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Visual search in real life involves complex displays with a
target among multiple types of distracters, but in the
laboratory, it is often tested using simple displays with
identical distracters. Can complex search be understood
in terms of simple searches? This link may not be
straightforward if complex search has emergent
properties. One such property is linear separability,
whereby search is hard when a target cannot be
separated from its distracters using a single linear
boundary. However, evidence in favor of linear
separability is based on testing stimulus configurations in
an external parametric space that need not be related to
their true perceptual representation. We therefore set
out to assess whether linear separability influences
complex search at all. Our null hypothesis was that
complex search performance depends only on classical
factors such as target-distracter similarity and distracter
homogeneity, which we measured using simple searches.
Across three experiments involving a variety of artificial
and natural objects, differences between linearly
separable and nonseparable searches were explained
using target-distracter similarity and distracter
heterogeneity. Further, simple searches accurately
predicted complex search regardless of linear
separability (r ¼ 0.91). Our results show that complex
search is explained by simple search, refuting the widely
held belief that linear separability influences visual
search.

Introduction

Our everyday visual experience frequently involves
searching for a target object among a complex clutter
of other objects. This phenomenon of visual search has
been studied in the laboratory using simplified displays
containing a single target among either one or two
types of distracters (Nakayama & Martini, 2011).

Indeed, studying visual search on these simple displays
has yielded several important insights into the features
that make search easy or difficult (Wolfe & Horowitz,
2004). However, the approach of using simple displays
is based on the belief that understanding simple search
will directly elucidate complex, real-life search. This is
possible if complex search (i.e., search with a target
among multiple types of distracters) can be explained
using simple searches (i.e., searches with a target among
one type of distracter). Alternatively, complex search
might involve additional emergent phenomena that
cannot be explained using simple search alone.

Existing theories of visual search contain several
qualitative predictions regarding complex search. First,
all theories agree that search becomes hard when the
target is similar to its distracters (Metzger, 1936;
Duncan & Humphreys, 1989; Wolfe, Cave, & Franzel,
1989) and when the distracters are heterogeneous
(Duncan & Humphreys, 1989) but do not offer
quantitative predictions about their relative contribu-
tions. Second, it is widely believed that search becomes
hard when a target cannot be separated from its
distracters using a single linear boundary in feature
space (Bauer, Jolicoeur, & Cowan, 1996a, 1996b, 1998,
1999; Arguin & Saumier, 2000; Hodsoll & Humphreys,
2001; Saumier & Arguin, 2003; Blais, Arguin, &
Marleau, 2009; Nakayama & Martini, 2011). This
property, known as linear separability, is thus an
emergent phenomenon arising from the configuration
of target and distracters that cannot be explained using
target-distracter or distracter-distracter similarity.
However, the target-distracter configurations deemed
linearly separable (LS) or linearly nonseparable (LNS)
in these studies were based on coordinates defined in an
external parametric space (Bauer et al., 1996a, 1996b,
1998, 1999) or using shape-matching experiments
(Arguin & Saumier, 2000; Saumier & Arguin, 2003),
neither of which may reflect their true perceptual
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configuration. This problem is compounded by the fact
that targets in LS configurations are generally further
away from their distracters (resulting in easier search)
compared to LNS configurations. Thus, it is not clear
whether linear separability influences search difficulty
above and beyond that expected from increased target-
distracter similarity or distracter heterogeneity alone
(Navalpakkam & Itti, 2006).

Here, we set out to investigate the relationship
between complex search and simple search in three
experiments. According to the above theories, the ease
of finding a target T among distracters D1 and D2

depends on the dissimilarity of T with D1 and D2 the
similarity between the D1 and D2 as well as their linear
separability. To measure these similarities, we set up
simple search displays involving these items and took
the similarity between two items A and B to be the
average time taken by subjects to search for A among
Bs (or vice versa). To assess the impact of linear
separability, we asked whether differences between
LNS and LS configurations could be explained by
target-distracter or distracter-distracter similarities
alone. As in previous studies, we sought to identify the
impact of linear separability over and above the
contributions expected from similarity relations alone.

The above similarity measurements have the advan-
tage that they are directly based on visual search itself
rather than subjective similarity ratings or external
parametric differences between stimuli. We were
further able to use these similarity measurements to
visualize the underlying representation using multidi-
mensional scaling (see Methods). This allowed us to
explicitly visualize the underlying perceptual represen-
tation, which we term as visual search space. We
observed important differences between distances in
external parametric space and distances in visual search
space. For instance, in Experiment 1, we found that
orientations related through vertical mirror reflection
(e.g.,�208 and 208) are more similar to each other than
unrelated orientations (e.g., 08 and 408) in visual search
space even though they are equally distinct in externally
defined orientation space.

In Experiment 1, we tested complex searches
involving a simple one-dimensional feature, namely
orientation. Here, a search for an intermediate orien-
tation (e.g., 08 among�208 and 208) is LNS whereas
search for an extreme orientation (e.g.,�208 among 08
and 208) is LS. We found that some LNS searches are
harder than comparable LS searches as expected, but
we also found some LNS searches to be easier than
their comparable LS searches. Upon examining the
corresponding simple searches, we found that the
harder search (whether LS or LNS) always involved
larger target-distracter similarity and smaller distracter
homogeneity—in keeping with the similarity-based
theories. Thus, at least for a one-dimensional feature

like orientation, differences between LNS and LS
searches were explained using similarity relations as
measured in simple search. However, testing linear
separability for one-dimensional features is problematic
because it co-varies with similarity: An intermediate
orientation will always, by definition, be closer to two
flanking orientations compared to an extreme orienta-
tion. Another problem with orientation is that if it is
taken as a clock variable (e.g., a vertical line can be
taken as either 08 or 1808), defining linear separability
becomes problematic because even two orientations are
LNS in that two linear boundaries are required to
separate them. Nonetheless, we have chosen orienta-
tion because it is widely studied, and we treat it as
varying along a line at least for the small range of
orientations used here.

In Experiment 2, we tested complex shapes varying
along two dimensions (curvature and thickness) used
in previous studies (Arguin & Saumier, 2000; Saumier
& Arguin, 2003). As in these studies, we found LNS
searches to be harder than LS searches, but we were
able to explain these differences using target-distracter
similarity or distracter heterogeneity. Thus, even for
shapes varying along two dimensions, differences
between complex searches attributed in previous
studies to linear separability can be explained instead
using similarity relations alone. However, this still
leaves open the possibility that linear separability
might play a role if tested on perceptually LNS
configurations.

In Experiment 3, we set out to quantitatively
characterize the relationship between complex search
and simple search by fitting a model that uses simple
search to predict complex search across a wide variety
of shapes. We looked for possible effects of linear
separability by asking whether the model, being based
solely on similarity relations, would become less
accurate for LNS compared to LS searches. This still
left us with the problem of detecting LNS configura-
tions in search space. To this end, we devised an
independent measure to assess the degree to which any
target-distracter configuration (T, D1, D2) is LS and
used this method to compare LS and LNS configura-
tions. Using this measure, we were able to show that
model predictions were equally accurate for LS and
LNS target-distracter configurations, suggesting that
the linear separability has no impact on visual search.

In Experiment 3, we tested two categories of models,
both of which can capture the relationship between
complex search and simple search. The first category
consisted of models based on linear combinations of
search times, which measure search similarity. These
models, although based on the more direct measure of
search reaction time (RT), have no straightforward
mechanistic interpretation because it is not clear why or
how search times should be summed linearly to
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produce a complex search time. The second category
comprised models based on linear combinations of the
reciprocal of search time (1/RT), which measures
dissimilarity or distance in visual search. The reciprocal
of search time, although an indirect measure, is a
plausible quantity for explaining complex search
because (a) it varies linearly with target-distracter
differences whereas search time is nonlinear (Arun,
2012), (b) it has a plausible interpretation as the
underlying discriminative signal that accumulates to a
decision threshold in visual search, and (c) it is
conceivable that complex search is driven by indepen-
dent contributions from target-distracter similarity and
distracter-distracter dissimilarity that sum linearly to
produce a global discriminative signal that drives visual
search. We tested both types of models and found that
models based on search distance provide quantitatively
better fits to the data compared to models based on
search times.

Taken together, our results show that (a) previous
evidence in favor of linear separability at least for two-
dimensional shapes can be parsimoniously explained
using similarity relations and (b) across a wide variety
of shapes, complex search is accurately predicted by
simple search regardless of linear separability.

Experiment 1: Oriented bars

In Experiment 1, we investigated the relationship
between complex and simple search using simple
stimuli varying along a single feature dimension,
namely orientation. We measured search times for
three different set sizes (16, 24, and 32 items) for LS
and LNS searches involving oriented bars. For each
complex search that involved finding T among D1 and
D2, we also measured search performance across set
sizes for T among D1, T among D2, and D1 among D2

(or vice versa).

Methods

Subjects

A total of six subjects, aged 20–30 years, with normal
or corrected-to-normal vision participated in this
experiment. All participants were naı̈ve to the purpose
of the experiment and gave written consent to a
protocol approved by the Institutional Human Ethics
Committee of the Indian Institute of Science.

Subjects were seated approximately 90 cm from a
computer monitor that was under control of custom
Matlab programs written using Psychtoolbox (Brai-
nard, 1997), running on a Dell workstation.

Stimuli

Stimuli in this experiment consisted of bars measur-
ing 0.78 · 0.28 of visual angle oriented at�408,�208, 08,
208, and 408 measured clockwise relative to the vertical.

