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Abstract

We present a small integrative model of human cardiovascular physiology. The model is population-based; rather than
using best fit parameter values, we used a variant of the Metropolis algorithm to produce distributions for the parameters
most associated with model sensitivity. The population is built by sampling from these distributions to create the model
coefficients. The resulting models were then subjected to a hemorrhage. The population was separated into those that lost
less than 15 mmHg arterial pressure (compensators), and those that lost more (decompensators). The populations were
parametrically analyzed to determine baseline conditions correlating with compensation and decompensation. Analysis
included single variable correlation, graphical time series analysis, and support vector machine (SVM) classification. Most
variables were seen to correlate with propensity for circulatory collapse, but not sufficiently to effect reasonable
classification by any single variable. Time series analysis indicated a single significant measure, the stressed blood volume, as
predicting collapse in situ, but measurement of this quantity is clinically impossible. SVM uncovered a collection of variables
and parameters that, when taken together, provided useful rubrics for classification. Due to the probabilistic origins of the
method, multiple classifications were attempted, resulting in an average of 3.5 variables necessary to construct
classification. The most common variables used were systemic compliance, baseline baroreceptor signal strength and total
peripheral resistance, providing predictive ability exceeding 90%. The methods presented are suitable for use in any
deterministic mathematical model.
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Introduction

Mathematical models are used in physiology to quantitatively

describe interacting mechanisms and processes. Models help

bridge the gap between our understanding of simple relationships

between quantities and the complex dynamic relationships

observed in the laboratory. As a minimum requirement for

validity, a model must be able to replicate some part of the

dynamics associated with experiment. Even this minimal require-

ment is naı̈ve: in many experiments, a spectrum of responses can

be obtained from a seemingly homogeneous population in

response to a given perturbation.

As an example of this, consider the incidence of presyncope/

syncope in humans following moderate hemorrhage: in experi-

mental studies, around 70% of individuals exhibit signs of

circulatory shock following such a hemorrhage, while 30% do

not [1–5]. Given a deterministic model of human circulation,

which outcome should be favored for establishing model

parameters or determining model validity? In fact, neither

outcome is preferable because neither outcome describes the true

response. The current philosophy of parameterization, Best Fit

Parameterization (BFP), explicitly chooses a single parameter

value to define the model, which does not help solve the problem

of dichotomous response.

Inter-subject variability occurs in parameters related to real

anatomic or genetic details that vary from person to person, while

the underlying physics and chemistry remains the same. In model

terms, model coefficients (parameters) differ between subjects

while the equations stay the same. We take this to imply that

establishing distributions for these parameters allows the creation

of a cohort of model analogous to a cohort of patients.

Nonlinearities in a complex model magnify some small differences

and annihilate others, allowing radically different behavior to

develop in response to a perturbation in individuals that appeared

similar in other conditions. Utilizing different parameter sets to

generate multiple deterministic models can obviate the problem of

selecting the goal outcome by producing a multitude of distinct

outcomes. This transforms the problem of finding model

parameters into the problem of estimating the distributions that

these parameters might be drawn from. Moreover, using

distributed parameters allows sophisticated classification machin-

ery to be used on a population to determine before a perturbation

is induced which individuals will respond in a particular way. The

use of distributed parameters introduces two new challenges to the

modeling process: the derivation of distributions that can create
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such a cohort, and the means to sample from such a complex

entity.

The objective of this study is to test the hypothesis that a simple

model of the circulatory system can produce a cohort of models

capable of demonstrating the spectrum of human pressure

response to hemorrhage. This would be accomplished by sampling

from the jointly distributed sensitive parameters and subjecting

each model to the same stimulus. As we utilize well-understood

sensitivity analysis methods and classification algorithms, in this

paper we focus on a description of the calibration and sampling

problems. Given a statistical distribution of an output variable or

variables, the goal is to assign joint distributions for the input

parameters that yield the given output when sampled as a cohort.

In this case we use cardiac output (CO) and total peripheral

resistance (TPR) in a joint distribution. Calibration has been

studied in several contexts previously: time series analysis of

populations [6,7] and numerous physiologically based pharmoki-

netic models [8,9]. Methodologies have ranged from defining a

parameter distribution by fiat to Bayesian calibration methods. In

this case, model complexity and a lack of previous attention to

likelihood functions in the general physiology literature make full-

scale Bayesian analysis impossible. Instead, we calibrated the

parameter distributions with an altered form of the Metropolis

algorithm. This algorithm has the benefit of simultaneously solving

the calibration and sampling problems.

