript

uooy j00s poos dood uoow pme] pooy UOOD J00q  fin/
uss) Jeas peas dead uesw  pes] peay Uy  Jeaq [/
uey 1es pes ded uew pe| pey ued 1eq 12/
us} 18s  par  dad  usw  pa]  peay usy  19q 3/
ul 1s pJ4 dd uvuw p py uUd 149 O2AD

¢?olqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

‘1INWINS PJOM J0 1517

J Neural Eng. Author manuscript; available in PMC 2013 September 13.



1duasnuey Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

Pei et al.

Table 3

Page 20

Statistical analysis of the classification accuracy. In this table, ‘n’ is the number of trials; ‘z-scores’ indicates

how many standard deviations a particular accuracy level is better than that expected by chance.

Overt Speech

Covert Speech

Vowels
(n)/(z-scor es)

Consonant
(n)/(z-scor es)

Vowel
(n)/(z-scor es)

Consonant
(n)/(z-scor es)

® m m O O w >

H

p-value

72/3.8
108/3.6
216/5.4
216/3.9
216/4.7

72/3.2
144/5.3
72/2.66
p<0.004

72/5.5
108/2.03
216/4.8
216/7.7
216/5.4
72/2.1
144/5.7
72/1.3

p<0.022
(except subject H)

72/4.1
108/1.2
180/2.8

72/3.2

252/2.48

7212.7

p<0.007
(except subject B)

72/5.9
108/2.08
180/1.3
72/2.3
252/1.44
72/1.91

p<0.03
(except subjects C
and E)
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Confusion matrix of decoding vowels for overt speech. The column labels correspond to the predicted vowels

pair in a given trial. The row labels correspond to the correct vowels pair. The values in each cell give

frequencies in percent and the standard deviation calculated across subjects. The best vowel pair /u:/ is marked

in red.
Accuracy (%) el led fizl Ju:/
el 27.72+7.92 18.76+6.27  24.43+8.29  29.09+4.55
el 21.38+£11.83 34.09+16.00 23.79+9.45 20.74+5.78
liz/ 19.82+6.92 17.88+8.22  38.80+7.71 23.48+8.31
Ju:/ 19.74+6.38 19.64+4.77  21.70+7.36 38.91+7.68
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Table 7

Confusion matrix of decoding vowels for covert speech.

Accuracy (%) Iel lee li:/ Ju:/
Il 40.49+12.32 19.16+4.01 19.01+6.09 21.33+12.76
[eel 27.93+6.20  26.63+4.72 23.70+6.01 21.74+8.71
fi:l 22.1949.88  27.03+7.96 28.69+7.08  22.09+9.98
Ju:/ 20.8249.59  16.00+7.76  20.45+9.25 42.72+9.35
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