
Missing Data Methods for Partial Correlations

Gina M D’Angelo*, Jingqin Luo, and Chengjie Xiong
Division of Biostatistics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis,
MO 63110, USA

Abstract
In the dementia area it is often of interest to study relationships among regional brain measures;
however, it is often necessary to adjust for covariates. Partial correlations are frequently used to
correlate two variables while adjusting for other variables. Complete case analysis is typically the
analysis of choice for partial correlations with missing data. However, complete case analysis will
lead to biased and inefficient results when the data are missing at random. We have extended the
partial correlation coefficient in the presence of missing data using the expectation-maximization
(EM) algorithm, and compared it with a multiple imputation method and complete case analysis
using simulation studies. The EM approach performed the best of all methods with multiple
imputation performing almost as well. These methods were illustrated with regional imaging data
from an Alzheimer’s disease study.
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Introduction
Recent advancements have fueled biomarker and imaging marker data collection in medical
research studies. Associations between these markers need to be established first prior to
understanding temporal relationships and assessments being made about predictions. In the
early stages of medical research, data analysis is exploratory and often the direction of
relationships between variables is unknown. A first step in medical research is to identify
which markers are associated and correlation coefficients can assist in statistical assessments
of this endeavor. For example, in the neuropsychological area and Alzheimer’s disease area
we often are interested in how various brain regions are structurally and functionally related.
To provide a hint of the disease pathway, studying neurodegenerative diseases, particularly
Alzheimer’s disease, among those who are cognitively normal may shed light on the earlier
stage of the disease. Obtaining some knowledge of how various regions are structurally
related can point us to future research directions.

A common measure to assess whether imaging markers are related is the Pearson correlation
coefficient; however it is often necessary to adjust for other variables such as demographic
and other marker data to remove potential confounding effects. Partial correlations can be
utilized to correlate two variables while adjusting for other variables. Often times, data are
partially missing. Missing data approaches have mainly been devoted to regression models
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with minimal work done in the correlation area. No statistical methods have been developed
to handle missing data in a partial correlation analysis. Our objective here is to develop
statistical methods for partial correlations with missing data.

Missing data is such a common scenario in medical studies. Standard practice for
correlations and partial correlations is to analyze only the data where all observations are
fully observed. This is known as complete case analysis. The mean is typically of interest
and has been addressed through estimating the regression coefficient from regression [1,2]
or estimating the mean from a bivariate distribution [3], typically where the distribution is
bivariate normal and the data are continuous. Here, we are interested in the second order
statistics not the first order statistic.

Some work has been done with correlation estimation and missing data [3,4], however no
literature has been devoted to estimating the partial correlation with missing data. Minami
and Shimizu [5] have proposed a maximum likelihood estimate and restricted maximum
likelihood estimate for a correlation coefficient in a bivariate normal distribution. He and
Nagaraja [6] proposed using estimation based on the concomitants of order statistics from
the bivariate normal distribution. Their problem was specifically for a continuous variable
and rank-based variable. In a related area, Truxillo [7] examined maximum likelihood
estimation and multiple imputation to estimate the mean and covariance parameters where
there is missing data.

In the presence of missing data, complete case analysis can lead to biased and inefficient
results [1]. An Alzheimer’s disease data set with missing imaging markers motivated us to
extend the partial correlation coefficient using maximum likelihood estimation. We compare
the expectation-maximization (EM) algorithm to complete case analysis and multiple
imputation. We will limit our method to data that are missing at random where the missing
data pattern is permitted to be nonmonotonic. Properties from these missing data methods
will be compared with simulation studies. These missing data methods will be demonstrated
using volumetric, diffusion tensor imaging (DTI), and Pittsburgh Compound-B (PIB) data
from the Adult Children’s Study conducted at the Washington University Knight
Alzheimer’s Disease Research Center.