In this paper, we describe a model of cardiovascular physiology

and the implementation of the calibration algorithm. We compare

the model’s mean arterial pressure (MAP), cardiac output (CO),

and total peripheral resistance (TPR) response with that observed

by Skillman [5]. We produce single variable correlations with the

binary outcomes (compensate/decompensate), and use machine

learning algorithms [10] to extract rubrics from the data for

predicting circulatory failure that are minimal with respect to the

number of parameters or variables that must be monitored. We

emphasize tractable solutions to the problem of interpreting

complex model output in a physiologically relevant manner.

Methods

Model overview
The model is a phenomenological description of various

components in the feedback system regulating human cardiovas-

cular physiology, and is not intended to be as complete and

mechanistic as other published models [11,12]. Rather, we intend

to provide a clear canvas suitable for understanding the

methodology of converting a deterministic model to a population

model, and for demonstrating a scheme for analyzing the effects of

parameter variation on a single outcome. The model is described

by 15 equations solved as a state automata with adaptive step size.

It is composed of 4 modules: blood flow autoregulation,

baroreceptor reflex, renal control of fluid homeostasis, and cardiac

integration. It was programmed in the HumMod schema and

solved using the Model_Solver software developed by Tom

Coleman and available for download at www.HumMod.org.

The model and its accompanying files can be downloaded at

https://github.com/HumMod/small-stoch-model.

The conservation axiom that defines the model is the

assumption that cardiac output and venous return must agree.

Because both peripheral and cardiac factors can have an

immediate effect on cardiac output [13–16], solving the problem

of matching inflow and outflow is technically demanding. This

model performs the task by proposing a tentative value of cardiac

output and projecting its effects on peripheral components such as

sympathetic activity [17,18], flow autoregulation [15,16], the

partition of extracellular water into interstitial and blood

compartments [19], and the actions of the kidney to control

blood volume [20]. These peripheral factors influence right atrial

pressure and thus venous return (Figure 1). By equating venous

return and cardiac output and noting that venous return is

bounded above and below, the resulting system can be solved

uniquely as a fixed-point problem by iteration.

Submodel: Autoregulation and mean arterial pressure
Autoregulation allows the body to maintain near constant blood

flow to tissues despite changes in blood pressure [21]. In the

model, cardiac output (CO) modifies peripheral resistance (TPR)

to affect mean arterial pressure (MAP); as CO increases, so does

TPR ensuring a negative feedback on MAP. The effect on

resistance is implemented via a delay with time constant kauto; the

model outputs are not sensitive to the choice of kauto at steady state

or in response to hemorrhage. We treat autoregulation throughout

the body using a uniform strength and speed of response; this is a

simplification for the sake of clarity. This analysis yields a

functional expression for TPR:

dTPRbase

dt
~Symps:kauto

: Aauto
:COmauto

COmautozS
mauto
auto

{TPRbase

� �

This curve is sigmoidal, with half-maximal response at the set

point Sauto with sensitivity mauto. Here, Symps is a function

defined below that simulates sympathetic outflow, and kauto is a

delay constant that controls the rate of adjustment. The same

format is repeated below in other submodels. Parameter values are

given in Table 1. MAP is then defined as the product of CO and

TPR,

MAP~CO:TPR

Submodel: baroreceptor reflex
The baroreceptor reflex is an adaptive mechanism that buffers

changes in blood pressure by increasing sympathetic outflow in

response to falling pressure. In particular, increased sympathetic

outflow induces increases in heart strength through vagal reflex

[22,23], increases in peripheral resistance and filling pressure by

alterations in vascular tone [24], and decreases urine formation by

renal sympathetic activation [25,26].

The afferent arm of the baroreceptor senses the difference

between current pressure (MAP) and adapted pressure (MAPad ).

The reflex slowly adapts to new conditions, taking 1–2 days to

adjust [27]. This yields the equation

dMAPad

dt
~kbaro

: MAP{MAPadð Þ:

We estimate the initial value of the delay constant kbaro as

0.0007, corresponding to a 1 day half time for adaptation, but the

probability of entering shock was sensitive to the value. For this

reason, we included it as a population parameter for calibration.