Target-distracter configurations

We tested a total of 20 target-distracter configura-
tions, which consisted of 10 pairs of LNS and matched
LS configurations (Table 1). For each LNS configura-
tion (say �208 among 08 and�408), we identified a
comparable LS configuration using the same three
orientations but with the target interchanged with one
of the distracters (e.g., 08 among�208 and �408).

Visual search task

Each subject performed randomly interleaved trials of
either complex search or simple search in which they
located a previewed target. In the complex search
displays, there were two types of distracters whereas in
the simple search displays there was one type of
distracter (see Figure 1 for example 24-item displays). In
a given trial, the search display contained a total number
of 16, 24, or 32 items (chosen randomly each time). Prior
to starting the task, subjects performed practice search
trials using natural objects not used in the experiment.

In each trial of the task, subjects saw a fixation cross
(0.358 · 0.358) presented for 500 ms, followed by a
preview of the target, presented in isolation for 500 ms
at fixation, which was then replaced by a blank screen
for 500 ms. This was then followed by the search
display, which was a 6 · 6 array consisting of 16, 24, or
32 items with their locations chosen at random (but
with the constraint that exactly half the items would be
shown on each side). Target location was chosen
uniformly at random within the central 4 · 4 region to
minimize effects of target eccentricity. The array
measured 158 · 158. Item locations were chosen from a
uniform distribution centered at each array location
with a maximum deviation of 0.258 from the center.
The display stayed on until the subject made a
response, and the trial timed out after 15 s of display
onset. Reaction times greater than 10 s for complex
searches and greater than 4 s for the simple searches
were excluded from our analyses (;5% of the data in
each search type). Subjects were asked to hit a key (M
for right, Z for left) to indicate the side on which the
target appeared. A vertical red bar (178 · 0.28) was
displayed at the center of the screen along with the
search array to facilitate left/right judgments.

Search displays

In the complex search displays, the target side of the
6 · 6 array contained seven, 11, or 15 distracters
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No.

LNS configuration LS configuration

Observed effect direction (LNS vs. LS)T D1 D2 T D1 D2

1 �208 08 �408 08 �208 �408 LNS . LS

2 �208 �408 208 �408 �208 208 LNS . LS

3 08 208 �208 208 08 �208 LNS . LS

4 208 408 �208 408 208 �208 LNS . LS

5 208 08 408 08 208 408 LNS . LS

6 �208 �408 408 �408 �208 408 LNS , LS

7 08 208 �408 208 08 �408 LNS , LS

8 08 408 �408 408 08 �408 LNS , LS

9 08 �208 408 �208 08 408 LNS , LS

10 208 408 �408 408 208 �408 n.s.

Table 1. Target-distracter configurations tested in Experiment 1. Notes: Each LNS and LS pair shared the same three orientations but
differed in the identity of the target. The third column represents the direction of the effect observed in the data. Conditions 1
through 5, marked LNS . LS, represent cases in which the LNS search was significantly harder than the LS search as assessed by a
significant main effect of condition (LNS/LS) in an ANOVA on the search times with subject, condition, and set size as factors ( p ,
0.05). Conditions 6 through 9 represent cases in which LNS were easier than LS searches. Condition 10 showed no significant
difference.

Figure 1. An example LNS search that is harder than a LS search. Search for a�208 target among 08 and�408 (A) is LNS because�208

lies in between 08 and�408 and cannot be separated from the two distracters using a single linear boundary. In contrast, the search

for 08 among�208 and�408 (E) is LS because 08 can be separated from�208 and�408 using a single linear boundary. Here, the LNS

search (A) is harder than the LS search (E). The remaining panels in each row indicate the simple searches corresponding to the LNS

(panels B, C, and D) and LS searches (panels F, G, and H). These show that the LNS target is less similar to one distracter compared to

LS (�208 among 08 is easier than 08 among�208; B vs. F), but it is more similar to its distracters than LS (�208 among�408 is harder

than 08 among�408; C vs. G), and the distracters in the LNS search are less similar than the LS distracters (08 among�408 is easier

than�208 among�408; D vs. H). Thus, the LNS search has a target that is more similar to its distracters and has more heterogeneous

distracters, making it harder than the LS search. The numbers at the bottom of each panel represent the average search times 6 SEM

across subjects.
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(depending on set size), which were split into four, six,
or eight instances of one distracter and three, five, or
seven of the other. The other side of the array
contained equal numbers of distracters of each type.
The two types of distracter placements (more D1 or
more D2 on the target side) were crossed with two
possible target locations (left/right) to yield four unique
conditions for a given target-distracter triplet (T, D1,
D2). These conditions were repeated two times to yield
a total of eight trials of each triplet, which resulted in
480 complex search trials (20 triads · 8 repetitions · 3
set sizes).

In the simple search displays, there were six possible
simple searches corresponding to each triplet (T, D1,
D2) in the complex search task: These were T among
D1, T among D2, and D1 among D2 or vice versa.
Because there were 20 triplets in the complex search
task (Table 1) involving only five orientations, there
were only 10 unique simple searches (5C2). Each of
these simple searches was repeated four times each with
the target randomly located on the left or right side and
two times with each orientation in the pair as target. As
a result, there were eight trials at each set size for each
image pair (T, D) in which T or D could be the target,
giving rise to 240 trials (10 triads · 2 pairs · 4
repetitions · 3 set sizes).

Results

To assess the consistency in the search times between
subjects, we separated the subjects randomly into two
groups and calculated the correlation between the
average search times across conditions between the two
groups. We found a high correlation between subjects
in both blocks, suggesting that subjects were extremely
consistent (r¼0.83, p , 0.00005 for complex search; r¼
0.77, p , 0.00005 for simple search). We compared the
performance of subjects on LNS versus LS configura-
tions and how this related to their performance on the
corresponding simple searches.

Among the LNS and LS configurations tested, we
found some instances in which LNS search was harder
than the LS searches but others in which LS searches
were harder. Figure 1 depicts an example LNS search
(�208 among 08 and �408; Figure 1A) that is harder
than its LS counterpart (08 among�208 and �408;
Figure 1E). Note that both searches contain the same
three orientations and differ only in the identity of the
target.

We then analyzed subjects’ performance on simple
searches involving all possible pairs of these orienta-
tions (i.e., 08 among�208, 08 among�408, and �208
among�408). For the LNS search (�208, 08,�408), the
corresponding simple searches are (�208, 08), (�208,
�408), and (08, �408). Of these, the first two represent

target-distracter similarity and the last one represents
distracter homogeneity (Figure 1B through 1D, top
row). For the LS search (08, �208, �408), the
corresponding simple searches are (08,�208), (08,�408),
and (�208, �408) (shown in Figure 1F through 1H,
bottom row). According to similarity-based accounts,
search should be hard when target-distracter similarity
is high or when distracter-distracter similarity is low
(i.e., distracters are heterogeneous).

It can be seen that the LNS and LS configurations
have significant differences also in their corresponding
simple searches: The LNS search target was slightly less
similar to one of the distracters compared to the LS
search (i.e., �208 among 08 took 0.11 s less than 08
among�208, a well-known search asymmetry; Figure
1B vs. 1F), which predicts that the LNS search should
be easier. However, the LNS search target was
considerably more similar to the second distracter
compared to the LS search (i.e.,�208 among�408 took
0.5 s longer than 08 among �408; Figure 1C vs. 1G).
Likewise, distracter heterogeneity was greater in LNS
compared to LS; in other words, the distracter-
distracter search was easier (i.e., 08 among �408 took
0.5 s less than �208 among �408; Figure 1D vs. 1H).
The last two comparisons predict that LNS should be
harder than LS and outweighed the first effect. Thus,
taken together, the similarity factors predict that the
LNS search should be harder than the LS search.

Figure 2 depicts an LNS search (08 among 208 and
�408; Figure 2A) that is easier than an LS search (208
among 08 and�408; Figure 2E) along with the
associated simple searches. It can be seen that one of
the target-distracter similarities is slightly higher in the
LNS compared to the LS search (i.e., 08 among 208
took 0.2 s longer than 208 among 08, an asymmetry;
Figure 2B vs. 2F) and lower target-distracter similarity
for the second distracter (e.g., search for 08 among�408
took 0.3 s less than 208 among�408; Figure 2C vs. 2G).
Here the second effect was stronger than the first,
suggesting that overall, the LS search had greater
target-distracter similarity. In addition, the distracters
in the LNS search are more homogeneous (208 among
�408 took 0.3 s longer than 08 among�408; Figure 2D
vs. 2H), causing the LNS search to be easy. Thus,
differences between LNS and LS search performance
are again easily explained using similarity relations
measured in simple search.

These examples illustrate that LNS searches are
harder than LS searches in some cases but easier than
LS searches in other cases, but more importantly, these
effects can be understood in terms of the corresponding
simple searches. We next investigated the presence of
these effects across different set sizes for each LNS and
LS pair. To assess the presence of a significant
difference between each LS and LNS pair, we
performed an ANOVA on the search RTs with subject
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(six levels), condition (two levels, LS and LNS), and set
size (three levels) as factors. We selected LS and LNS
pairs that differed significantly as assessed by the
presence of a significant main effect of condition (a ,
0.05, indicated in Table 1).