Methods
Notation and methodology

We define our data to be three continuous variables (X, Y, Z) where we are interested in
correlating X and Y adjusting for Z. Index i=1,..,n indicates the ith subject where there are n
subjects. We assume that V=(X, Y, Z) has a multivariate normal distribution, i.e.
V~MVN(μ,Σ). The likelihood is

(1)

where D=3 is the dimension of V. The log-likelihood is

(2)

The covariance matrix is
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(3)

The partial correlations of x and y adjusting for z can be estimated by

(4)

where the correlation between two variables x and y is

(5)

Since our data are multivariate normal the maximum likelihood estimate (MLE) of the mean

is  and the MLE of the covariance matrix, Σ, is the cross product

. For our paper we assume the data are missing at random where
the missingness depends on the data that are observed and not on the data that are missing.
The missing indicator for x is r1, for y is r2 and for z is r3, where rd=1 indicates not missing
and rd=0 indicates missing for d=1,2,3. The missing data model is p(r1, r2, r3 | x, y, z) = p(r1
| y, z, r2, r3) p(r2 | x, z, r3) p(r3 | x, y).

Pearson correlation and Fisher-z
The main focus of the paper is to estimate the partial correlation. Two strategies are used to
estimate the coefficient and its associated variance: 1) Pearson’s correlation [8]; and 2)
Fisher-z transformation [9-11]. It has been shown that the Pearson correlation coefficient has
an approximate t-distribution with (n–k–2) degrees of freedom [8] where k=1 is the number
of variables partialled out where the standard error is

(6)

The second approach is using the Fisher-z. The Fisher-z approximation [9,10] is a common
measure used for estimation and inference of correlations and partial correlations. RA Fisher
discovered the correlation coefficient is not normally distributed [9,10]; and he suggested a
function of the correlation coefficient that is approximately normally distributed. A property
of the Fisher-z transformation is that its variance is a function of the sample size. When
using the Fisher-z transformation the correlation is first transformed:

(7)

For the Fisher-z transformation,  has an approximately normal distribution of N(0,1/(n-
(p-q)-3)) [8], where p–q is the number of variables conditioned on. In this case we are only
conditioning on 1 variable and the standard error is
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(8)

EM algorithm
Maximum likelihood estimation [1,12-14] is an approach to estimate parameters from the
multivariate normal distribution in the presence of missing data. However, if the
missingness pattern is nonmonotonic then the maximum likelihood estimate (MLE) is not
tractable when factoring the likelihood. If the likelihood cannot be factored the parameter
estimates will not be identifiable. An algorithm that can solve the MLE in general missing
data problems is the expectation-maximization (EM) algorithm. Although the EM is a
powerful tool to solve parameter estimates it can have convergence issues and can be slow.

The joint probability of V is p(v;φ) = p(vobs | φ) p(vmis | vobs, φ) and the log-likelihood for
complete data is of the form [1]

(9)

where φ=(μ,Σ), v=(vobs, vmis) and vobs and vmis denotes the observed and missing
components of v. For the EM algorithm, the E-step at the kth iteration is [12,13]

(10)

When missing data occurs at the ith observation, we take a sample zi1,…,zimi of size mi for
the ith observation from p(vmis,i | vobs,i,φ(k)) using the Gibbs sampler [13]. For continuous
data, the E-step is [12,13].

(11)

The M-step of the EM uses standard weighted methods, specifically the weighted mean and
weighted covariance here, to estimate the MLE of the parameters at the (k+1) iteration,
φ(k+1). The information matrix is of the form [12,13].

(12)

where  are estimates at convergence, ,

 and  The EM
algorithm is based on the MLE and the distribution of  is asymptotically normal
where the mean is 0 and variance is I−1 [1]. A consistent estimator of the variance is the sum

of scores squared estimate,  This strategy will let us avoid further
complications in deriving the second derivatives to estimate the variance.

To estimate the variance for the Pearson partial correlation we use the following details of
the sum of scores squared approach and delta method. The delta method is used to estimate
the variance of the Pearson’s partial correlation:
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(13)

where the partial derivatives are

(14)

(15)

and

(16)

The information matrix is calculated with the second derivatives of the log-likelihood.
However, here I is estimated by using the sum of scores squared. The sum of scores squared
requires only the first derivatives of the log-likelihood. The first derivatives are

(17)

and

(18)

where θ=(σx,σy,σz,ρxy,ρxz,ρyz), , and  [8]. The

scores are . The sum of scores squared,

, is a consistent estimate of the observed information [15,16].

A similar approach is employed for the Fisher-z transformation of the Pearson partial
correlation. We use the delta method to estimate the variance of the Fisher-z transformation
of the Pearson partial correlation:

(19)

where the partial derivatives are
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(20)

(21)

and

(22)

As previously discussed the sum of scores squared, , is a consistent
estimate of the observed information and is used.

