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Objectives: Whole-genome sequencing potentially represents a single, rapid and cost-effective approach to defin-
ing resistance mechanisms and predicting phenotype, and strain type, for both clinical and epidemiological pur-
poses. This retrospective study aimed to determine the efficacy of whole genome-based antimicrobial
resistance prediction in clinical isolates of Escherichia coli and Klebsiella pneumoniae.

Methods: Seventy-four E. coli and 69 K. pneumoniae bacteraemia isolates from Oxfordshire, UK, were sequenced
(Illumina HiSeq 2000). Resistance phenotypes were predicted from genomic sequences using BLASTn-based com-
parisons of de novo-assembled contigs with a study database of .100 known resistance-associated loci, including
plasmid-associated and chromosomal genes. Predictions were made for seven commonly used antimicrobials:
amoxicillin, co-amoxiclav, ceftriaxone, ceftazidime, ciprofloxacin, gentamicin and meropenem. Comparisons
were made with phenotypic results obtained in duplicate by broth dilution (BD Phoenix). Discrepancies, either
between duplicate BD Phoenix results or between genotype and phenotype, were resolved with gradient diffusion
analyses.

Results: A wide variety of antimicrobial resistance genes were identified, including blaCTX-M, blaLEN, blaOKP, blaOXA,
blaSHV, blaTEM, aac(3′)-Ia, aac-(3′)-IId, aac-(3′)-IIe, aac(6′)-Ib-cr, aadA1a, aadA4, aadA5, aadA16, aph(6′)-Id,
aph(3′)-Ia, qnrB and qnrS, as well as resistance-associated mutations in chromosomal gyrA and parC genes. The sen-
sitivityof genome-based resistancepredictionacross allantibiotics forbothspecies was 0.96(95% CI:0.94–0.98) and
the specificity was 0.97 (95% CI: 0.95–0.98). Very major and major error rates were 1.2% and 2.1%, respectively.

Conclusions: Our method was as sensitive and specific as routinely deployed phenotypic methods. Validation
against larger datasets and formal assessments of cost and turnaround time in a routine laboratory setting are
warranted.
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Introduction
The advances in sequencing technology over the last decade
promise a potential revolution in clinical microbiology, with the
cost-effective use of pathogen whole-genome sequence data for
species identification, antimicrobial susceptibility prediction and
outbreak detection having been proposed as applications of

bench-top sequencers, such as the MiSeq (Illumina, San Diego,
CA, USA) or Ion Torrent (Life Technologies Corp., Carlsbad, CA,
USA), in routine laboratories.1 Conceivably, this could enable a
‘one-stop’ approach to the microbiological analysis of cultured
bacterial isolates with turnaround times of ,1 day.

At present, routine antimicrobial susceptibility testing is under-
taken using a variety of approaches, including disc diffusion,
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gradient diffusion and broth dilution methods, the latter being
automated as part of commercial platforms such as BD Phoenix
(BD, Franklin Lakes, NJ, USA) or Vitek 2 (bioMérieux, Marcy l’Etoile,
France).2 – 4 Despite extensive efforts to standardize laboratory as-
says, problems with particular test methods for certain organism–
antimicrobial combinations are well recognized and may relate to
inherent properties of the organism or antimicrobial being
tested.5,6 Other errors can arise in inoculum preparation, culture
conditions or data entry.

Susceptibility phenotyping errors are typically classified as very
major, resulting from a false-susceptible result, or major, resulting
from a false-resistant result.2 The US FDA stipulates rates must be
,1.5% for very major errors and ,3% for major errors prior to au-
thorizing marketing approval for new susceptibility testing devices;
similar cut-offs have been proposed by others.2 In controlled re-
search studies, overall error rates are 0%–8%,7 but in routine set-
tings the actual error rates are not generally known.

Routine genotypic prediction of bacterial antimicrobial suscep-
tibility is currentlyused only in limited contexts, typically with single
gene targets known to be highly associated with resistance, such
as mecA assays to determine methicillin resistance in Staphylococ-
cus aureus. The prevailing view has been that genotypic assays
would be too difficult to implement for complex patterns of anti-
microbial resistance, e.g. those in major Gram-negative pathogens
such as Escherichia coli or Klebsiella pneumoniae.2 However, recent
data investigating whole-genome sequencing approaches to iden-
tifying susceptibility phenotypes of porcine Salmonella Typhimur-
ium, E. coli, Enterococcus faecium and Enterococcus faecalis
isolates for resistance surveillance purposes showed high concord-
ance between phenotypic and predicted antimicrobial susceptibil-
ities.8 Caveats to this acknowledged by the authors include the low
complexityof the resistance genotypes in the bacterial populations
studied (i.e. small numbers of resistance genes per isolate confer-
ring resistance to the same antimicrobial class) and that no assess-
ment of some important chromosomal markers of resistance, such
as gyrA mutations for fluoroquinolones, was made.

E. coli and K. pneumoniae are the Gram-negative species most
commonly identified in bacteraemic patients in the UK,9,10 with
increases in incidence noted across Europe.11 As such, these organ-
isms, in which multidrug resistance is increasingly recognized,12,13

represent species for which accurate and rapid antimicrobial sus-
ceptibility testing has the potential to deliver direct clinical
benefit. Consequently, in this study we aimed to assess the feasibil-
ity of using whole-genome sequence data from human blood
culture isolates of E. coli and K. pneumoniae representative of
those seen in clinical practice to predict susceptibility phenotypes
for antibiotics commonly used to manage infections caused by
these organisms.