We then averaged separately across pairs in which
LNS was harder than LS or vice versa. For the five
complex searches in which LNS was harder than LS,
the LNS slopes (mean¼ 43 ms/item) were larger than
the LS slopes (mean ¼ 20 ms/item), and this
difference approached statistical significance (paired t
test, p ¼ 0.12). For the four complex searches in
which LNS was easier than LS, the slopes did not
differ significantly (mean slopes: 28 ms/item for LNS,
19 ms/item for LS, p ¼ 0.72, paired t test). The
resulting RT versus set size plots are shown in Figure
3. Across pairs, we observed effects similar to the
example displays in Figure 1, namely that the harder
complex search (whether LNS or LS) was always
associated with differences in target-distracter simi-
larity relations as measured using simple searches.
For the harder complex searches (whether LNS or
LS), the target was less similar to one of the
distracters—a relatively weak effect that did not

reach significance in one group (Figure 3B; p ¼ 0.7
for main effect of LS vs. LNS in an ANOVA with
subject, configuration, search triple, and set size as
factors) and reached significance in the other group
(Figure 3F; p ¼ 0.0001 for main effect of LS vs. LNS
as before). This effect, which is in the opposite
direction, was outweighed by the fact that the target
in the harder search was significantly more similar to
one of the distracters in both groups of conditions
(LS vs. LNS main effect p , 0.00001; Figure 3C and
3G). The harder complex search was also associated
with significantly smaller distracter-distracter simi-
larity in both groups of conditions (LS vs. LNS main
effect p , 0.00001; Figure 3D and 3H). Again, two
of these simple searches predicted the direction of the
effect (whether LNS was harder or easier than LS),
and these two appeared to have dominated the third.
We conclude that differences between LNS and LS
searches, at least for oriented lines, can be accounted
for using similarity relations as measured using
simple searches.

Although differences between complex searches
were explained by differences in the corresponding
simple searches, this was true of search times in

Figure 2. An example LNS search that is easier than an LS search. The LNS search for a 08 target among 208 and�408 (A) is easier than

an LS search for 208 among 08 and�408 (E). The related simple searches show that although the LNS target is slightly more similar to

one of the distracters compared to LNS (08 among 208 is harder than 208 among 08; B vs. F), the other distracter is less similar for LNS

over LS (08 among �408 is easier than 208 among �408; C vs. G), and the two distracters in LNS are more similar than the two

distracters in LS (208 among�408 is harder than 08 among�408; D vs. H). Thus, the LNS search has a target that is less similar to its

distracters and has more homogeneous distracters, making it easier than the LS search.
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general but not necessarily for search slopes. It can
be seen (Figure 3) that complex searches had large
and positive search slopes whereas the corresponding
simple searches had near-zero or negative slopes. We
take up the possible reasons for this discrepancy in
the General discussion.

Discussion

The above results demonstrate that the differences
between LS and LNS configurations as defined in
orientation space can be parsimoniously explained
using differences in target-distracter similarity and
distracter-distracter similarity. We note however that
for a one-dimensional feature space such as orientation,
it is impossible to manipulate linear separability while
keeping target-distracter and distracter-distracter dis-
tances constant. In other words, if orientation A were
intermediate between orientations B and C, then the
LNS search for A among B and C would be hard
because A is close to both B and C in orientation

whereas the LS search for B among A and C would be
automatically easier because B is close to A but far
from C. However, this argument implies that all LNS
searches should be harder than their LS counterparts,
which was not the case in our data: There were four LS/
LNS conditions in which LS was, in fact, harder than
LNS (Table 1). Why might this be so?

To investigate this issue further, we compared the
simple searches corresponding to the conditions in
which LNS search was easier than LS search (Table 1).
Consider, for example, the orientations 08, 208, and
�408 shown in Figure 2. If larger orientation differences
resulted in easy search, then search for 208 among�408

(a 608 difference) should be easier than search for 08

among�408 (a 408 difference). Instead we found the
opposite (Figure 2C vs. 2G). Similarly, search for 408

among�408 (an 808 difference in orientation) was as
easy as search for 08 among 408 (data not shown). Thus,
distances in visual search space do not have a
straightforward relationship with differences in orien-
tation.

Figure 3. Search reaction times as a function of set size for complex searches and their associated simple searches. LNS searches and

their associated simple searches are indicated using red lines, and LS searches and their associated simple searches use blue lines.

Search times are averaged across conditions in which LNS searches were harder than LS searches (top row, panels A through D) and

vice versa (bottom row, panels E through H). The first two simple searches measure target-distracter similarity (panels B and F for TD1;

C and G for TD2, middle panels), and the last simple search (panels D and H) measures distracter-distracter similarity or distracter

homogeneity (D1D2). The green asterisk in each panel denotes a statistically significant main effect ( p , 0.0001) of search

configuration (LS vs. LNS) (see text).
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To explicitly visualize the similarity relations that
govern search for orientation, we performed a
multidimensional scaling analysis on the reaction
times for the 32-item displays (we obtained similar
results for the 16-item and 24-item displays). Specif-
ically, we took the search time for each pair of
orientations in the experiment and took its reciprocal
as a measure of dissimilarity or distance in search
space (Arun, 2012). On the set of distances obtained
in this manner between all pairs of orientations, we
performed multidimensional scaling. This technique
finds the best-fitting two-dimensional coordinates of
each orientation such that their distances match the
observed pair-wise distances. In the resulting plot,
therefore, nearby orientations represent hard searches
and distant orientations represent easy searches. The
resulting plot (Figure 4) shows that orientations on
one side of the vertical (08, 208, 408) are systemati-
cally mapped in search space (e.g., the distance
between 08 and 208 is roughly equal to the distance
between 208 and 408). In contrast, distances between
orientations spanning the vertical midline (e.g., �208
and 208, distance d2 in Figure 4) are far smaller than
distances between orientations on the same side of
the vertical (e.g., 08 and 408, distance d1 in Figure 4)
despite having the same angular separation. This is
consistent with the perceptual tendency to confuse
mirror-related shapes (Gross & Bornstein, 1978;
Wolfe & Friedman-Hill, 1992; Rollenhagen & Olson,
2000). Likewise, the distance d3 between 408 and
�408—an orientation difference of 808—is slightly
smaller than the distance d1 between 0 deg and 40
deg even though the latter involves only a 408
difference (Figure 4).

Although the above distortions are interesting in
their own right, of particular relevance here is the fact
that LS searches become harder than LNS searches for
certain orientations spanning across the vertical and
that these differences can be explained using target-
distracter similarity and distracter homogeneity as
measured in simple search. We conclude that differ-
ences between complex searches involving orientations
can be explained using similarity relations measured
using simple search without invoking any linear
separability.

Our results also provide an alternative explanation
for previous findings on complex search for orienta-
tions (Wolfe, Friedman-Hill, Stewart, & O’Connell,
1992). In the Wolfe et al. (1992) study, for instance,
the authors find that search for�108 among�508 and
508 is easy, but search for 108 among �308 and 708 is
hard. Based on this, the authors argue for categorical
representations of orientation such as ‘‘steep,’’
‘‘shallow,’’ etc. In contrast, our findings on orienta-
tion space suggest that all orientation differences are
not equal; the latter search is easy because the

distracters �508 and 508 are more similar to each
other than the distracters�308 and 708 despite having
the same angular difference because they are mirror-
related. The more homogeneous distracters, in turn,
result in an easier search.

In the above experiment, it was difficult to
manipulate linear separability without influencing
other factors because the underlying feature was only
one-dimensional. In the next experiment, we used
shapes varying along two dimensions, so it was
possible to manipulate linear separability while
keeping target-distracter similarity and distracter
homogeneity constant. Specifically, we replicated
previously reported differences between LS and LNS
configurations and showed that these differences can
be accounted for again using similarity consider-
ations without invoking any notion of linear sepa-
rability.

Experiment 2: Shapes varying along
two dimensions

In Experiment 2, we tested search performance of
subjects on LS and LNS configurations consisting of
shapes varying along two dimensions: curvature and
thickness. Differences between these configurations
have previously been attributed to linear separability

Figure 4. Representation of orientations in visual search space

obtained using multidimensional scaling. Distances between

pairs of orientations in this plot are roughly equal to the

reciprocal of the average search time involving one orientation

among the other for the 32-item displays. Similar plots were

obtained for 16- and 24-item displays. Observed search

distances and distances in this plot are closely related (r¼ 1.00,

p , 0.00005). However, the observed search distances are not

proportional to the angular differences: for instance, despite

having the same difference in orientation, the distance d1
between 08 among�408 is larger than the distance d2 between

�208 and 208. Likewise, the distance d3 between 408 and�408—

an orientation difference of 808—is slightly smaller than d1 even

though the latter involves only a 408 difference.
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(Arguin & Saumier, 2000; Saumier & Arguin, 2003).
However, performances on simple searches were not
measured in these studies. We therefore set out to
test whether differences between LNS and LS
configurations could be explained by differences in
target-distracter similarity and distracter homogene-
ity.

Methods

Subjects

A total of six subjects performed this experiment. All
other details are identical to Experiment 1.

Stimuli

The stimuli were identical to those used by the
Arguin and Saumier studies (Arguin & Saumier, 2000;
Saumier & Arguin, 2003), and the full stimulus set is
shown in Figure 7A. Stimuli were scaled so that they
measured 0.78 of visual angle along the longer
dimension. The set of shapes varied in two dimen-
sions—aspect ratio and curvature—and the method of

generation is described in detail elsewhere (Arguin,
Bub, & Dudek, 1996).