Multiple Imputation
Multiple imputation (MI) [17-21] is a popular missing data technique because it is included
in many statistical packages. Essentially, multiple imputation is an approach that replaces
the missing data with multiple simulated values. As the concept has been evolving since the
1970s, a number of researchers have shown the usefulness of multiple imputation and
proven that statistical properties are improved in many settings [17-20]. The approach we
consider is an imputation method developed by King et al. [17] that imputes the missing
data with a bootstrapped expectation maximization sampling algorithm rather than using the
more traditional Markov-chain Monte Carlo-based imputation-posterior (IP) approach. The
Amelia II library [17] was selected for the imputation schemes since it is faster than other
existing software based on IP and leads to similar results. A disadvantage of imputation
occurs when the imputation model is misspecified, resulting in estimates that will be biased
and inefficient [22,23].

The basic idea of imputation is the missing variables are modeled jointly conditional on the
fully observed data to provide a joint conditional probability for the posterior distribution.
When a subject has only one variable missing only that missing value is filled in. When all 3
variables are missing none of the values for that subject is imputed.

The principal idea is to create M data sets of repeated imputations, m=1,..,M. We will refer
to both the Pearson partial correlation and the Fisher-z transformation as coefficients. Based
on these M imputed data sets, the coefficient estimates and their variances will be estimated

for each data set:  and U*1,…,U*M. The Pearson partial correlation calculated
with equation (4) and its variance calculated with equation (6) are estimated for each
completed data set. The Fisher-z transformation calculated with equation (7) and its variance
calculated with equation (8) are estimated for each completed data set. Upon obtaining these
M coefficient estimates and their variances, the equations listed directly below are used for
the multiple imputation estimates of the coefficient and its variance. The average of the M
coefficient estimates is [1,18]

(23)
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The average of the M variances is [1,18]

(24)

The between-variance is [1,18]

(25)

The total variance of the coefficients is [1,18]

(26)

Inference for multiple imputation is based on a t-test with v degrees of freedom where the t-

statistic is  and  [1,18].

Simulation Study
We performed simulation studies to determine the finite sample properties of the various
methods. The methods compared here are analysis on the full data (Full), complete case
analysis (CC), the expectation-maximization algorithm (EM) and multiple imputation (MI).
The full data is the generated data before deletion of missing values. First we estimated the
Pearson partial correlation and its variance. Then we estimated the Fisher-z transformation
and its variance. For simulation studies, we compared the mean of bias (bias), mean of the
standard error (SE), square root of the mean squared error (MSE), relative efficiency (RE),
and 95% coverage probabilities (95% Cov). Since all methods are not unbiased we used the
MSE to calculate the relative efficiency where the MSE of each missing data method is
compared to the MSE without missing data (Full). Each simulation study has 1000
replications.

We generated 3 variables to have a multivariate normal distribution, where V~MVN(0,Σ),
all the variances are 1 and the correlations, partial correlations, and Fisher-z transformation,
(ρxy, ρxz, ρyz, ρxy.z, τxy.z) considered are: (.105, .03, .21, .1,.1), (.35, .1, .15, .34,.36), (.64, .
5, .4, .55,.63), (.9, .83, .7, .8,1.1). We considered samples sizes of 50 (results in
Supplementary Material Section), 200 (results in Supplementary Material Section), 500 and
1000 (results in Supplementary Material Section) and percentage of missingness of 20%,
35%, and 50%. The type of missing data mechanism is missing at random, where the
missingness depends on the observed portion of the data and not on the unobserved portion
of the data.