Materials and methods

Clinical isolate selection and in vitro antimicrobial
susceptibility testing
We selected all retrievable extended-spectrum cephalosporin-resistant
(commonly representative of multidrug-resistant phenotypes)14 E. coli
and K. pneumoniae blood culture isolates obtained from patients at the
Oxford University Hospitals NHS Trust, Oxford, UK, between January 2008
and November 2010 (E. coli) or June 2011 (K. pneumoniae). Time-matched

(by calendar year) susceptible control blood culture isolates were also
selected at random and retrieved (Figure 1).

Isolates were recultured from frozen stocks (2808C) and underwent
automated susceptibility testing in duplicate with the BD Phoenix system
using EUCAST breakpoints,15 to allow comparisons with genotypic data.
Intermediate BD Phoenix susceptibilities were considered as resistant
(Tables 1 and 2). In cases where duplicate BD Phoenix runs were concordant
regarding an isolate’s resistance category [susceptible/susceptible (S/S), re-
sistant/resistant (R/R)], the consensus BD Phoenix phenotype was com-
pared with the genotype. Discrepancies, defined as discordance between
BD Phoenix runs (S/R), or between predicted genotypic susceptibility and
concordant BD Phoenix phenotype (S+R/R, or R+S/S respectively), were
further investigated using gradient diffusion testing (Etest, bioMérieux,
Basingstoke, UK; M.I.C. Evaluator, Fisher Scientific UK, Loughborough,
UK) on Iso-Sensitest agar in accordance with BSAC guidelines.16 In
such cases, regardless of the nature of the discrepancy, the gradient dif-
fusion result was adopted as the comparison standard phenotype; in all
other cases, the concordant BD Phoenix phenotype was the comparison
standard.

Reference gene database
Genetic loci and sequence variants known to be associated with resistance
to antimicrobial agents commonly used in our hospital to treat E. coli and
K. pneumoniae infections were identified from published reviews and web-
based resources and were compiled as a reference gene database.17 – 25

Chromosomal and plasmid-mediated loci conferring resistance to amoxi-
cillin, co-amoxiclav, ciprofloxacin, gentamicin, ceftriaxone, ceftazidime
and meropenem were included (full details of all mechanisms included in
the algorithm are provided in Tables S1, S2 and S3, available as Supplemen-
tarydata at JACOnline). An additional search of complete coding sequences
annotated as being members of relevant bacterial (other than mycobacter-
ial) resistance gene families deposited at the National Centre for Biotech-
nology Information was performed, using the following search terms: (i)
‘lactamase’, (ii) ‘carbapenemase’, (iii) ‘aminoglycoside’+ ‘resistance’ and
(iv) ‘fluoroquinolone’+ ‘resistance’ (December 2012; see Supplementary
data for additional references).

DNA extraction and whole-genome sequencing
DNA was extracted using a commercial kit (QuickGene DNA Tissue Kit S,
Fujifilm, Japan) as per the manufacturer’s instructions, with an additional
mechanical lysis step (FastPrep, MP Biomedicals, USA) immediately follow-
ing chemical lysis. A combination of standard Illumina and in-house pro-
tocols was used to produce multiplexed paired-end libraries of extracted
DNA with an average insert size of �200 bp. Sequencing was performed
on the Illumina HiSeq 2000, generating 100 bp paired-end reads. Reads
were mapped against reference sequences [CFT073 for E. coli (RefSeq:
NC_004431.1) and MGH78578 for K. pneumoniae (RefSeq: NC_009653)]
using Stampy.26 De novo assembly, for the purposes of resistance locus
identification, was performed using Velvet,27 with automated optimiza-
tion of assembly parameters using VelvetOptimiser,28 including the selec-
tion of k-mer length (length of overlapping read fragments), expected
coverage (which assists in minimizing the impact of repetitive regions
on the assemblies) and coverage cut-off [which minimizes the impact
of areas of low sequencing coverage and repetitive regions (areas of
high coverage) on assemblies]. De novo assembly quality was ensured
by requiring .4 megabases (Mb) to be assembled into contigs and
contig n50 values of .30000 bp (n50 is the longest contig length such
that 50% of the assembled genome is represented in contigs of this
length or longer). Sequencing data files have been deposited at the Euro-
pean nucleotide archive (ENA) and are available using the following URL:
http://www.ebi.ac.uk/ena/data/view/ERP002642.
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In silico prediction of antimicrobial susceptibility
phenotypes
BLASTn was used to identify the presence of relevant resistance gene loci
(from the reference database) in the de novo-assembled contigs for each
clinical isolate, with a word length of 11 and an Expect value (E) cut-off of
1×1024. All matches were visually inspected for confirmation. Matches
with .80% identity at the nucleotide level and representing a match of
.80% of the reference gene length were retained; this included partial
matches with .80% sequence homology over 80% of the reference gene
length, but distributed over several contigs. Overlapping fragments were
then aligned in SeaView29 and combined to give a single sequence.
Chromosomal resistance gene sequences were analysed to identify muta-
tions, including those known to be associated with resistance.