Target-distracter configurations

The target-distracter configurations were identical to
those used in previous studies of linear separability on
shapes (Arguin & Saumier, 2000; Saumier & Arguin,
2003) as summarized in Table 2. The target shape was
always the item ‘‘T’’ (Figure 7A), but the distracters
were chosen in these studies to make the overall
configuration LS or LNS. In the complex search block,
there were 384 trials (16 complex searches · 8
repetitions · 3 set sizes). In the simple searches, there
were a total of 768 trials (32 unique searches · two
pairs with A or B as the target · 4 repetitions · 3 set
sizes).

Visual search task

All aspects of the experiment were identical to
Experiment 1. Extreme reaction times greater than 10 s
in complex search and those greater than 4 s in simple
search were excluded from the analyses (;6% of the
data).

Figure 5. Examples of complex searches involving complex shapes used in previous studies and their associated simple searches. The

LNS search T among N and J (A) is harder than the LS search for T among N and L (E). The related simple searches show one common

search (T among N, panels B and F). For the other two searches, the LNS target is more similar to the distracter (TJ is harder than TL,

panels C vs. G), and the LNS distracters are more heterogeneous (NJ is easier than NL, panels D vs. H). These two effects cause the LNS

search to be harder than the LS search.

Journal of Vision (2013) 13(11):10, 1–24 Vighneshvel & Arun 9



Figure 6. Search RTs as a function of set size for complex searches and their associated simple searches in Experiment 2. Search times

are averaged across conditions in which LNS searches differed significantly from LS searches for the similar distracter conditions

(panels A through D, top row) and the dissimilar distracter conditions (panels E through H, bottom row). LNS searches and their

associated simple searches are indicated using red lines, and LS searches and their associated simple searches using blue lines. The

leftmost column depicts complex searches whereas the remaining columns depict the corresponding simple searches. The first two

simple searches measure target-distracter similarity (TD1 and TD2, middle panels), and the last simple search (panels D and H)

measures distracter-distracter similarity or distracter homogeneity (D1D2). Green asterisks represent statistical significance as before.

Figure 7. Parametric space versus search space in Experiment 2. (A) Stimuli shown in the parameter space used by Saumier and

Arguin (2003). (B) A two-dimensional representation of these stimuli obtained from multidimensional scaling performed on the set of

experimentally measured pair-wise search distances. Distances between pairs of shapes in this plot are roughly equal to the reciprocal

of the average search time involving one shape among the other for 6 · 6 search displays. Stimuli L and M are depicted using filled

dots for clarity. The original configuration in parameter space is considerably distorted in visual search space (compare panels A and

B). These distortions explain the difference observed between LS and LNS searches (see text).
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Results

Subjects were highly consistent in their responses as
evidenced by a high correlation between the average
RTs of one half of the subjects and that of the other
half for both tasks (r ¼ 0.91, p , 0.00005 for complex
search; r ¼ 0.94, p , 0.00005 for simple search).
Subjects searched for the target faster in LS configu-
rations compared to LNS configurations (p , 0.0005
for the main effect of linear separability, ANOVA on
search times with subject, linear separability, similarity,
and set size as factors). There were also significant main
effects of subject, set size, and similarity (p , 0.00005)
but no significant interaction effects. These results are
similar to the effects reported by Saumier and Arguin
(2003).

An example LNS and LS search pair is shown in
Figure 5. According to the Saumier and Arguin studies
(Arguin & Saumier, 2000; Saumier & Arguin, 2003)
(and also confirmed in this study), the LNS search T
among N and J (Figure 5A) is harder than the LS
search T among N and L (Figure 5E). In previous
studies, the target-distracter and distracter-distracter
similarities were never tested. On testing them, we
found that the LNS search had greater target-distracter
similarity (T among J is harder than T among L, Figure
5C vs. 5G) and lower distracter-distracter homogeneity
(N among J is easier than N among L, Figure 5D vs.
5H).

The trend shown in these example displays was
true for most of the LNS and LS pairs tested. To
assess the presence of a significant difference between
each pair of LNS and LS conditions, we performed
an ANOVA as before on the search times with
subject, condition (LNS vs. LS), and set size as
factors (Table 2). We then averaged the LNS and LS
search times at each set size for the similar and
dissimilar distracter conditions separately for condi-
tions in which we observed a significant effect. We

also averaged the corresponding simple search times
(target-distracter and distracter-distracter) for each
set size. The resulting plots are shown in Figure 6.
LNS searches were harder in general than LS
searches (Figure 6A and 6E) and had larger slopes
compared to the LS searches (mean slopes across all
similar and dissimilar distracter conditions: 57 ms/
item for LNS, 17 ms/item for the corresponding LS
searches, p ¼ 0.007, paired t test). This difference was
also significant for the dissimilar distracter conditions
(Figure 6E; mean slopes: 48 ms/item for LNS, 18 ms/
item for LS, p ¼ 0.02, paired t test) and approached
significance for the similar distracters (Figure 6A;
mean slopes: 78 ms/item for LNS and 15 ms/item for
LS, p ¼ 0.08, paired t test). These results replicate the
findings of previous studies using the same LNS and
LS searches. However, the target-distracter and
distracter-distracter similarities were never explicitly
tested in previous studies.

To compare the target-distracter or distracter-
distracter similarity between the LS and LNS groups
of conditions, we performed an ANOVA on the
corresponding search times with subject, configura-
tion (LS vs. LNS), search condition, and set size as
factors. We found that LNS searches had slightly
larger target-distracter similarity, which approached
statistical significance (p . 0.1 for main effect of
configuration; Figure 6C and 6G). The LNS search-
es, however, had significantly larger distracter-dis-
tracter similarity (p , 0.00001 for the main effect of
configuration; Figure 6D and 6H) compared to LS
searches. Thus, similarity relations as measured in
simple search predict the greater difficulty of the
LNS searches compared to the LS searches. We
conclude that LNS searches are harder than LS
searches because they have greater target-distracter
similarity or greater distracter homogeneity. Thus,
we again found no evidence of an effect of linear
separability over and above that expected out of
purely similarity considerations alone.

Condition No.

LNS configuration LS configuration

Effect direction (LNS vs. LS)T D1 D2 T D1 D2

Similar distracters 1 T J N T N L LNS . LS

2 T K O T K M LNS . LS

3 T I M T I O LNS . LS

4 T L P T P N n.s.

Dissimilar distracters 5 T B F T D F LNS . LS

6 T D H T F H LNS . LS

7 T A E T A G LNS . LS

8 T C G T C E LNS . LS

Table 2. LNS and LS target-distracter configurations used by Saumier and Arguin (2003). Notes: The letters refer to shapes in Figure 7A.
The fifth column represents the direction of the effect observed in the data. In all but one LNS and LS pair, we found that LNS
searches were significantly harder ( p , 0.05) than the corresponding LS search, using analyses identical to those described in Table 1.
For the remaining pair, the LNS and LS searches were not significantly different.
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Discussion

The results of Experiment 2 show that previously
reported differences between LNS and LS configura-
tions (Arguin & Saumier, 2000; Saumier & Arguin,
2003) can be attributed to similarity relations without
invoking linear separability. LNS searches had greater
target-distracter similarity and smaller distracter-dis-
tracter similarity; both factors are known to make
search difficult. In previous studies using these shapes,
these factors were controlled by asking subjects to
manipulate shapes until they established a subjective
equivalence in similarities between shapes, which were
then used in visual search. Our results imply that
subjective similarity ratings do not correspond directly
to similarities in search space.

To explicitly visualize similarity relations between
these shapes, we performed an additional experiment in
which subjects performed simple searches involving all
136 (17C2) pairs of the shapes used in this experiment
using a separate set of 12 subjects with methods
identical to that used in Experiment 3. We then
performed a multidimensional scaling analysis on the
data as before. Distances between stimuli in the
multidimensional scaling plot were in close correspon-
dence with the experimentally measured distances (r¼
0.88, p , 0.00001). But the original configuration of
these stimuli in parametric space (Figure 7A) was
strongly distorted in visual search space wherein the
stimuli appear to form clusters of thin/thick and
curved/flat stimuli (Figure 7B).

Importantly, these distances in visual search space
can be used to explain the difference in search
performance between LNS and LS configurations. For
instance, consider the LNS configuration (T, B, F),
which is harder in search compared to the LS
configuration (T, D, F). Saumier and Arguin (2003)
have argued these two configurations have exactly the
same target-distracter and distracter-distracter similar-
ities and only differ in linear separability, but this
argument is based on externally defined parametric
space. The picture in visual search space is quite
different: First of all, (T, B, F) is no longer LNS in
visual search space; both (T, B, F) and (T, D, F) are
linearly separable (Figure 7B). Secondly, the pair-wise
distances are quite different for the two configurations:
The distance TB is smaller than TD (i.e., the LNS
target is closer to its distracters), and BF is larger than
DF (i.e., the LNS distracters are more heterogeneous).
Thus, the greater difficulty of the LNS search can be
explained entirely using similarity relations. We con-
clude that, at least for the shapes tested in the previous
studies, differences between LNS and LS configura-
tions can be explained entirely using similarity rela-
tions. Thus, linear separability does not seem to matter
in complex search.

The above results show that similarity relations are a
more parsimonious account of previously reported
evidence in favor of a linear separability effect.
However, it could still be argued that, with proper
control of target and distracter distances in visual
search space, linear separability might actually influ-
ence complex search. Further, we also wondered
whether linear separability could be tested for arbitrary
shapes. Experiment 3 is aimed at addressing these
issues.