Given MAPad , we calculate the afferent signal as
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AffNA~AAfferent
: MAP{MAPadz50ð ÞmAfferent

MAP{MAPadz50ð ÞmAfferentzS
mAfferent

Afferent

This equation is hypothesized to be sigmoidal on the domain

[250,50], corresponding to maximal effectiveness on the domain

[60,160], corresponding to the range observed by Kirchheim [28].

The efferent aspect of the reflex is integrated into a single

multiplier which affects each target variable (peripheral resistance,

heart strength, urine output, and circulatory compliance). The

value of the multiplier is

Symps~Asymps
: S

msymps
symps

S
msymps
symps zAffNAmsymps

Parameter values are given in Table 2.

Submodel: Renal homeostatic control of volume
To model homeostatic control of fluid volumes, we operate on

the assumption that MAP is the product of CO and TPR, and

that the kidney acts as an infinite gain feedback device to return

arterial pressure to a set point defined by renal parameters and

sympathetic activation [17]. Thus urine formation is a function of

arterial pressure, and is reduced by increased sympathetic activity

[29]. Extracellular fluid volume (ECFV) is the accumulation of

fluid described by intake less excretion, represented as urine

output (UO). This yields the following equations:

UO~
BurinezAurine

:emurine
: MAP{80ð Þ

Symps

dECFV

dt
~Intake{UO

The exponential nature of the urine output equation is related

to the infinite gain theory of renal regulation of volume

homeostasis [30]. ECFV is partitioned into blood and interstitial

volumes via the relationship

BV~
AfluidECFV

mfluid

ECFV
mfluid zS

mfluid
fluid

Parameter values are given in Table 3.

Submodel: Cardiac integration
With peripheral factors modeled, the model is completed by

incorporating Guyton’s equations linking blood volume with

circulatory and atrial pressures. This is done by noting the effects

Figure 1. Schematic of interactions between the submodels. Ovals represent model variables, and rounded dashed boxes the submodels. The
unlabeled submodel (light dashed line) is the cardiac integration model.
doi:10.1371/journal.pone.0074329.g001

Table 1. Parameters of autoregulation.

Parameter Initial Value Description

Aauto 0.0453 mmHg?min?mL21 Maximal autoregulation

mauto 10.86 (none) Sensitivity of
autoregulation

Sauto 5126 (mL?min21) Set point of
autoregulation

kauto 0.00048 (none) Delay constant of
autoregulation

doi:10.1371/journal.pone.0074329.t001
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of sympathetic outflow on systemic (chiefly venous) compliance

and using this value to calculate mean circulatory filling pressure

(MCFP). We model these as

c~SlopeazSlopeb
:Symps:

MCFP~(BV{V0):c:

MCFP is the RAP-intercept on Guyton’s RAP-VR curve

relationship [30]; the slope of the relationship is the resistance to

venous return (RVR). RVR is distinct from TPR, being comprised

of the arterial and venous resistances, as well as circulatory

compliance. To calculate RVR, we note that the effectiveness of a

vascular bed in modulating venous return through changes in

resistance depends on the magnitude of the compliance upstream

from the resistance. If only arterial resistance is varied while

venous resistance remained fixed, about 75% of the resistance to

venous return would be constant because of the dominant role of

the venous compliance [30]. It is reasonable to assume that some

changes in venous resistance occur with changes in total vascular

resistance, leading us to postulate that about 1/2 of the resistance

to venous return is fixed and 1/2 is linked to changes in total

peripheral resistance. Furthermore, we assume that the relation-

ship is linear:

RVR~aRVR
:TPRzbRVR:

These factors can be combined to define venous return:

VR~ MCFP{RAPð Þ=RVR,

which we require to be equal to cardiac output as defined by the

Starling curve

CO~Symps:ACO
: RAPz4ð ÞmCO

RAPz4ð ÞmCOzS
mCO
CO

,

concluding our derivation of the cardiovascular model. Parameter

values are given in Table 4.

Method of Calibration for Parameter Distributions
The goal of the calibration process is to determine a joint

parameter distribution on some subset of the parameters in such a

way that drawing samples from that distribution yields model

responses matching those observed in human populations [5,31–

34]. This requires data reported from individuals to generate the

prior joint distribution for the outputs, and is made more realistic

by including some manner of likelihood function for each input

parameter and output variable. Having no such function, we

assume a uniform likelihood of all parameter sets.

The parameterization process began with the best fit parameter

derived from steady state analysis (Tables 1, 2, 3, 4). An initial one-

at-a-time sensitivity analysis was run to estimate the total

derivative of the output function with respect to each parameter.