Each isolate’s susceptibility phenotype was predicted from the genetic
data on the basis of published associations with phenotypic resistance for
each locus, without reference to the BD Phoenix phenotype [details for sus-
ceptibility predictions for all profiles found are shown in Tables S4, S5 and S6

(E. coli) and S7, S8 and S9 (K. pneumoniae); Supplementary data available at
JACOnline]. Forany novelsequencevariants identified, the genotypicsuscep-
tibility prediction mirrored that of the closest reference database variant. Dis-
crepancies between the BD Phoenix phenotype and genotype were then
investigated using gradient diffusion, as described above.

Thesensitivity,specificityandratesofmajorandverymajorerrors forgeno-
typic susceptibility predictions were calculated for each antibiotic and species
against the comparison standard (determined as above). Statistical analyses
were performed using Stata 11.2 (StataCorp, College Station, TX, USA).

Results

Quality of whole-genome sequences

Two of the 76 candidate E. coli study isolates were excluded because
of poor sequence assembly (n50 ,1250 and ,0.3 Mb assembled
into contigs); two Klebsiella isolates were excluded because they
were non-pneumoniae Klebsiella spp. on the basis of mapping

E. coli (January 2008–November 2010) 

Routine laboratory culture

49 extended-spectrum cephalosporin-resistant

(ESC-R) isolates from 39 individuals

1077 extended-spectrum cephalosporin-

susceptible (ESC-S) isolates from 820

individuals

Sequencing (Illumina HiSeq)

36 ESC-R strains retrievable for sequencingb

42 ESC-S strains randomly selected (by

calendar year) and sequenced

Post-sequencing analysis

2 cases where sequencing data could not be

effectively assembled (2 ESC-R isolates)

2 strains no longer retrievable for phenotyping

(1 ESC-R isolate, 1 ESC-S isolate)

Full details (genotype + phenotype) available

on 74 strains

K. pneumoniae (January 2008–June 2011)a

Routine laboratory culture

70 extended-spectrum cephalosporin-resistant

(ESC-R) isolates from 45 individuals

225 extended-spectrum cephalosporin-

susceptible (ESC-S) isolates from 158

individuals

Sequencing (Illumina HiSeq)

30 ESC-R strains retrievable for sequencingb

42 ESC-S strains randomly selected (by

calendar year) and sequenced

Post-sequencing analysis

2 found to be other Klebsiella spp.

(2 ESC-S isolates)

1 strain no longer retrievable for phenotyping

(1 ESC-R isolate)

Full details (genotype + phenotype) available

on 69 strains

Figure 1. Sampling frame and processing of isolates. aThe study time period for K. pneumoniae was extended to find similar numbers of organisms across
both species groups. bLosses in retrieval rates were mostly due to the fact that repeat isolates from individuals were not routinely stored; other missing
isolates could not be found in the routine laboratory freezer.
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(Figure 1). Assemblies for the 74 remaining E. coli isolates had a
median of 394 contigs (range: 93–1052) and n50 of 110187 bp
(range: 32391–189171 bp). For the 69 K. pneumoniae study iso-
lates, the corresponding medians were 255 contigs (range: 171–
863) and n50 of 97195 bp (range: 58500–135350 bp).

Investigation of discrepancies

Susceptibility phenotypes for seven antimicrobials were available
for 143 study isolates (74 E. coli and 69 K. pneumoniae), giving

1001 total susceptibility results (518 E. coli and 483 K. pneumoniae)
for comparison with the corresponding genotypic predictions. Gra-
dient diffusion analysis was used to establish the phenotype for 71
antimicrobial– isolate combinations (involving 55 different iso-
lates), including 7 (1%) E. coli results and 8 (2%) K. pneumoniae
results with categorical (S/R) discordance in duplicate BD Phoenix
testing and 31 (6%) E. coli and 25 (5%) K. pneumoniae results
with discordance between the predicted genotypic susceptibility
and the (concordant) BD Phoenix phenotype [Table 1 (E. coli) and
Table 2 (K. pneumoniae)].

Table 1. Analysis of discordance in phenotypic and/or genotypic resistance predictions for 74 E. coli bloodstream isolates

Antibiotic

Discrepancies (n; % of total, 74 isolates)

Agreement of gradient diffusion with
genotype in all discrepancies (n/total

discrepancies; %)

Agreement of gradient diffusion with
genotype in BD Phoenix-concordant

discrepancies (n/number of BD
Phoenix-concordant

discrepancies; %)

S/Ra discordant
BD Phoenix

BD Phoenix S/S,
genotype R

BD Phoenix R/R,
genotype S

Amoxicillin 0 (0) 2 (3) 0 (0) 1/2 (50) 1/2 (50)
Co-amoxiclav 5 (7) 0 (0) 15 (20) 20/20 (100) 15/15 (100)
Gentamicin 1 (1) 0 (0) 0 (0) 1/1 (100) NAb

Ciprofloxacin 0 (0) 0 (0) 0 (0) NA NA
Ceftriaxone 0 (0) 1 (1) 1 (1) 0/2 (0) 0/2 (0)
Ceftazidime 1 (1) 11 (15) 1 (1) 1/13 (8) 1/12 (8)
Meropenem 0 (0) 0 (0) 0 (0) NA NA

Total 7/518 (1)c 14/518 (3)c 17/518 (3)c 23/38 (61) 17/31 (55)

aS/R denotes susceptible/resistant category. Initial BD Phoenix intermediate results were counted as resistant—this occurred in one isolate with an S/R
discrepancy for ceftazidime and one isolate with an S/R discrepancy for gentamicin.
bNA¼not applicable.
cn/overall total of 518 antimicrobial susceptibility results (%).