Experiment 3: Arbitrary shapes

The results of Experiments 1 and 2 show that
previously reported differences between LS and LNS
configurations can be explained using similarity
relations in search space. It is therefore critical to
assess the linear separability of a target/distracter
configuration in visual search space rather than in an
arbitrary parametric space. The above results also
show that target-distracter similarity and distracter-
distracter similarity can exert independent and
sometimes competing influences on complex search
difficulty. Determining which of these factors will
cause one complex search to be harder than another
becomes difficult in the absence of a quantitative
framework.

In Experiment 3, we investigated whether complex
search could be quantitatively explained using simple
searches and tested for the presence of a linear
separability effect on arbitrary target-distracter con-
figurations. To this end, we measured search times in
complex search and their corresponding simple
searches across a wide variety of shapes (Figure 8).
We then tested a number of possible quantitative
relationships between search times for complex
search and search times for the corresponding simple
searches. To identify the contribution of linear
separability, we devised a novel method to assess the
linear separability of arbitrary target-distracter con-
figurations. For an LNS configuration, we reasoned
that the target and the distracters must lie along a
straight line in search space. We therefore compared,
for every complex search (T, D1, D2), the sum of the
target distracter distances with the distracter-dis-
tracter distance; the distance is measured using the
reciprocal of search time (Arun, 2012). Thus, LNS
configurations must have the sum of the target-
distracter distances roughly equal the distracter-
distracter distance. We then reasoned that if linear
separability has any effect on complex search, then
models that do not incorporate it as a factor should
produce poorer predictions on LNS compared to LS
searches.
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Methods

Subjects

A total of 12 subjects performed this experiment. All
other details are identical to Experiment 1.

Stimuli

Stimuli in this experiment consisted of four sets of
abstract and natural shapes (Figure 8A). We chose
eight target-distracter triads within each set with the
guiding principle that two shapes in the triad should
appear perceptually similar. This ensured that visual
search would vary in difficulty from easy to hard.

The first set consisted of crescent-like shapes varying
in curvature and thickness (Figure 8A) and were
identical to stimuli used in previous studies of linear
separability (Arguin & Saumier, 2000; Saumier &
Arguin, 2003).

The second set of shapes consisted of triangular
shapes varying in pointiness and curvature (Figure 8B).
These shapes were created by first defining an isosceles
triangle with a fixed ratio of isosceles side to base. This
ratio was denoted as pointiness. Using the end points of
each side of this triangle, circular arcs of a fixed radius
were drawn to create convex or concave triangles. The
radius of the arcs on the isosceles part of the triangle
was set to r¼ p2b/c where b was the length of the
triangle base, and p and c were the two free parameters,
pointiness (which had to be at least 0.5) and curvature
(which could range from�1 to 1), respectively. The
radius of the arc on the base of the triangle was set to rb
¼ b/c. The sign of the curvature parameter determined
whether the arc was convex (positive values) or concave
(negative values). The radii, sides, and curvature then
uniquely determined the location of the center of the
corresponding circles, and the corresponding arcs were
drawn to define the shape.

The third set of shapes consisted of grayscale images
of natural objects (largely from Hemera Photo Objects;
Figure 8A) in which the subsets were chosen so that the
searches within a subset would range from easy to hard.
The fourth set contained letters of the English alphabet
(Figure 8A); here some of the subsets were chosen
because they were known to produce search asymme-
tries (e.g., C, Q, O).

Target-distracter configurations

For each triad, we chose all three possible complex
searches in which one was target and the others were
distracters. Thus, there were a total of 96 complex
searches performed by each subject (4 sets · 8 subsets
· 3 targets per subset). For each triad of stimuli, we
also performed six corresponding simple searches
consisting of all pairs of stimuli as target and distracter.
Although in principle this would require 192 simple
searches (4 sets · 8 subsets · 6 pairs per subset), there
were only 88 unique simple searches across the triads.
This resulted in a total 352 trials of simple search (88
triads · 2 pairs · 2 repetitions). Each subject also
performed a total of four trials of each complex search
condition, resulting in a total of 384 complex search
trials (96 triads · 4 repetitions). Note that the
organization of the stimuli into sets was purely for the
sake of subsequent analysis; in the actual experiment,
search displays derived from all sets occurred in
random order in both the complex and simple search
tasks.

Visual search task

Each subject performed a complex search task and a
simple search task in which they saw 36-item (6 · 6)
search arrays. The two tasks were identical in all
respects except that in the complex search task there

Figure 8. Stimuli used in Experiment 3. (A) Stimuli used in the complex and simple search tasks, depicted to scale (stimuli were white

against a black background). Each set was composed of eight subsets of three shapes each. For each subset, subjects performed three

complex searches in which each of the three shapes could be a target and the remaining two were the distracters. They also

performed six simple searches, which consisted of all possible pair-wise searches involving the three shapes. (B) Parametric space for

Set 2, which consisted of isosceles triangles that varied in curvature (convex-concave) and pointiness (ratio of height to width).
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were two types of distracters whereas in the simple
search task there were multiple identical distracters.
Task order was counterbalanced across subjects. Before
starting each task, subjects performed 24 practice trials
of each search type (using novel natural objects not
used in the main experiment).

In each trial of either task, subjects saw a fixation
cross (0.358 · 0.358) presented for 500 ms, followed by
a preview of the target presented in isolation for 500 ms
at fixation, which was then replaced by a blank screen
for 500 ms. This was then followed by the search
display, which was a 6 · 6 array with the target
location chosen uniformly at random within the central
4 · 4 region to minimize effects related to target
eccentricity. The array size was 158 · 158 and
individual items were 1.48 along the longer dimension.
Item locations were chosen from a uniform distribution
centered at each array location with a maximum
deviation of 0.258 from the center. The display stayed
on until the subject made a response, and the trial
timed out after 7.5 s of display onset. Subjects were
asked to hit a key to indicate the side (M for right, Z for
left) on which the target appeared. A vertical red bar
(178 · 0.28) was displayed at the center of the screen
along with the search array to facilitate left/right
judgments.

Search displays

In the complex search task, the target appeared at a
random location within the central 4 · 4 part of the 6
· 6 array. The target side of the 6 · 6 array contained
17 distracters, which were split into eight of one
distracter type and nine of the other (the other side of
the array contained nine distracters of each type). The
two types of distracter placements (eight or nine
instances of D1 on the side of the target) were crossed
with two possible target locations (left/right) to yield
four trials for a given target-distracter triplet (T, D1,
D2). Distracter identity at each location was chosen at
random in each trial while preserving these constraints.
In addition to this, to ensure that the immediate
vicinity of the target also contained equal proportions
of distracters, four distracters of each type were placed
in the 3 · 3 array surrounding the target with locations
chosen at random on each trial.

In the simple search task, the target again appeared
at a random location within the central 4 · 4 part of
the 6 · 6 array. There were six possible simple searches
corresponding to each triplet (T, D1, D2) in the
complex search task; these were T among D1, T among
D2, and D1 among D2 (and vice versa). Each simple
search was repeated twice with the target either on the
left or right side of the array with the result that there
were four trials for each image pair in which either
could be the target.

Model fitting

We denoted each complex search of the form T
among D1 and D2 as (T, D1, D2) and the corresponding
average reaction time (averaged across trials and across
subjects) as RT(T, D1, D2). The corresponding simple
searches are T among D1 and T among D2, which are
related to target-distracter similarity. We denoted the
corresponding average RTs as RT(T, D1) and RT(T,
D2), respectively. Because the ordering of the dis-
tracters was arbitrary, we sorted the data such that
RT(T, D1) was the larger of the two search times. In
other words, D1 was always the harder of the two
distracters. A third factor that may influence complex
search performance is distracter homogeneity, which
we measured using the average time taken to search for
D1 among D2 or vice versa. Note that, in general,
RT(A, B) may not equal RT(B, A) if there is a search
asymmetry. In subsequent analyses (see Results) we
found search asymmetry to have only a minor impact
on complex search.

We tested several linear models that depict possible
relationships between complex search time and its
corresponding simple search times (Table 3). For each
model, the observed complex search data (the 96 search
times or search distances) were concatenated into a 96
· 1 vector (denoted as y). The observed simple search
data were likewise concatenated to form a 96 · 3
matrix (denoted as X) in which the three columns
corresponded to the TD1, TD2, and D1D2 effects
(search times or distances). We then sought to find the
linear contributions of the three simple search factors (a
3 · 1 vector b) that could predict the complex search.
This was done using linear regression (regress function
in Matlab, Natick, MA), which finds the best-fitting
coefficients as

b ¼ ðXTXÞ�1XTy:

The model predictions could then be obtained simply
as ypred¼X

T
b. To compare model predictions with the

observed data, we calculated the Pearson’s correlation
between the two vectors.

Results

There were 96 complex searches in this experiment,
and each complex search was associated with three
simple searches. Subjects were highly consistent in their
responses as evidenced by a high correlation between
the average RTs of one half of the subjects and that of
the other half for both tasks (r¼ 0.94, p , 0.00001 for
complex search; r¼ 0.79, p , 0.00001 for simple
search). Thus, the underlying features and/or task
strategies did not vary across subjects. We then set out
to investigate whether complex search times could be
explained using simple search times.
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For each search (complex or simple), we took the
average search time across subjects and repetitions. For
every complex search time involving (say) T among D1

and D2, we selected the corresponding average search
times for T amongD1 and T amongD2. Note that we did
not consider D1 or D2 among T for these calculations,
thereby respectingpossible search asymmetries thatmight
be present in these displays (however, see below for an

analysis of asymmetry). In contrast, the complex search
displays contained equal numbers of D1 and D2, so we
took as a measure of distracter homogeneity the average
search time for finding D1 among D2 or D2 among D1.
Because distracter identity was arbitrary, we always
denoted the harder distracter to beD1 (i.e., the one among
which the target was harder to find on average) and the
other one as D2.