We used Monte Carlo methods to estimate each single variable

derivative, and converted into standard deviation units to

normalize the comparison. The single variable derivatives were

linked through vector addition, yielding a single value estimating

the sensitivity r of the joint variable CO,TPRð Þ on the given

parameter. We designated the critical sensitivity as rw0:25
yielding 10 parameters. Those parameters deemed insensitive

were left as best fit parameters through calibration. In data not

shown, we lowered the threshold for sensitivity, allowing more

parameters to be used in the calibration process. This resulted in

Table 2. Parameters of the baroreceptor reflex.

Parameter Initial Value Description

kbaro 0.0007 (mmHg{1) Delay constant of baroreceptor adaptation

AAfferent 2.067 (none) Maximal afferent outflow in response to pressure
changes

mAfferent 3.787 (none) Sensitivity of afferent nerve activity response to
pressure changes

SAfferent 39.235 (mmHg) Set point of afferent response to pressure changes

Asymps 1.0041 (none) Maximum increase in sympathetic outflow

Bsymps 0.9333 (none) Minimal sympathetic outflow

msymps 3.6046 (none) Sensitivity of sympathetic outflow

Ssymps 0.5349 (none) Set point of sympathetic outflow response to afferent
nerve activity

doi:10.1371/journal.pone.0074329.t002

Table 3. Parameters of fluid homeostasis.

Parameter Initial Value Description

Intake 1.0 (mL{1) Water intake

murine 0.05 (none) Slope constant in urine
equation

Ablood 7900 (mL) Maximal blood volume

mblood 3.58 (none) Sensitivity of blood
volume to ECFV

Sblood 15570 (mL) Set point of BV-ECFV
relationship

doi:10.1371/journal.pone.0074329.t003
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similar distributions for the larger parameter set and virtually

identical behavior in the model outcome.

We utilized a modified version of the Metropolis algorithm to

generate and sample the sensitive parameter distribution. The

Metropolis algorithm is a Markov chain Monte Carlo technique to

estimate a multivariate target density by proposing new samples

from the distribution and accepting them provided a probabilistic

criterion is met [35]. In this variation, we sampled from the

model’s space of sensitive parameters and accepted the sample

based on the likelihood of its output with respect to the

experimental obtained distribution. Writing h for a vector of

sensitive parameter values, then M hð Þ is the ordered pair at

t~200 days when h is substituted in the model for the best fit

parameters. Given M hð Þ~ co,tprð Þ, we used the smooth kernel

distribution generated by the experimental data to estimate

p co,tprð Þ (which we write p M hð Þð Þ), the likelihood that an

individual had CO~co and TPR~tpr. If h0 was the most

recently accepted parameter vector, and u was a randomly

distributed number between 0 and 1, we accepted h provided

p M hð Þð Þ
p M h0ð Þð Þwu [35]. Note that if p M hð Þð Þ§p M h0ð Þð Þ the ratio

exceeds u. New parameter vectors are generated by allowing each

component hi to change by adding a random number chosen from

a normal distribution with mean 0 and standard deviation di

related to the expected value of the parameter. The di were

defined to be 5% of the best-fit value for the parameter. The

standard deviations were chosen so that the rejection rate was

between 20% and 40% in preliminary tests of the method. The

sampling process was iterated to yield a sequence of values

approximating random samples from the ‘‘true’’ distribution. Each

chain was executed 40 times: 20 to initiate the sampling sequence,

and 20 retained samples. The process was restarted 15 times to

ensure even coverage of the parameter space, yielding 300

individual models.

Hemorrhage Protocol
Each sampled individual was simulated for 200 days, with

steady state verified by checking that UO~Intake. We then

subjected each individual to a virtual hemorrhage by decreasing

ECFV by 37.5 mL/min for 20 minutes, inducing a loss in blood

volume averaging approximately 350 mL which simulated the

procedure detailed in Skillman et al [5]. This process was repeated

until 300 virtual patients had been generated and subjected to

hemorrhage. Reseeding the algorithm reduced the possibility of

strong attractors in the experimental probability distributions from

unnaturally weighing the parameter distributions. Patients were

classified as decompensating if their MAP fell by more than

15 mmHg.