Table 2. Analysis of discordance in phenotypic and/or genotypic resistance predictions for 69 K. pneumoniae bloodstream isolates

Antibiotic

Discrepancies (n; % of total, 69 isolates)

Agreement of gradient diffusion with
genotype in all discrepancies (n/total

discrepancies; %)

Agreement of gradient diffusion with
genotype in BD Phoenix-concordant

discrepancies (n/number of BD
Phoenix-concordant

discrepancies; %)

S/Ra discordant
BD Phoenix

BD Phoenix S/S,
genotype R

BD Phoenix R/R,
genotype S

Amoxicillin 3 (4) 3b (4) 0 (0) 3/6 (50) 1/3 (33)
Co-amoxiclav 2 (3) 0 (0) 6 (9) 7/8 (88) 6/6 (100)
Gentamicin 1 (1) 0 (0) 1 (1) 1/2 (50) 0/1 (0)
Ciprofloxacin 1 (1) 2 (3) 7 (10) 4/10 (40) 3/9 (33)
Ceftriaxone 0 (0) 1 (1) 2 (3) 0/3 (0) 0/3 (0)
Ceftazidime 0 (0) 1 (1) 2 (3) 0/3 (0) 0/3 (0)
Meropenem 1 (1) 0 (0) 0 (0) 0/1 (0) NAc

Total 8/483 (2)d 7/483 (1)d 18/483 (4)d 15/33 (45) 10/25 (40)

aS/R denotes susceptible/resistant category. Initial BD Phoenix intermediate results were counted as resistant—this occurred in one isolate with an S/R
discrepancy for ciprofloxacin and one isolate with an S/R discrepancy for meropenem.
bThis applies to an MIC-based assessment of BD Phoenix results, disregarding interpretative guidelines (which would suggest that K. pneumoniae be uni-
versally reported as amoxicillin resistant for clinical purposes, irrespective of the MIC).
cNA¼not applicable.
dn/overall total of 483 antimicrobial susceptibility results (%).
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Figure 2. Comparisons of genotypic susceptibility prediction, BD Phoenix phenotype and results of gradient diffusion analyses for discrepancies in either (i)
duplicate BD Phoenix testing or (ii) genotypic prediction and concordant BD Phoenix phenotype, for both species across all seven antimicrobials.
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Genotypic prediction versus comparison standard
phenotype

Overall, the sensitivity of genotype for predicting resistance across
all antibiotics for both species was 0.96 (95% CI: 0.94–0.98) and
the specificity was 0.97 (95% CI: 0.95–0.98) (Figure 2). Very
major and major error rates, at 1.2% and 2.1%, respectively,
were within the ,1.5% and ,3% FDA limits. For E. coli, the
overall sensitivity was 0.99 (95% CI: 0.95–1.0) and the specificity
was 0.96 (95% CI: 0.94–0.98) (Table 3); the major individual drug
deficit being suboptimal specificity for ceftazidime (0.80; 95% CI:
0.66–0.89). Very major (0.3%) and major (3%) error rates were
again within the FDA limits. For K. pneumoniae, the overall sensitiv-
ity was 0.95 (95% CI: 0.90–0.97) and the specificity was 0.97 (95%
CI: 0.95–0.99), with a very major error rate (2%) just outside the
1.5% FDA limit, but an acceptable major error rate (2%, compared
with ,3% as per FDA) (Table 4).

In E. coli, in 23 (61%) of the 38 isolate–antimicrobial combina-
tions with a phenotype–genotype discrepancy according to BD
Phoenix results, gradient diffusion analysis supported the genotyp-
ic prediction (Table 1). For the remaining 15 confirmed genotype–
phenotype discrepancies, the results are summarized in Table 5. In
13 (87%) of these cases, a clear-cut genetic resistance mechanism
was identified despite phenotypic susceptibility, although for 9
(69%) of these the gradient diffusion MIC was at the susceptibility
breakpoint. The remaining 2 (13%) of the 15 discrepant geno-
type–phenotype cases had no identifiable genetic resistance mech-
anism, despite unequivocal phenotypic resistance.

In K. pneumoniae, in 15 (45%) of the 33 isolate–antimicrobial
combinations with a phenotype–genotype discrepancy according
to the BD Phoenix results, gradient diffusion analysis supported the
genotypic prediction (Table 2). For the remaining 18 confirmed
genotype–phenotype discrepancies, the results are summarized
in Table 5. In 6/18 (33%) instances, a recognized resistance

Table 3. Sensitivity and specificity of genotypic resistance predictions versus comparison with standard phenotype results for 74 E. coli bloodstream
isolates.