Model type #

Model

interpretation

Correlation

with

data (n ¼ 96)

Model coefficients

a b c d

Models based on

search times (RT)

1 Complex search time is

determined entirely by

the search time for the

harder distracter.

0.76 - - - -

RT(T, D1D2) ¼ max RT(T, D1),

RT(T, D2)

2 Complex search time

depends on both the easy

and hard distracters.

0.79 0.88 0.94 –0.11 -

RT(T, D1D2) ¼ a · RT(T, D1)

þ b · RT(T, D2) þ c

3 Complex search time

depends on the easy and

hard distracters as well as

on distracter-distracter

similarity.

0.82 0.81 1.29 –0.39 0.07

RT(T, D1D2) ¼ a · RT(T, D1)

þ b · RT(T, D2) þ c ·
RT(D1, D2) þ d

Models based on

search distance (1/RT)

4 Complex search distance is

determined entirely by

the hard (nearer)

distracter.

0.84 - - - -

d(T, D1D2) ¼ 1/RT(T, D1D2)

¼ min (1/RT(T, D1), 1/

RT(T, D2))

5 Complex search distance

depends on both the hard

and easy distracters.

0.85 0.73 0.16 –0.22 -

d(T, D1D2) ¼ 1/RT(T, D1D2)

¼ a · d(T, D1) þ b · d(T,

D2) þ c

6 Complex search distance

depends on hard and easy

distracters as well as on

distracter-distracter

dissimilarity.

0.91 0.60 0.45 –0.35 –0.05

d(T, D1D2) ¼ 1/RT(T, D1D2)

¼ a · d(T, D1) þ b · d(T,

D2) þ c · d(D1, D2) þ d

Table 3. Performance of various models relating complex search to simple search. Notes: For each model, we used simple search
times to predict complex search time (Models 1 through 3) or simple search distance to predict complex search distance (Models 4
through 6). All correlations were statistically significant ( p , 0.005).
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To illustrate how complex search might be related to
simple search, we sorted the 96 complex search times
(averaged across trials and subjects) in ascending order
and separated them into two groups (easy and hard),
each containing data from 48 complex search condi-
tions. Search times were significantly different between
these two groups (p , 0.00001, unpaired t test on
average RTs for each condition). For these easy and
hard complex searches, we calculated the average
search times for the corresponding simple searches
(Figure 9A). It can be seen that, compared to the hard
complex searches, the easy ones had smaller search
times for (T, D1) and (T, D2) (p , 0.00001, unpaired t
test) but larger search times for (D1, D2) (p ¼ 0.02,
unpaired t test). Thus, just as in Experiments 1 and 2,
similarity between the target and either distracter
increases complex search time whereas distracter
homogeneity reduces complex search time, exactly as
predicted by similarity theories of search.

To quantitatively assess the contributions of these
factors, we tested six plausible models that capture
different relationships between complex search and
simple search as described below. We have implicitly
assumed that factors such as similarity between the
target and the hard and easy distracters and distracter-
distracter similarity all may have potentially unequal
contributions. If these factors contributed equally, the
corresponding model coefficients would be equal. All
models included a constant term, which accounts for a
possible constant offset in RTs between simple and

complex searches (due to practice effects or top-down
factors). We also tested models in which the baseline
motor RT for each subject (calculated as the average
time taken to respond to a single target disk that
appeared on the left or right of the screen) was
subtracted from their search times in order to factor
out the contribution of motor responses; the results
from these analyses were qualitatively similar to
analyses done without removal of motor RTs. We
therefore present below all analyses based on the raw,
observed search times for simplicity.

The performance of all six models is summarized in
Table 3. The first model is based on the idea that
complex search time for T among D1 and D2 is
dominated entirely by the time taken to search for the
harder of the two distracters. The predictions of this
model were positive and significant (r¼ 0.76, p ,
0.00001), but this correlation was relatively small in
comparison to the other models. The second model was
based on the idea that the time taken for complex
search depends on both the time taken to search for the
target among the easy as well as among the hard
distracters. For this model, the correlation between the
predicted and observed search times was higher than
Model 1 (r¼ 0.79, p , 0.00001). Although an increase
in quality of fit is expected because this model has an
extra free parameter, there is a standard statistical test
(partial F test) that estimates the expected increase in
the quality of fit due to the extra degrees of freedom
and returns the probability that the two models are

Figure 9. (A) The 96 complex search times in Experiment 3 were sorted into 48 easy and 48 hard complex searches. For these two

groups, the average complex search times and their corresponding simple search times are shown. Error bars represent SEM of the

subject-averaged search times across conditions. It can be seen that easy complex searches involve smaller search times for (T, D1)

and (T, D2) but larger search times for (D1, D2); this illustrates the opposite effect of distracter homogeneity. (B) Observed complex

search distances (averaged across subjects) plotted against model predictions based on simple searches for Model 6. There were 24

complex searches in each set (eight subsets · three targets per subset). Model predictions were strongly correlated with the

observed data and explained 83% of the total variance. Asterisks represent statistical significance (***** is p , 0.00005).
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equivalent. We found that Model 2 predictions were
significantly better than Model 1 over and above that
expected from the extra degree of freedom, F(2, 3)¼
9.47, p ¼ 0.003, partial F test. The third model
instantiated the idea that the time taken for complex
search depends not only on the time taken to search for
the target among the two distracters, but also on the
similarity between the distracters themselves. For this
model, the correlation between the predicted and
observed complex search times was even higher than
the previous two models (r¼ 0.82, p , 0.00001). This
increase in quality of fit over Model 2 was significantly
greater than expected from the addition of an extra
degree of freedom, F(3, 4) ¼ 15.6, p¼ 0.001, partial F
test.

We tested an additional three models that contain
the same elements as the models above except that,
instead of directly using simple search times (which
measure similarity), they are based on the reciprocal of
the search time (which measures dissimilarity; see
Discussion). These models performed better than the
models based on search time. This dissimilarity or
search distance used in these models can be interpreted
as the discriminative signal that accumulates in visual
search to produce a response upon reaching a threshold
(Purcell et al., 2010; Sripati & Olson, 2010; Schall,
Purcell, Heitz, Logan, & Palmeri, 2011; Arun, 2012).
Note that because taking the reciprocal is a nonlinear
transformation, the predictions of these models will be
distinct from models based on search time.

The first of these models (Model 4) is based on the
idea that search distance in complex search depends
solely on the distance between the target and the
nearest (i.e., hardest) distracter. The search distances
predicted by this model were strongly correlated with
the observed search distances (r ¼ 0.84, p , 0.00001).
The next model (Model 5) was based on the idea that
search distances in complex search depend on the
distances between the target and the nearest as well as
the farthest distracters. The predictions of this model
were slightly better (r ¼ 0.85, p , 0.00001), but this
increase barely reached statistical significance (F(2, 3)¼
3.82, p ¼ 0.053, partial F test).

The last model (Model 6) instantiated the idea that
search distances in complex search are driven not only
by the distance between the target and the distracters,
but also by the distance between the distracters. The
predictions of this model were strongly and signifi-
cantly correlated with the observed search distances (r
¼ 0.91, p , 0.00001, Figure 9B). The improvement in
the quality of fit in this model was significantly greater
than expected from the extra degree of freedom in
Model 6 compared to Model 5, F(3, 4) ¼ 59.7, p ,
0.00001, partial F test. The correlation between the
observed and predicted data for Model 6 was
significantly larger than the correlations for all other

models (p , 0.05 for all comparisons, Fisher’s z test).
Finally, when search distance predictions in Model 6
were converted back into RTs (by taking their
reciprocal), they too were strongly correlated with the
observed complex search times (r¼ 0.86, p , 0.00001).

The high degree of fit of Model 6 persisted even on
individual sets (Figure 9B), and model parameters and
fits did not vary by much when the model was fit
separately on the individual sets (Table 4). The
coefficients of Model 6 offer additional insights into the
contributions of the different factors driving complex
search. First, it shows that the hard distracter (weight¼
0.6) has a slightly larger contribution than the easy
distracter (weight ¼ 0.45). Second, search distance in
complex search reduces with increasing distance
between the distracters as evidenced by a negative
weight in the model (weight ¼�0.35). Third, the
contribution of target-distracter similarity to complex
search is stronger than that of distracter heterogeneity.

Based on the above analyses, we conclude that a
large fraction (r2 ¼ 83%) of the variance in complex
search can be accounted for by pair-wise dissimilarities
or simple searches. The striking match between
complex search and predictions based solely on simple
searches places strong limits on the influence of
emergent properties such as linear separability. In the
subsequent analyses, we present results based on Model
6, and we take up the issue of linear separability in
greater detail.

Does search asymmetry influence complex search?