The missing data model we used to generate the missing data was p(r1,r2,r3 | x, y, z) = p(r1 |
y, z, r2, r3) p(r2 | x, z, r3) p(r3 | x, y) where r1 is the missing indicator for x, r2 is the missing
indicator for y, and r3 is the missing indicator for z.The missing at random mechanism is
specified by the models: logit (p(r1 | y, z, r2, r3)) = β0,r1 + β1r1 y + β2,r1 z + β3,r1 r2 + β4,r1 r3,
logit (p(r2 | x, z,r3))=β0,r2 + β1,r2 x + β2,r2 z + β3,r2 r3, and logit (p(r3 | x,y)) = β0,r3 + β1r3 x +
β2,r3y. In these missing data models, all the regression coefficients except for the intercepts
were fixed to be 1. Refer to Table 1 for the intercept values of the missing data models for
each partial correlation.
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Results for n=500 are reported in Tables 2-5, where Table 2 contains results for ρxy.z=.1,
Table 3 contains results for ρxy.z=.34, Table 4 contains results for ρxy.z=.55, and Table 5
contains results for ρxy.z=.8. Regardless of the amount of missing data and coefficient type,
MI and EM both had no bias or very small bias, whereas the CC approach was biased. As
the proportion of missingness increased so did the bias. As the correlation increased the
Fisher-z had slightly more bias than the Pearson correlation approach. When the correlations
were moderate (ρxy.z=.34, .55; Tables 3 and 4), the standard errors were the largest for CC
and often slightly smaller for the EM in comparison to MI. When the correlation was small
(ρxy.z=.1; Table 2) the standard errors were similar across all methods and slightly larger for
the EM and MI approach. However, when the correlation was large (ρxy.z=.8; Table 5) the
standard errors were the same across methods, whereas for EM and MI they became smaller
than CC as the percentage of missingness increased. However for the Fisher-z approach
when the correlation was large (ρxy.z=.8; Table 5), the standard errors tended to be the
largest for the EM and smallest for MI. The standard errors tended to increase as the
proportion of missingness increased.

In all scenarios the EM and MI had similar MSE; however, the EM had a smaller MSE that
was closer to the actual MSE. CC always had the largest MSE. The EM was the most
efficient approach, followed by MI then CC. As the proportion of missingness increased all
methods yielded less efficient estimates. The coverages for small and moderate correlations
(ρxy.z <.55; Tables 2 and 3) yielded coverages that were close to the true nominal value for
EM and MI and were too narrow for CC. This implies CC will always be too liberal. As the
correlation increased (ρxy.z ≥.55 Tables 4 and 5) the correlation approach produced
coverages that were too conservative, except when ρxy.z=.55 (Table 4) EM had coverages
close to the true coverage. When ρxy.z=.55 (Table 4) the Fisher-z produced close to true
coverages for EM and MI and was too narrow for CC. However, when the correlation was
large (ρxy.z=.8, Table 5) the Fisher-z produced coverages that were slightly too narrow for
MI and too wide for EM. The findings for the correlation coverages as the correlation
increases are not surprising considering the sampling distribution becomes skewed as the
correlation is further away from 0 [24]. However, with the Fisher-z transformation this
skewness is greatly reduced. The very conservative coverages are reflecting this finding. It
has been recommended by others [9-11,24] to use the Fisher-z with larger correlation values
as we have shown.

We also considered various sample sizes (in supplement). Across all sample sizes, the CC
approach was biased and both the EM and MI approaches had no bias or minimal bias. As
the sample size increased, the standard error and MSE decreased and the CC estimates were
less efficient and resulted in narrower coverages across all correlation values. We also
examined the sum of scores squared approach to estimate the variance for all other methods
(Full, CC, and MI) with the Pearson correlation. Based on this variance estimate, we found
that the coverages were close to the true coverage with an occasional slightly narrower
coverage for small to moderate correlations (ρxy.z=.1,.34,.55) and too wide for large
correlations (ρxy.z=.8) (results not shown).

The CC method had the worst properties and is not recommended. EM and MI performed
very similarly although the EM had a slightly smaller MSE and was slightly more efficient.
When the correlation was large the EM produced more conservative coverages and MI was
more liberal. We recommend the EM and if programming is a barrier then recommend MI.
When the correlation is greater than .5 we recommend using the Fisher-z transformation
since the coverages are closer to the nominal value.

D’Angelo et al. Page 8

J Biom Biostat. Author manuscript; available in PMC 2013 September 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Example
The Adult Children’s Study is conducted at the Washington University Knight Alzheimer’s
Disease Research Center. The sample consists of cognitively normal subjects who all have a
Clinical Dementia Rating of 0 at baseline [25]. There was a decent amount of missing data
among the imaging variables. Various imaging modalities are used to evaluate
neurodegenerative diseases and are an important element of research to study Alzheimer’s
disease.