Classification
We used support vector machines (SVM) to construct classifier

functions F predicting model performance [10]. Given h sampled

from a calibrated parameter distribution, F hð Þ yields 1 if we

predict a passing (compensating) result from the given virtual

patient, and 21 otherwise. If h consists of a single parameter X ,

then F reflects the predictive power of X to determine

compensation. In particular, if x1,x2, . . . ,xn denote test values of

X , and m xið Þ~1 if the model compensates with X~xi and is

otherwise then F is chosen so as to maximize the sum

SF ,m x1, . . . ,xnð Þ~F x1ð Þm x1ð Þz . . . zF xnð Þm xnð Þ:

In other words, F is calculated to maximize the predictive

power of X with respect to compensating/decompensating

behavior in hemorrhage. We used the software svm_light, version

6.0 (http://www.svmlight.joachims.org) written by Thorsten

Joachims for all classification.

The nature of SVM classification prevents easy interpretation of

the classifier function. In particular, dualization of the data

obfuscates the relative roles played by different parameters in

establishing the outcome prediction. To get around this limitation,

we used a series of SVMs to see the relative predictive powers of

different combinations of parameters. This process generated a

sequence of classifiers, each using a different set of parameters and

variables to define a space in which classification could be

attempted. The process was inductively defined: first each

parameter and variable was used to construct a simple classifier.

If that classifier proved more capable of predicting the outcome

than the naı̈ve classifier (every fails or everyone passes), it was

retained. After examining all of the single variables and

parameters, the retained parameters seeded a collection of two-

parameter sets that were then used to construct classifiers. The

process continued until no additional parameter could sufficiently

increase the predictive power of the classifier, or until no

additional parameters were available. We deemed the final result

the maximally effective rubric (MER); we note that an MER is

dependent on the selection of training set. The inductive

procedure had the effect of reducing the number of available

parameter combinations from trillions to thousands, thus making

the process tractable on a desktop computer.

Table 4. Parameters of cardiovascular integration in the model.

Parameter Initial Value Description

V0 3500 (mL) Unstressed blood volume

aRVR 0.0296 (none) Linear term defining effect of autoregulation on RVR

bRVR 0.000839 (mmHg{1) Constant term defining effect of autoregulation on RVR

ACO 15230 (mL{1) Maximum CO

mCO 1.876 (none) Sensitivity of the Starling curve

SCO 2.85 (mmHg) Set point of Starling curve

Slopea 0.002408 (mmHg{1) Linear part of compliance response to SNA

Slopeb 0.004543 (mmHg{1) Constant part of compliance response to SNA

doi:10.1371/journal.pone.0074329.t004
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Statistical Methods
Distributions were compared by Kolmogorov-Smirnov, Ander-

son Darling, and x2 goodness of fit tests. All parameter

comparisons between compensating and decompensating popula-

tions were performed as distribution fit tests. We uniformly used

p,0.05 as the acceptable level of significance, and all confidence

intervals were calculated at the 95% level. All statistics and

random sampling were performed in Mathematica version 8

(www.wolfram.com).

Results

Calibration
The results of the sensitivity testing are shown in Table 5, along

with the values used for the jump standard deviations di. The

steady state values of the 300 virtual patients were used to

construct an approximation of the CO and TPR joint distribution

constructed from published reports of human data [5,31–34].

Individual data was collected for normotensive males, with no
criterion for age. The sampled and experimental distributions

were evaluated for similarity, and were not significantly different

(p,0.05).

We crosschecked the population measurements of RAP and

MCFP against previous observations. We found the 95%

confidence interval for RAP to be [21.74,21.40]. In patients in

cardiac failure, the 95% CI has been found to be 4–33 mmHg

[36], 1–4 mmHg in normal dogs [37]. The values are statistically

different (p,0.05), but are not physiologically implausible.

Similarly, mean circulatory filling pressure was found to be

6.362.41 (SD) mmHg, as compared to 7+2 (SD) mmHg [30,37–

39], a difference that was not significant at p,0.05.

Hemorrhage
The hemorrhage protocol as detailed above yielded an average

blood loss of 520+198 mL over twenty minutes. We refer to the

population who suffered #15 mmHg drop in MAP to have

compensated for the hemorrhage. Among all subjects, 43%

compensated, as compared to 44% in Skillman’s experiment [5].