The above results show that search for a target T
among distracters D1 and D2 is driven by simple
searches T among D1, T among D2, and D1 among
D2 (or vice versa). As formulated here, this model
already takes into account possible visual search
asymmetries because it uses, for instance, the search
for T among D1 but not D1 among T. However, this
framework allowed us to ask, what is the contribu-
tion of search asymmetries toward complex search?
To address this issue, we set up a variant of the
model (Model 6) in which we took the simple search
times to be the average of the times taken to search
for T among D1 and D1 among T and so on. For
each of the 96 complex searches in our data, we also
performed a statistical test to determine which of the
simple searches (T, D1) and (T, D2) were asymmetric
(ANOVA with subject and asymmetry as factors,
criterion of p , 0.05 for main effect of asymmetry).
We separated the complex searches into those in
which the simple searches had no asymmetry (n ¼
46), those in which one simple search (i.e., T among
D1 or T among D2) had an asymmetry (n ¼ 40), and
those in which both simple searches had asymmetries
(n ¼ 10). For these three groups of searches, we
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compared the correlation with the observed data of
the models with and without asymmetry (Table 5).
As expected, there was virtually no difference in the
quality of fit of the two variants of Model 6 when
neither simple searches had an asymmetry. However,
when one of the simple searches had a search
asymmetry, the model that incorporated asymmetry
had a slightly higher quality of fit (r ¼ 0.84 vs. r ¼
0.90 for without and with asymmetry), but this
difference in correlation was not significant (p¼ 0.23,
Fisher’s z test). When both simple searches had
asymmetries, the model with asymmetry again
outperformed the model without asymmetries (r ¼
0.79 vs. r ¼ 0.85), but again, the difference in
correlations was not significant (p ¼ 0.40, Fisher’s z
test). However, in both cases, there was a slight
increase in the quality of fit when the model
incorporated search asymmetry. We conclude that
search asymmetries play a relatively minor role in
determining complex search.

Does linear separability influence complex search?

The above results suggest that complex search can
be explained largely by simple search without
recourse to additional factors such as linear separa-
bility. However, it may be entirely possible that most
target-distracter configurations tested here were LS

to start with and therefore do not reveal any effect of
linear separability. This is a nontrivial issue because
there is no obvious way to assess the linear
separability of a target-distracter configuration when
the underlying feature space is unknown.

To address this problem, we devised a novel
method to measure the extent to which an arbitrary
target-distracter configuration is LS in visual search
space (Figure 10A). For a given target-distracter
configuration (T, D1, D2), the distances between the
three stimuli in visual search space can be measured
using the reciprocal of the pair-wise search times. In
other words, the distance d(TD1) is the reciprocal of
the average time taken to search for T among D1

(and vice versa). For any three points, given the
distances d(TD1), d(TD2), and d(D1D2), we reasoned
that if the target T lies along a straight line between
D1 and D2 (i.e., it is LNS), then the distance between
the distracters d(D1D2) must equal the sum of the
distances d(TD1) and d(TD2); this is illustrated in
Figure 10A. The extent of deviation from equality is
therefore a measure of how LS this configuration is.
For each of the 96 complex search configurations in
Experiment 3 (8 subsets · 4 sets · 3 targets per
subset), we plotted the sum of d(TD1) and d(TD2)
against d(D1D2) (Figure 10B). In this plot, points
close to the unit line (y ¼ x) represent configurations
that fall along a line and are, by definition, LNS.
Points that fall far away from the unit line represent
triangle-like configurations that are clearly LS. Of the
96 complex search configurations, we chose two
equal subsets for comparison: the LNS configura-
tions, which were defined as those that fell within
0.41 distance units of the unit line (n ¼ 29), and the
LS ones, which were defined as those that fell beyond
1.28 distance units of the unit line (n ¼ 29). We then
compared model fits for the LS and LNS configura-
tions (Figure 10C). The correlation between model
predictions and the observed complex search dis-
tances was slightly lower for the LNS than the LS
configurations (r ¼ 0.68 for LNS, r ¼ 0.72 for LS
configurations), but this difference did not reach
significance (p¼ 0.76, Fisher’s z test). This subtle and
insignificant drop in correlation is hardly the impact

Type of

complex search

Model performance (correlation with data)

Without

asymmetry

With

asymmetry

No asymmetric pairs

(n ¼ 46)

0.89***** 0.90*****

1 asymmetric pair

(n ¼ 40)

0.84***** 0.90*****

2 asymmetric pairs

(n ¼ 10)

0.79* 0.85**

Table 5. Performance of Model 6 with and without search
asymmetry. Asterisks represent statistical significance (***** is
p , 0.00005, * is p , 0.05, ** is p , 0.005).

Correlation with data

Model coefficients

Hard distracter Easy distracter Distracter heterogeneity Constant term

All sets (n ¼ 96) 0.91**** 0.60 0.45 �0.35 �0.05
Set 1 (n ¼ 24) 0.95**** 0.52 0.40 �0.40 0.13

Set 2 (n ¼ 24) 0.89**** 0.50 0.47 �0.48 0.17

Set 3 (n ¼ 24) 0.93**** 0.69 0.45 �0.26 �0.29
Set 4 (n ¼ 24) 0.93**** 0.44 0.73 �0.45 �0.07

Table 4. Variation in model performance across shape sets. Notes: To investigate whether the contribution of the simple searches vary
across stimuli, the best model (Model 6) was fit separately to each stimulus set, and the resulting correlations and regression
coefficients are given above. Statistical significance was p , 0.00001.
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expected of a linear separability effect. We obtained
qualitatively similar results upon varying the thresh-
old distances used to define the two configurations.
We therefore conclude that linear separability is
unlikely to play a role in complex visual search.

The above approach hinges on using simple search
times to assess linear separability and then using it
again to predict complex search times. Although
unlikely, this ‘‘double-dipping’’ might have somehow

biased the analyses away from finding a linear

separability effect. To address this concern, we

repeated the above analyses after separating the data

into two independent halves (containing half the

number of subjects). Using one half of the data, we

identified LS and LNS configurations as before, and

then we fit the model to the data from the second

half of the subjects. We again found no significant

Figure 10. Analysis of linear separability for arbitrary target-distracter configurations in search space. (A) Schematic of the method

used to assess linear separability for arbitrary configurations in search space; (T, D1, D2) depicts an arbitrary target-distracter

configuration in which the target (T) is linearly nonseperable from its distracters (i.e., cannot be separated from the distracters using a

single linear boundary). In this case, the target must fall along a straight line connecting the two distracters, implying that the sum of

the two target-distracter distances will equal the distance between the distracters. The same target (T), however, is linearly separable

from D1 and D3 (i.e., can be separated from the distracters using a linear boundary; right panel); in which case the sum of the target-

distracter distances will exceed the distracter-distracter distance. The degree to which the sum exceeds the distracter-distracter

distance can be taken as a measure of the degree to which the configuration is LS. (B) Taking the perceived distance between two

objects to be the reciprocal of the corresponding search time, the distance between the distracters is plotted against the sum of the

distances between the target and the two distracters. Search configurations that fall close to the unit line (y¼ x) in this plot were

deemed LNS (plus symbols) whereas those that fall far from the unit line were deemed LS (triangles). Configurations that fall between

these two groups are represented by circles. (C) Observed complex search distances against the model predictions—same y-axis data

as in Figure 9B—but now with searches relabeled as LS (blue triangles) and LNS search configurations (red crosses) based on the

method in (B). Model predictions were strongly correlated with the data in both groups, and the difference in correlation was not

significant (LS, r ¼ 0.72; LNS, r ¼ 0.68; p ¼ 0.76, Fisher’s z test). Asterisks represent statistical significance (***** is p , 0.00005).
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differences in the ability of the model to explain LS
over LNS configurations.

To further address this concern, we reanalyzed the
data from Experiment 2 that contained LNS and LS
configurations as defined by previous studies and fit
the model to both LNS and LS search data for 32-
item displays (we obtained similar results for the
other set sizes). Model predictions were strongly
correlated with observed search distances, regardless
of whether the target was LS (r ¼ 0.82, p , 0.05) or
LNS from the distracters (r ¼ 0.86, p , 0.005). This
difference between correlation was again statistically
insignificant (p¼ 0.81, Fisher’s z test). Thus, even for
LNS and LS configurations defined independently of
our distance criterion, differences in search perfor-
mance were predicted by the model. We conclude
that complex search is largely explained using simple
searches and that linear separability has no impact
on visual search at least for the shapes tested here.

General discussion

We set out to investigate an important missing link
between simple search (finding a target among many
identical distracters) and complex visual search
(finding a target among multiple types of distracters):
Can complex search be understood in terms of simple
searches? For each complex search for a target T
among distracters D1 and D2, we characterized its
corresponding simple searches, i.e., T among D1, T
among D2, and D1 among D2 (and D2 among D1).
The first two searches measure the similarity between
the target and the distracters. The last one (D1

among D2 or vice versa) measures distracter simi-
larity or homogeneity. The main finding of this study
is that, at least for a wide variety of shapes, complex
search is quantitatively explained by simple search
and that this holds true regardless of the linear
separability of the target and distracters. It is
consistent with classical similarity theories, which
posit that complex search is influenced by target-
distracter similarity and distracter homogeneity. This
finding however refutes the widely held belief that
linear separability influences visual search. We
examine below the relationship between these find-
ings and previous studies in this regard.

Relationship to theories of visual search

Many accounts of visual search acknowledge that
target-distracter similarity and distracter homogene-
ity influence the difficulty of complex search
(Metzger, 1936; Duncan & Humphreys, 1989; Wolfe

et al., 1989). These factors have previously been
modeled using image features to predict eye move-
ment guidance (Navalpakkam & Itti, 2006; Hwang,
Higgins, & Pomplun, 2009). However, to our
knowledge, our study is the first to explicitly measure
these factors and use them to elucidate complex
search. Our model elucidates the relative contribu-
tions of these factors and generates testable predic-
tions for what should happen when these factors
compete with each other: For instance, we show that
the most important determinant of complex search is
the distracter nearest to the target and that distracter
dissimilarity has a somewhat smaller contribution
whose effect is opposite to that of target-distracter
similarity.