Antibiotic

Susceptible by comparison standard
phenotype Resistant by comparison standard phenotype

Sensitivity
(95% CI)

Specificity
(95% CI)

susceptible by
genotype (row %)

resistant by genotype
(row %; major error)

susceptible by genotype
(row %; very major error)

resistant by
genotype
(row %)

Amoxicillin 23 (31) 1 (1) 0 (0) 50 (68) 1.00 (0.91–1.00) 0.96 (0.77–1.00)
Co-amoxiclav 46 (62) 0 (0) 0 (0) 28 (38) 1.00 (0.85–1.00) 1.00 (0.90–1.00)
Gentamicin 60 (81) 0 (0) 0 (0) 14 (19) 1.00 (0.73–1.00) 1.00 (0.93–1.00)
Ciprofloxacin 48 (65) 0 (0) 0 (0) 26 (35) 1.00 (0.84–1.00) 1.00 (0.91–1.00)
Ceftriaxone 43 (58) 1 (1) 1 (1) 29 (39) 0.97 (0.81–1.00) 0.98 (0.87–1.00)
Ceftazidime 43 (58) 11 (15) 1 (1) 19 (26) 0.95 (0.73–1.00) 0.80 (0.66–0.89)
Meropenem 74 (100) 0 (0) 0 (0) 0 (0) — 1.00 (0.94–1.00)

Total 337 (65) 13 (3) 2 (0.3) 166 (32) 0.99 (0.95–1.00) 0.96 (0.94–0.98)

Table 4. Sensitivity and specificity of genotypic resistance predictions versus comparison standard phenotype results for 69 K. pneumoniae
bloodstream isolates

Antibiotic

Susceptible by comparison standard
phenotype Resistant by comparison standard phenotype

Sensitivity
(95% CI)

Specificity
(95% CI)

susceptible by
genotype (row %)

resistant by genotype
(row %; major error)

susceptible by genotype
(row %; very major error)

resistant by
genotype
(row %)

Amoxicillin 0 (0) 3 (4) 0 (0) 66 (96) 1.00 (0.93–1.00) —
Co-amoxiclav 47 (68) 1 (1) 0 (0) 21 (30) 1.00 (0.81–1.00) 0.98 (0.88–1.00)
Gentamicin 45 (65) 0 (0) 1 (1) 23 (33) 0.96 (0.77–0.98) 1.00 (0.90–1.00)
Ciprofloxacin 45 (65) 2 (3) 4 (6) 18 (26) 0.90 (0.67–0.98) 0.92 (0.80–0.97)
Ceftriaxone 42 (61) 1 (1) 2 (3) 24 (35) 0.92 (0.73–0.99) 0.98 (0.86–1.00)
Ceftazidime 42 (61) 1 (1) 2 (3) 24 (35) 0.92 (0.73–0.99) 0.98 (0.86–1.00)
Meropenem 68 (99) 0 (0) 1 (1) 0 (0) 0 (0–0.95) 1.00 (0.93–1.00)

Total 289 (60) 8 (2) 10 (2) 176 (36) 0.95 (0.90–0.97) 0.97 (0.95–0.99)
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mechanism was identified in phenotypically susceptible isolates,
although for two of these the MIC was at the susceptibility break-
point. This group included two isolates predicted to be
ciprofloxacin resistant based on chromosomal mutations (double
gyrA amino acid replacements) that were phenotypically cipro-
floxacin susceptible. In contrast, four isolates predicted to be cipro-
floxacin susceptible [based on a single mutation in parC (three
isolates with S80I) or combined mutations in parC (E84K)+parE
(S458T)] were phenotypically resistant, suggesting the presence
of unidentified resistance mechanisms. Similarly, six other
cases with unequivocal phenotypic resistance to one or more
agents from several antibiotic classes (ceftriaxone, ceftazidime,
meropenem and gentamicin; eight total agent–isolate combina-
tions) had no identifiable resistance mechanism.

Resistance gene profiles—E. coli

Genotypic resistance profiles in E. coli are summarized in Tables S4
(b-lactam resistance), S5 (fluoroquinolone resistance) and S6 (ami-
noglycoside resistance). There were 15 distinct profiles for b-lactam

resistance mechanisms, 22 for ciprofloxacin-associated resistance
mechanisms and 12 for aminoglycoside-associated resistance
mechanisms.

b-Lactam resistance

Twelve (16%) isolates had blaTEM, blaOXA-1 and blaCTX-M conferring
b-lactam resistance; 15 (20%) had two of these three mechan-
isms, 24 (32%) had one and 23 (31%) had none. Most blaTEM-
containing isolates had blaTEM-1 (35/36), with five distinct nucleo-
tide sequences (including the reference sequence) observed. In
addition to the P3 and Pa/Pb blaTEM-1 promoters,19 two novel pro-
moter sequences were identified [single nucleotide polymorphisms
compared with promoter P3: C�Tat position 75 (Sutcliffe number-
ing);30 G�A at position 175]. However, co-amoxiclav resistance
was identified only in the presence of other explanatory mechan-
isms with these novel promoter sequences. All blaOXA variants
were blaOXA-1 and most blaCTX-M variants were blaCTX-M-15 (25/29).