Magnetic resonance imaging has been a traditional marker to measure volumes, where
whole brain and hippocampus are commonly utilized to track structural changes of the brain.
Diffusion tensor imaging (DTI) is a newer structural imaging measure in Alzheimer’s
disease. DTI is a magnetic resonance imaging technique that measures water movement in
the brain and can provide information about the structure of the white matter of the brain.
DTI is represented in multiple measurements. Here we demonstrate radial diffusivity (RD)
and fractional anisotropy (FA) from the corpus callosum genu region. Amyloid deposition is
measured by Pittsburgh Compound B (PIB) positron emission tomography and the value is
represented as the mean cortical binding potential. Although we are interested in studying a
cognitively normal group their cerebrospinal fluid amyloid beta peptide 42 (CSF AB42) can
vary and can be a confounder. CSF AB42 is a cerebral spinal fluid biomarker that is used in
Alzheimer’s disease research to distinguish those who have early-stage Alzheimer’s disease.
Since PIB and DTI are newer modalities we are interested in determining how they are
related to whole brain volume. Therefore, we will correlate whole brain volume with two
DTI measures and PIB while adjusting for CSF AB42 to remove the effects of CSF AB42.

The Adult Children’s Study consists of 186 participants with a baseline measurement. Table
6 includes demographics of the Adult Children’s Study participants. Of these 186 subjects,
36 (19%) are missing CSF AB42, 32 (17%) are missing whole brain volume, 34 (18%) are
missing PIB, and 21 (11%) are missing FA corpus callosum genu region and RD corpus
callosum genu region. For the corpus callosum genu regional analyses, 63 (34%) are missing
at least 1 biomarker and 1 (1%) are missing all 3 biomarkers. With the PIB analysis, 54
(29%) are missing at least 1 biomarker and 18 (10%) are missing all 3 biomarkers. Our
methods require data to be normally distributed. Whole brain volume, the RD corpus
callosum genu region, and PIB were not normally distributed so we transformed each to be
approximately normal. It was necessary to take: the cubic transformation of whole brain
volume, the square root transformation of the RD corpus callosum genu region, and the log
transformation of PIB.

Results for the partial correlations adjusted for CSF AB42 are reported in Table 7 of whole
brain volume and the RD corpus callosum genu region, whole brain volume and the FA
corpus callosum genu region, and whole brain volume and PIB. Overall, the coefficient
values were similar for the expectation-maximization algorithm (EM) and multiple
imputation (MI) and differed from complete case analysis (CC). The magnitude of EM and
MI was larger than CC for all analyses. This indicates that the correlation between whole
brain volume and the corpus callosum genu region and between whole brain volume and
PIB would appear larger if we used EM and MI. The EM standard error was the smallest
except for whole brain volume and the FA corpus callosum genu region where it was the
largest. These differences in magnitude and standard errors affect inference and it differed
across methods. Correlation between whole brain volume and the RD corpus callosum genu
region was statistically significant using the EM and MI approach and borderline with the
CC approach. This is due to an increase in the correlation and decrease in standard error for
both EM and MI. Also, the correlation between whole brain volume and the FA corpus
callosum genu region was statistically significant using the MI approach, borderline with the
EM approach, and not statistically significant with the CC approach. Once again, this is due
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to an increase in the correlation in EM and MI and decrease in standard error for MI.
Inference did not differ across methods for the correlation between whole brain volume and
PIB where the correlation was not statistically significant. This is due to such a small
correlation between these imaging modalities.

In general, we found the correlation values using CC to probably be misleading. The
inference differed across methods. Also, the standard errors tended to be smaller with the
EM and MI approaches than with the CC approach. Based on these findings we suggest
using the EM since the results were similar to what was found with the simulation studies. If
programming is a barrier we recommend using MI.

Discussion
In preliminary studies it is necessary to establish correlations between variables of interest.
Partial correlations are often used when there is a need to adjust for other variates. Quite
frequently, variables are partially missing, and complete case methods can provide
misleading results. We have demonstrated the need for methods to handle missing data
when calculating partial correlations.