Search dissimilarity versus search similarity

Classical theories of search have made no distinc-
tion between accounts based on similarity or
dissimilarity. In other words, complex search could
equally well be said to depend on the similarity or
dissimilarity between (a) the target and distracters
and (b) between the different distracters. However,
we have found a surprising distinction between
models based on dissimilarity (i.e., search distance)
and models based on similarity (i.e., search time):
The former were far more effective in predicting
complex search. Why might this be so?

There are several lines of reasoning that make
dissimilarity or search distance a more plausible
quantity than search time for explaining complex
search. First, search distance varies linearly with
target-distracter differences whereas search time does
not (Arun, 2012). Second, search distance has a
straightforward mechanistic interpretation: It is
proportional to the discriminative signal that accu-
mulates until it reaches a response threshold. Indeed,
search distance is proportional to neuronal discrim-
inability in visual cortex (Sripati & Olson, 2010).
Third, our model based on search distance has a
straightforward interpretation: It implies that the
discriminative signal in complex search arises from a
linear combination of signals arising from target-
distracter and distracter-distracter differences. Pre-
cisely how these discriminative signals arise in the
brain is not clear in general although they have been
observed even in early visual areas (Lee, Yang,
Romero, & Mumford, 2002) and are speculated to
arise from contrast-enhancing lateral interactions
(Sripati & Olson, 2010). It is difficult to imagine an
equally plausible interpretation of the search time–
based models that explain how simple search times
combined to drive complex search. Our results
provide empirical support for models based on search
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distance by showing that they outperform models
based on search times.

Search time versus search slopes

The main finding of our study is that complex
search distances can be explained using simple search
distances. In separate analyses, we have found that
the relationship between complex and simple search
distances remains qualitatively similar at all set sizes
(data not shown). Does a similar relationship hold
for search slopes? Our results show that hard
complex searches (with large positive search slopes)
are frequently associated with simple searches with
near-zero slopes, which tend to differ in their
intercept (e.g., Figures 3 and 6). Thus, there appears
to be no systematic relationship between the search
slopes in complex search and simple search. How do
we explain this discrepancy?

One possibility is that there may, in fact, be a
systematic relationship in search slopes, which may
have been obscured by the fact that simple search
slopes, being relatively small, are more prone to
noise. This is because search slopes are calculated
from differences in search times, which double their
variance, making smaller slopes harder to distinguish
from zero. To further evaluate this possibility, we
calculated the search slopes for all 36 search
conditions in both Experiments 1 and 2 for both
complex and simple search slopes. We found that
complex search slopes were significantly and posi-
tively correlated with target-distracter search slopes
(r ¼ 0.33, p ¼ 0.05) and were positively but not
significantly correlated with distracter-distracter
search slopes (r ¼ 0.18, p ¼ 0.29). These correlations
are far lower than those obtained between complex
and simple search times (r ¼ 0.91 across all sets,
Figure 9), which may reflect the greater noise in
search slopes compared to search times. Under-
standing the relationships between search slopes will
require systematic measurements involving fewer
conditions but many more trials per condition to
obtain reliable slope estimates.

Another possibility is that search slopes may
reflect two additional factors that differ between
complex and simple searches. The first factor is
perceptual grouping: Simple search displays have
multiple identical elements that may facilitate
grouping whereas complex search displays consist of
multiple types of distracters, which interfere with
grouping. As a result, simple searches may be more
efficient in terms of per-item processing, resulting in
small search slopes. We also note that the negative
search slopes observed for oriented bars (Experiment
1) may reflect grouping effects. The second factor is

top-down knowledge: Changing the identity of the
target and distracters from one trial to another (as in
our experiments) introduces a fixed RT cost and also
influences search slopes (Hodsoll & Humphreys,
2001; Wolfe, Butcher, Lee, & Hyle, 2003). Impor-
tantly, however, grouping and target foreknowledge
do not reverse the relative difficulty of one search
over another. In particular, target foreknowledge
affects LNS searches more than LS searches, which
may reflect greater speeding up of difficult searches,
but LNS searches remain harder than LS in either
condition (Hodsoll & Humphreys, 2001). Because
these factors influence but do not reverse search
difficulty at a given set size, we propose that they
modulate but do not fundamentally influence the
relationship between complex and simple search. The
fact remains that differences in complex search are
explained largely by differences in simple searches,
which calls into question the presence of other
emergent factors such as linear separability.

Relationship to other studies of linear
separability

Our results contradict the widely held view that
search becomes hard when a target cannot be separated
from the distracters using a single linear boundary
(Bauer et al., 1996a, 1996b, 1998, 1999; Arguin &
Saumier, 2000; Saumier & Arguin, 2003; Nakayama &
Martini, 2011). Instead, we have shown that a model
based on simple searches with no information about
linear separability predicts complex search with a high
degree of accuracy.

It could be argued that, in accounting for complex
searches (T, D1, D2), our model implicitly incorporates
a linear separability term of the form TD1 þ TD2 –
D1D2. Because this is a linear term, any model
containing this term will produce predictions that are
identical to a model based on a linear combination of
TD1, TD2, and D1D2. The resulting model will be
indistinguishable from a model based on similarity
alone. Thus, as several others have correctly argued
(Bauer et al., 1996a, 1996b, 1998), any real contribution
of linear separability must be substantially larger than
predictions based on similarity.

Because there are no quantitative models of linear
separability, we sought to reveal the contribution of
linear separability by comparing model predictions
for LS and LNS configurations. We reasoned that if
linear separability truly played a role, it would
degrade the quality of fit of any model based on
target-distracter similarity alone. We searched for
this effect in two ways: First, we replicated previ-
ously reported differences in search performance
between LS and LNS configurations (Arguin &
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Saumier, 2000; Saumier & Arguin, 2003) and showed
that these effects arise from differences in target-
distracter similarity as measured using simple
searches (Experiments 2 and 3). Second, we devised a
novel method to assess whether any configuration of
target and distracters is LS using pair-wise measure-
ments of search times in simple search. In both cases,
we found no significant differences in the quality of
fit between LS and LNS searches.

Importance of perceived similarity in assessing
linear separability

The contradiction between our results and previ-
ously reported evidence in favor of linear separability
arises from a critical methodological difference. In
previous studies of linear separability, target and
distracter items were generated in a parametric space
and were deemed LS (or not) in this space. It was
implicitly assumed that these configurations were
close to the perceived target-distracter configuration
in visual search space. In studies using color targets,
target and distracters in color space were chosen such
that all pair-wise distances in CIE color space were
identical for the LS and LNS configurations (Bauer
et al., 1996a, 1996b, 1998, 1999). However distances
in CIE space do not necessarily correspond to those
in visual search space (Lindsey et al., 2010).
Assessing this possibility will require careful manip-
ulations of color space.

In studies using abstract shapes, LS versus LNS
configurations were compared while choosing targets
and distracters matched for similarity in a subjective
rating task involving single items (Arguin & Saumier,
2000; Saumier & Arguin, 2003). However, these
similarity measurements clearly do not correspond to
similarity in visual search. Our data shows that the
original representation of stimuli in parametric space
(Figure 7A) is strongly distorted in visual search
space (Figure 7B). More importantly, these distor-
tions explain the differences between LS and LNS
searches. Thus, it is critical to assess linear separa-
bility using perceived similarity in search space rather
than other indirect measures.

Relationship to more complex visual search

Here we have proposed that the linear separability
of any target-distracter configuration in search space
can be assessed by measuring all pair-wise dissimi-
larities. This idea can be tested easily for the simple
case of a target among two types of distracters, for
which we devised a simple formula based on the
triangle inequality. Can this be generalized for more

complex searches involving multiple types of dis-
tracters? For multiple types of distracters, the
condition of linear separability is equivalent to
testing whether the target falls within a convex hull
formed by the distracters (Bauer et al., 1999). It is
critical to test this possibility in visual search space.
One possibility is that the underlying search space
configuration can be visualized using multidimen-
sional scaling, and the resulting coordinates can then
be used to assess the convex hull condition. A more
direct approach would involve reducing the convex
hull condition to an equivalent mathematical condi-
tion involving pair-wise distances.

Conclusions

Taken together, our results reveal a surprising
regularity in visual search: Complex search can be
accurately predicted using dissimilarities as measured
using simple searches. For a wide variety of shapes,
including those tested in previous studies, we have found
that differences between LS and LNS configurations can
be explained using pairwise dissimilarities. This finding
calls into question the widely held belief that linear
separability influences visual search.

A generalization of the present study would be to
investigate whether more complex search involving a
target among multiple types of distracters can be
explained using pair-wise dissimilarities. A positive
outcome would imply that pair-wise relationships alone
can explain all complex search. A negative outcome does
not necessarily mean that complex search is irreducible.
Rather, it might be accounted for by pair-wise searches
as well as other lower-order complex searches. Either
outcome would be interesting and will further our
understanding of visual search. We speculate that, at
least in natural scenes containing salient objects clearly
distinguishable from the background, real-life search
with multiple types of distracters in varying numbers can
be understood entirely in terms of pair-wise dissimilar-
ities between these objects in visual search space.

Keywords: similarity, shape, perception
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