Only one isolate had a chromosomal ampC promoter mutation
previously associated with significant resistance (T-32A).22 This

Table 5. List of relevant genotypic profiles for 13 E. coli and 15 K. pneumoniae isolates with genotype-gradient diffusion susceptibility discrepancies for
one or more antimicrobials

Species

Number
of

isolates
Antibiotic

discrepancy
Genotypic
prediction

Genotypic mechanism for
resistance prediction

Phenotypic
result

MIC (mg/L) on
gradient diffusion

(EUCAST
susceptibility
breakpoint)

Supplementary
data Table no./

complete genotypic
profile number

E. coli 1 amoxicillin R P3 TEM-promoter and blaTEM-1 S 6 (8) S4/3
E. coli 1 ceftriaxonea S none R .32 (1) S4/3

ceftazidimea S R 4 (1)
E. coli 1 ceftriaxoneb R T-32A ampC promoter mutation S 0.38 (1) S4/10

ceftazidimeb R S 1 (1)
E. coli 1 ceftazidime R blaCTX-M-15 S 0.25 (0.25) S4/2
E. coli 7 ceftazidime R blaCTX-M-15 S 1 (1) 6×S4/4, 1×S4/2
E. coli 1 ceftazidime R blaCTX-M-14 S 0.5 (1) S4/14
E. coli 1 ceftazidime R blaCTX-M-1 S 1 (1) S4/6
K. pneumoniae 2 amoxicillin R blaLEN S 4, 8 (8) S7/4
K. pneumoniae 1 amoxicillin R blaSHV S 6 (8) S7/3
K. pneumoniae 1 co-amoxiclav R blaOXA-1 S 8 (8) S7/19
K. pneumoniae 1 ceftriaxonec R blaSHV-27 S 0.064 (1) S7/11

ceftazidimec R S 0.25 (1)
K. pneumoniae 1 ceftriaxoned S none R 8 (1) S7/8

ceftazidimed S R 64 (1)
K. pneumoniae 1 ceftriaxonee S none R .32 (1) S7/1

ceftazidimee S R 8 (1)
K. pneumoniae 1 meropenem S none R .32 (2) S7/7
K. pneumoniae 1 ciprofloxacin R 2 gyrA mutations (S83F+D87A) S 0.064 (0.5) S8/5
K. pneumoniae 1 ciprofloxacin R 2 gyrA mutations (S83I+D87N) S 0.047 (0.5) S8/10
K. pneumoniae 2 ciprofloxacin S 1 parC mutation (S80I) R 8, .32 (0.5) S8/4
K. pneumoniae 1 ciprofloxacin S 1 parC mutation (S80I)+

aac(6′)-Ib-cr
R 2 (0.5) S8/12

K. pneumoniae 1 ciprofloxacin S 1 parC mutation (E84K)+
1 parE mutation (S458T)

R .32 (0.5) S8/17

K. pneumoniae 1 gentamicin S none R 16 (2) S9/1

a – eMultiple genotype–phenotype discrepancies observed for several antibiotics for the same isolate.
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isolate was resistant only to amoxicillin and co-amoxiclav, with no
other mechanism identified to explain this, and was phenotypically
susceptible to ceftriaxone and ceftazidime (on duplicate BD
Phoenix testing and gradient diffusion analysis).

Quinolone resistance

Ciprofloxacin resistance was invariably associated with S83L/D87N
mutations in gyrA; almost all (23/26; 88%) ciprofloxacin-resistant
isolates also had S80I/E84V mutations in parC. The presence of
aac-6′-Ib-cr was also common in ciprofloxacin-resistant isolates,
although not universal (23/26; 88%); aac-6′-Ib-cr was also identi-
fied in one ciprofloxacin-susceptible isolate without any
resistance-conferring chromosomal mutations. A single isolate
had a gyrB quinolone resistance-determining region (QRDR) muta-
tion (S463A) with a parE truncation; this isolate was phenotypically
susceptible. No qnr variants or qepA or oqxAB loci were found.

Aminoglycoside resistance

Four (5%) isolates had four or five different aminoglycoside
resistance-conferring elements; 15 (20%) had three, 12 (16%)
had two, 11 (15%) had one and 32 (43%) had none. All gentamicin
resistance was associated with the presence of aac(3′)-II-like
enzymes, mostly aac(3′)-IIe variants (13/14), with one isolate con-
taining aac(3′)-IId. Other aminoglycoside resistance loci included
aac(6′)-Ib-cr (24 isolates), aadA1a (3), aadA4 (17), aadA5 (17),
aph(6′)-Id (16), aph(6′)-Id-like loci (.80% but ,95% sequence
homology; 3 isolates) and aph(3′)-Ia (4).