We extended the expectation-maximization (EM) algorithm for the partial correlation and
compared it to multiple imputation and complete case analysis when all variables are
missing at random. Both the Pearson correlation coefficient and Fisher-z transformation
were considered for all approaches. We have demonstrated that complete case analysis has
poor performance and should not be used. We showed that of all methods the EM had the
best statistical properties. Multiple imputation performed almost as well as EM. Multiple
imputation is recommended when there is a limitation with statistical programming. There
can be a computational cost with the EM which could be a consideration when selecting a
missing data method. For example, multiple imputation took about 7 seconds and the EM
took around 36 seconds for our example data.

In this manuscript we considered the partial Pearson correlation coefficient adjusting for a
single covariate, as this is a common request in the clinical world. A limitation of this
manuscript is that we targeted normally distributed data for our methods and made an
assumption that our data comes from a trivariate normal distribution. Our methodology
depends on the data coming from a trivariate normal distribution since the Pearson
correlation is directly derived from it. However, for data that are non-normally distributed a
transformation such as the Box-Cox or the ladder of powers [26] can be used for a normality
approximation. In addition, our method can be extended to the Spearman correlation when
the data are not normal. We demonstrated non-normally distributed data in the real
application. Future work will involve addressing multiple covariates and categorical data
which is quite intensive and will require changing our methodology and assumptions made.

Another limitation of this manuscript is that the second derivative was not used to calculate
the information matrix for the EM. This may improve variance estimation of the EM. A
suggestion for our future work is to use the bootstrap to estimate the variances for the EM.
The nonparametric bootstrap method does not depend on distributional assumptions and
provides an empirical estimate of the distribution and its variance. The disadvantage of the
bootstrap is the computational time. At this time, we are investigating parallel processing to
speed up the computational time for the bootstrap.

Based on our findings we recommend using the EM to estimate partial correlations, and can
use multiple imputation as an alternative in the event programming is a consideration. Also,
we recommend using the Fisher-z transformation when the correlation is larger than .5. The
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authors intend on developing a R package for the code; meanwhile, code can be requested
from the corresponding author.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Intercept values for the missing data models from simulation studies

(ρxy, ρxz, ρyz, ρxy.z, τxy.z Intercept values

(.105, .03, .21, .1,.1)

20% missing (β0,r1 = 3.1, β0,r2 = 2.4, β0,r3 = 1.4)

35% missing (β0,r1 = 2.0, β0,r2 = 1.6, β0,r3 = 0.6)

50% missing (β0,r1 = 1.5, β0,r2 = 0.5, β0,r3 = 0)

(.35, .1, .15, .34,.36)

20% missing (β0,r1 = 3.2, β0,r2 = 2.4, β0,r3 = 1.3)

35% missing (β0,r1 = 2.0, β0,r2 = 1.7, β0,r3 = 0.6)

50% missing (β0,r1 = 1.4, β0,r2 = 0.6, β0,r3 = 0)

(.64, .5, .4, .55,.63),

20% missing (β0,r1 = 3.3, β0,r2 = 2.5, β0,r3 = 1.5)

35% missing (β0,r1 = 2.0, β0,r2 = 1.7, β0,r3 = 0.6)

50% missing (β0,r1 = 1.3, β0,r2 = 0.5, β0,r3 = 0)

(.9, .83, .7, .8,1.1)

20% missing (β0,r1 = 3.4, β0,r2 = 2.4, β0,r3 = 1.6)

35% missing (β0,r1 = 2.0, β0,r2 = 1.7, β0,r3 = 0.6)

50% missing (β0,r1 = 1.2, β0,r2 = 0.4, β0,r3 = 0
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Table 2

Summary statistics for coefficients from simulation study with partial correlation of .1 and sample size of 500.

(ρxy, ρxz, ρyz) = (.105,.03,.21), ρxy.z = .1,τxy.z = .1,n = 500

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

E(Bias) −0.001 −0.044 0.002 0.003 −0.001 −0.044 0.003 0.003

E(SE) 0.045 0.05 0.051 0.051 0.045 0.050 0.052 0.051

0.044 0.066 0.049 0.05 0.045 0.066 0.05 0.051

RE 1 2.2 1.25 1.29 1 2.15 1.25 1.30

95% Cov 0.95 0.869 0.953 0.963 0.946 0.869 0.956 0.963

35% missing

E(Bias) 0.002 −0.061 0.011 0.012 0.003 −0.061 0.012 0.012

E(SE) 0.045 0.056 0.056 0.056 0.045 0.056 0.057 0.057

0.044 0.081 0.055 0.056 0.045 0.081 0.056 0.057

RE 1 3.4 1.56 1.64 1 3.32 1.59 1.66

95% Cov 0.953 0.826 0.948 0.966 0.951 0.826 0.952 0.961

50% missing

E(Bias) 0 −0.081 0.021 0.021 0 −0.081 0.022 0.022

E(SE) 0.045 0.063 0.063 0.064 0.045 0.063 0.065 0.064

0.044 0.104 0.067 0.069 0.045 0.104 0.068 0.071

RE 1 5.51 2.31 2.45 1 5.4 2.35 2.5

95% Cov 0.952 0.748 0.926 0.947 0.952 0.746 0.931 0.944

Note: full data (Full), complete case analysis (CC), the expectation-maximization algorithm (EM), multiple imputation (MI), standard error (SE),
mean squared error (MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)
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Table 3

Summary statistics for coefficients from simulation study with partial correlation of .34 and sample size of
500.

(ρxy, ρxz, ρyz) = (.35,.1,.15), ρxy.z = .34, τxy.z = .36,n = 500

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

E(Bias) 0.001 −0.058 0.001 0.001 0.002 −0.064 0.001 0.002

E(SE) 0.042 0.048 0.043 0.047 0.045 0.050 0.048 0.049

0.04 0.074 0.044 0.044 0.045 0.081 0.05 0.05

RE 1 3.49 1.24 1.26 1 3.26 1.24 1.26

95% Cov 0.96 0.809 0.933 0.963 0.952 0.768 0.938 0.954

35% missing

E(Bias) 0.002 −0.08 0.004 0.005 0.002 −0.087 0.005 0.006

E(SE) 0.042 0.054 0.047 0.051 0.045 0.056 0.053 0.053

0.041 0.095 0.049 0.05 0.046 0.103 0.056 0.057

RE 1 5.45 1.45 1.51 1 5.02 1.46 1.52

95% Cov 0.954 0.716 0.928 0.958 0.942 0.679 0.931 0.947

50% missing

E(Bias) 0 −0.097 0.011 0.013 0.001 −0.105 0.014 0.015

E(SE) 0.042 0.061 0.052 0.056 0.045 0.063 0.06 0.058

0.041 0.113 0.055 0.056 0.046 0.123 0.063 0.064

RE 1 7.74 1.83 1.89 1 7.07 1.89 1.95

95% Cov 0.96 0.651 0.927 0.96 0.949 0.621 0.935 0.941

Note: full data (Full), complete case analysis (CC), the expectation-maximization algorithm (EM), multiple imputation (MI), standard error (SE),
mean squared error (MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)
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Table 4

Summary statistics for coefficients from simulation study with partial correlation of .55 and sample size of
500.

(ρxy, ρxz, ρyz) = (.64,.5,.4), ρxy.z = .55, τxy.z = .36,n = 500

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

E(Bias) −0.002 −0.041 −0.005 −0.004 −0.002 −0.057 −0.005 −0.005

E(SE) 0.037 0.043 0.035 0.041 0.045 0.050 0.051 0.048

0.033 0.056 0.036 0.036 0.047 0.077 0.051 0.052

RE 1 2.91 1.19 1.21 1 2.63 1.18 1.20

95% Cov 0.976 0.89 0.939 0.983 0.933 0.789 0.942 0.935

35% missing

E(Bias) −0.001 −0.062 −0.009 −0.008 −0.001 −0.084 −0.012 −0.011

E(SE) 0.037 0.048 0.039 0.044 0.045 0.056 0.055 0.051

0.032 0.075 0.04 0.04 0.046 0.101 0.057 0.057

RE 1 5.49 1.55 1.57 1 4.79 1.51 1.5

95% Cov 0.976 0.802 0.941 0.976 0.947 0.66 0.94 0.941

50% missing

E(Bias) −0.002 −0.077 −0.013 −0.012 −0.002 −0.104 −0.017 −0.016

E(SE) 0.037 0.056 0.043 0.049 0.045 0.064 0.062 0.055

0.032 0.092 0.046 0.047 0.045 0.122 0.064 0.066

RE 1 8.41 2.1 2.17 1 7.2 2.0 2.07

95% Cov 0.979 0.756 0.939 0.978 0.954 0.637 0.934 0.931

Note: full data (Full), complete case analysis (CC), the expectation-maximization algorithm (EM), multiple imputation (MI), standard error (SE),
mean squared error (MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)
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Table 5

Summary statistics for coefficients from simulation study with partial correlation of .8 and sample size of 500.