Resistance gene profiles—K. pneumoniae

Genotypic profiles associated with resistance in K. pneumoniae are
summarized in Tables S7 (b-lactam resistance, 24 profiles), S8
(fluoroquinolone resistance, 20 profiles) and S9 (aminoglycoside
resistance, 17 profiles).

b-Lactam resistance

Twenty-one (30%) isolates had three or four b-lactam resistance-
conferring elements; 8 (12%) had two, 29 (42%) had one and 11
(16%) had none. All blaTEM were blaTEM-1, with P3 (n¼24) or Pa/
Pb (n¼3) promoters. All blaCTX-M were blaCTX-M-15 and all blaOXA

were blaOXA-1 (only observed with blaCTX-M-15).
Most K. pneumoniae isolates (61/69; 88%) contained blaSHV

genes encoding b-lactamases. Six contained blaLEN (two blaLEN-7,
four novel variants), one blaOKP-B-6 and one blaLAP-2 in conjunction
with blaSHV-11. The most common blaSHV b-lactamase variant was
blaSHV-1 (n¼28), with additional variants in order of frequency as
follows: blaSHV-11 (19), blaSHV-28 (4), blaSHV-33 (2), blaSHV-121 (2),
blaSHV-27 (1), blaSHV-60 (1) and blaSHV-135 (1). Three novel amino
acid blaSHV variants were identified (Y7F+S14F, Y7F+M211L and
D101H; assigned allele numbers 169, 170 and 171, respectively,
in the Lahey database).17 One of the 69 Klebsiella isolates con-
tained none of these resistance loci; its b-lactam resistance was
explained by the presence of blaTEM-1, blaOXA-1 and blaCTX-M-15.

Quinolone resistance

Isolates with wild-type amino acids or only single amino acid
mutations in the QRDRs of gyrA, gyrB, parC and parE, and no

more than one plasmid-mediated resistance mechanism
(aac-6′-Ib-cr, qnr or qepA), were all ciprofloxacin susceptible (41
wild-type isolates, four single amino acid mutations). In contrast,
isolates with both aac-6′-Ib-cr and qnrB1 (n¼15) were invariably
resistant, irrespective of underlying chromosomal mutations. Like-
wise, isolates with single gyrA and parC mutations and a plasmid-
mediated resistance mechanism (n¼2: S83I+S80I+aac-6′-Ib-c;
S83T+S80I+qnrS1), or a double mutation in gyrA, a single muta-
tion in parC and a plasmid-mediated resistance mechanism (n¼1:
S83F+D87N+S80I+aac-6′-Ib-cr), were also resistant.

There were no observed mutations compared with wild-type in
the QRDR of gyrB. All isolates contained oqxAB, which is commonly
located chromosomally in K. pneumoniae, although its association
with ciprofloxacin resistance in this context is unclear.31

Aminoglycoside resistance

One (1%) isolate had five different resistance-conferring elements;
16 (23%) had three, 9 (13%) had two, 7 (10%) had one and 36
(52%) had none. As in E. coli, gentamicin resistance in K. pneumo-
niae was typically associated with the presence of aac(3′)-II-like
enzymes, mostly aac(3′)-II-e (19/23). Three isolates had an
aac(3′)-IId enzyme and one an aac(3′)-Ia variant. Other aminogly-
coside resistance loci included aph(6′)-Id (25 isolates), aph(3′)-Ia
(4), aadA2 (4), aadA1 (2) and aadA16 (1).

Discussion
In this study, we determined the sensitivity and specificity of a
genotypic prediction algorithm for the two most commonly iso-
lated Gram-negative species, E. coli and K. pneumoniae, using
whole-genome data from clinical isolates from bacteraemic
patients with a wide range of resistance phenotypes. In our
centre, the epidemiology of these organisms has been found to
be similar to the wider national and European contexts.12,13

Using publicly available resources, we determined the presence/
absence of published variants (including genes and resistance-
determining mutations) in .100 resistance-associated gene fam-
ilies, with particular reference to those relevant to commonly used
antimicrobials. Relative to a comparison standard phenotype
based on BD Phoenix plus gradient diffusion testing, genotype-
based resistance prediction yielded overall sensitivity and specifi-
city values of 0.96 and 0.97, respectively, plus rates of very major
errors (1.2%) and major errors (2.1%) below the corresponding
FDA-specified thresholds of 1.5% and 3%.

Applying genetic ‘resistotyping’ to Gram-negative species is not
new, with PCR-based methods having been widely used in the epi-
demiological assessment of both E. coli and K. pneumoniae collec-
tions. However, the number of resistance mechanisms involved is
extremely large, limiting the use of comprehensive PCR methods
in any real-time diagnostic capacity. One response to this chal-
lenge has been to develop microarray-based approaches to
assess a much larger panel of resistance mechanisms than is feas-
ible with PCR; this method, however, has issues with sensitivity and
cannot easily identify numerous mutation-based mechanisms of
resistance.32 In addition, microarrays are expensive to develop
and difficult to upgrade flexibly in response to the evolution of re-
sistance mechanisms. We have demonstrated that whole-
genome sequencing provides a viable alternative approach.
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This study has also demonstrated that novel variants of known
resistance-associated loci can be easily identified using our ap-
proach. To expand on this, BLASTn-based cut-offs could be made
less stringent to facilitate the discovery of putative, distantly
related resistance genes or a tBLASTx-based approach could be
used to identify protein homologues with different underlying
coding sequences. Similar approaches have been used in the
past, although in a limited manner.33

Our data highlight some known issues with the accuracy of
some phenotypic methods commonly used in diagnostic micro-
biology—particularly with the assessment of b-lactam/
b-lactamase inhibitor susceptibilities. Duplicate BD Phoenix tests
gave discordant results in 7 (5%) of 143 co-amoxiclav tests per-
formed; on gradient diffusion, 6/7 isolates had MICs more than
one dilution away from the breakpoint. In 21 instances where
the co-amoxiclav genotypic prediction disagreed with the BD
Phoenix results (all involving genotypically susceptible isolates
that were resistant by BD Phoenix), all isolates were susceptible
according to gradient diffusion, suggesting that in 15% of tests
automated phenotyping was overcalling resistance. Problems
with the correct assessment of susceptibility by phenotyping for
b-lactam/b-lactamase inhibitor combinations have been
observed previously,34 particularly in the context of complex
b-lactamase genotypes,35 which were disproportionately repre-
sented in our dataset.