(ρxy, ρxz, ρyz) = (.9,.83,.7), ρxy.z = .8, τxy.z = 1.1,n = 500

Pearson correlation Fisher-z

Full CC EM MI Full CC EM MI

20% missing

E(Bias) 0 −0.013 −0.002 −0.002 0.002 −0.032 −0.004 −0.004

E(SE) 0.027 0.031 0.032 0.029 0.045 0.050 0.089 0.046

0.017 0.023 0.019 0.019 0.047 0.061 0.052 0.052

RE 1 1.94 1.27 1.28 1 1.70 1.23 1.25

95% Cov 0.997 0.991 0.998 0.998 0.941 0.89 0.999 0.915

35% missing

E(Bias) 0 −0.019 −0.004 −0.004 0.002 −0.048 −0.01 −0.008

E(SE) 0.027 0.035 0.034 0.030 0.045 0.056 0.092 0.048

0.016 0.028 0.02 0.02 0.045 0.072 0.055 0.055

RE 1 3.0 1.54 1.57 1 2.55 1.46 1.50

95% Cov 0.999 0.995 0.999 0.998 0.948 0.858 1 0.911

50% missing

E(Bias) 0 −0.026 −0.01 −0.009 0.002 −0.065 −0.024 −0.021

E(SE) 0.027 0.040 0.036 0.033 0.045 0.064 0.097 0.051

0.016 0.037 0.025 0.025 0.046 0.092 0.067 0.067

RE 1 4.932 2.36 2.34 1 3.97 2.09 2.09

95% Cov 0.999 0.984 0.997 0.995 0.955 0.821 0.997 0.886

Note: full data (Full), complete case analysis (CC), the expectation-maximization algorithm (EM), multiple imputation (MI), standard error (SE),
mean squared error (MSE), relative efficiency (RE), and 95% coverage probabilities (95% Cov)
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Table 6

Demographics of Adult Children’s Study.

N Mean (SD)

Age 186 62.0 (9.5)

CSF AB42 150 636.2 (215.9)

Education 171 16.0 (2.6)

Mini–mental state examination (MMSE) 171 29.3 (1)

Whole brain volume 154 0.80 (0.02)

Pittsburgh Compound B (PIB) 152 0.06 (0.16)

FA corpus callosum genu region 165 0.84 (0.09)

RD corpus callosum genu region 165 0.24 (0.15)

Note: cerebrospinal fluid amyloid beta peptide 42 (AB42), fractional anisotropy (FA), and radial diffusivity (RD)
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Table 7

Correlations of whole brain volume and other imaging data adjusted for CSF AB42.

Pearson correlation Fisher-z

All adjusted for AB42 CC EM MI CC EM MI

WBV and RD Genu (n) 123 186 185 123 186 185

Coef −0.162 −0.239 −0.261 −0.164 −0.243 −0.279

SE 0.090 0.076 0.083 0.092 0.080 0.085

p-value 0.074 0.002 0.007 0.074 0.002 0.006

WBV and FA Genu (n) 123 186 185 123 186 185

Coef 0.131 0.170 0.202 0.132 0.172 0.184

SE 0.090 0.098 0.088 0.092 0.101 0.084

p-value 0.15 0.085 0.039 0.15 0.09 0.046

WBV and PIB (n) 132 186 168 132 186 168

Coef 0.022 0.028 0.040 0.022 0.028 0.047

SE 0.088 0.083 0.083 0.088 0.074 0.083

p-value 0.80 0.74 0.63 0.80 0.74 0.57

Note: full data (Full), complete case analysis (CC), the expectation-maximization algorithm (EM), multiple imputation (MI), cerebrospinal fluid
amyloid beta peptide 42 (AB42), whole brain volume (WBV), corpus callosum genu region (Genu),radial diffusivity (RD), fractional anisotropy
(FA), and Pittsburgh Compound B (PIB)
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