For extended-spectrum cephalosporins and E. coli, we found
certain genetic mechanisms known to be associated with resist-
ance (such as the CTX-M enzyme family) in isolates considered sus-
ceptible. However, this was using the new, lower EUCAST
breakpoints in the context of EUCAST’s decision (mirrored by the
CLSI) to report susceptibilities as observed without interpretative
modifications for these drugs. This phenomenon has also been
documented in other studies of CTX-M-producing organisms
from China and New Zealand36,37 and highlights the controversy
over whether an in vitro MIC or the presence of a genetic mechan-
ism is more predictive of clinical outcomes38—whether this is a
limitation or a strength of genotypic resistance prediction
methods is therefore unclear. The large-scale clinical outcome
data needed to resolve this quandary are currently lacking, but
could be obtained by using integrated routine clinical, phenotyping
and antibiotic-prescribing data, combined with whole genome-
based, comprehensive assessments of resistance mechanisms.

Overall, among 1001 isolate–antimicrobial combinations
tested, we found 12 instances of phenotypic resistance that
were supported by gradient diffusion analysis without any resist-
ance mechanism being identified, indicating deficits with our
initial gene reference database and/or genotypic prediction algo-
rithm. We have yet to systematically investigate potential contri-
butions made by other known resistance mechanisms, such as
porin genes or efflux pumps, in part because associations of the
latter with phenotypic resistance are incompletely defined. Asses-
sing the performance of our approach in determining all known
mechanisms of resistance, including rare variants, is clearly im-
portant future work. For this study, however, we were particularly
focused on characterizing the potential of genotypic resistance
prediction for organisms typically isolated in our clinical practice.
Of interest, given the absence of any initial mechanism identified
for carbapenem resistance in the single meropenem-resistant
K. pneumoniae isolate, we subsequently studied the ompK35 and
ompK36 loci as possible candidate loci using our BLASTn-based

approach and identified a 5 bp deletion in ompK36 leading to a
truncation at position 227. Although we did not measure protein
expression, porin deficiencies associated with prematurely trun-
cated ompK36, coupled with the presence of blaCTX-M-15, have
been associated previously with carbapenem resistance39 and
could plausibly explain resistance in this isolate. This demonstrates
that once an isolate’s genome sequence is available, it can be reas-
sessed rapidly for additional resistance gene mechanisms as ne-
cessary, without the need for further laboratory work.

There are several limitations to our approach as described.
Establishing the sequencing and computational infrastructure
required to process large volumes of sequencing data in real time
involves a substantial initial investment in terms of time and
money. Our study was a retrospective, proof-of-principle ex-
periment and further work would be required to assess its perform-
ance and cost-effectiveness in a routine diagnostic setting on a
larger dataset. In addition, it remains to be seen whether predic-
tions would be equally successful for all antimicrobials currently
incorporated in phenotypic susceptibility testing strategies. The
bioinformatic strategy used does not determine plasmid copy
number and therefore cannot quantify the possible contribution
of multiple gene copies (e.g. of blaTEM), which might lead to hyper-
production of certain enzymes and phenotypic resistance by a
gene dosage effect. Another limitation is that the phenotypic man-
ifestations of certain allelic variants and promoter/attenuator
mechanisms are not fully determined (e.g. for some of the blaSHV

variants), precluding reliable predictions. Importantly, resistance
mechanisms evolve; approaches based on genotypic prediction
rely on a resistance locus reference database requiring regular up-
dating based on a scheme incorporating ongoing phenotyping,
albeit in a more limited number of samples, such as those isolated
from treatment failures. Phenotyping would also be needed to val-
idate any novel genetic resistance mutations/mechanisms. Finally,
epigenetic and expression-associated mechanisms cannot be
determined using our DNA-based analysis, thus highlighting the in-
trinsic limitation of approaches based on gene/mutation identifi-
cation with no direct evidence of functional resistance. However,
alternative sequencing-based methods could be explored to
address this shortcoming, such as RNA-Seq, chromatin immuno-
precipitation sequencing or methylation analysis.40

Despite these limitations, our approach achieved high sensitiv-
ity and specificity in proof-of-principle experiments using typical
clinical isolates and its performance was comparable to that of
some phenotyping methods currently in routine use. Whole-
genome sequencing-based approaches may well become part of
routine microbiology workflows in some settings within the next
5 years. This would afford the ability to undertake species identifi-
cation, strain typing for epidemiological purposes or infection pre-
vention and control, and prediction of antimicrobial susceptibilities
reliably and quickly using a single method for �£40/isolate.1
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