The cumulative distribution of changes in MAP is shown in

Figure 2 and is compared to the data collected by Skillman et al

[5] and were not found to be significantly different from Skillman’s

data (p,0.05). We also tested the TPR and CO responses against

Skillman’s data (reported in 5 individuals, Figure 3); the paired

Table 5. Parameters used in the inclusive and sensitive tiers,
along with the standard deviations of the jumps allowed in
the steps of the Metropolis algorithm.0.

Parameter di

kbaro 0.000035

Afluid 395

mfluid 0.179

Sauto 256.3

Aafferent 0.105

mafferent 0.1815

Asymps 0.051

msymps 0.1745

Ssymps 0.0265

Bsymps 0.057

doi:10.1371/journal.pone.0074329.t005

Figure 2. Survival function of the pressure loss experienced by
individual models compared with Skillman’s data [5]; the
results are similar (p,0.05). The vertical axis denotes the
percentage of individuals who lost MAP less than the x-input.
doi:10.1371/journal.pone.0074329.g002

Figure 3. Tracking changes in CO (A) and TPR (B) during
hemorrhage. The experimental data (collected at the beginning and
end of the hemorrhage only) is not different from model predictions
(p,0.05). The solid lines represent the mean model output, and the
dotted lines are taken from Skillman’s report [5]. Error bars represent
standard deviation; all experimental values are statistically similar to
model output (p,0.05).
doi:10.1371/journal.pone.0074329.g003
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Figure 4. Four variables that correlate with eventual decom-
pensation are shown. Baseline values for right atrial pressure (A)
initial mean arterial pressure (C) and sympathetic nerve activity (D), and
the parameter values for systemic compliance (B) were displayed
correlation with compensation performance, and significant differences
between compensating and decompensating populations. Solid circles
represent the compensating population, and the crosses represent the
decompensators. Significant overlap between the populations on the x-

axis in each case illustrates the difficulties inherent in using single
variables to predict eventual pressure loss.
doi:10.1371/journal.pone.0074329.g004

Figure 5. Mean nerve activities in the compensating and
decompensating populations. Afferent nerve activity (A) is similar
between the groups, while sympathetic outflow (B) and the ratio of
baseline sympathetic outflow to maximal sympathetic outflow (C) are
significantly different.
doi:10.1371/journal.pone.0074329.g005
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distributions of initial and final TPR and CO were found to be

similar to those predicted by the model (p.0.05).

Next we considered the predictive power of baseline variable

measurements. Virtually all parameters and baseline variables

showed significant differences in compensating and decompensat-

ing populations (p.0.05). The exceptions were UO, BV, and

baseline afferent nerve activity. The strongest parameter correla-

tions of model outcome were RAP, systemic compliance c, MAP,

and sympathetic nerve activity (Figure 4).

The literature suggests autonomic control differs between

compensating and decompensating individuals [40], and so we

analyze our populations for differences in these factors. Baseline

sympathetic nerve activity and the ratio of baseline to maximal

SNA are increased in decompensators (Figure 5). Considering the

parameters that determine sympathetic and afferent nerve activity,

the maximum and minimum sympathetic outflow and the set-

point for afferent nerve activity differ between decompensating

and decompensating populations (p,0.05), but all other param-

eters are similar.

We considered the effects of individual blood loss to

performance with respect to pressure loss. Because of differences

in the equations governing fluid balance, some individuals lost

more blood than others. The correlation was 0.35; the immediacy

of DBV to the context of this paper invited further analysis. To test

the hypothesis that the magnitude of blood loss was independently

predictive of decompensation, we compared the compensating

population at t~20 minutes, denoted C20, with the population

that had decompensated at t~15 minutes, denoted D15. Mean

C20 blood loss at 20 minutes was 430+123 mL, compared to

450+153 lost at 15 minutes in the 135 individuals in the D15

population. The differences were not significant, indicating that

decompensation is more complex than simple blood loss.

Finally, we considered the dynamic changes in variables as they

correlated with decreases in pressure. This was not an attempt to

determine causality in either direction, only correlation. The

stressed blood volume presented the most striking example.

Guyton defined unstressed blood volume as the volume necessary

to see positive pressure develop in the circulatory tree, and the

stressed volume as the complement of the unstressed volume

within the total blood volume. Hence the equation defining this

central component of MCFP is vital to the concept of collapse.

Plotting the fall in pressure in five minute increments against the

gap BV{V0 generates a good description of the point at which

pressure falls precipitously (Figure 6).

Classification
In preliminary analysis of the predictive algorithms, we found

that a binomial distribution best described algorithmic perfor-

mance. The power formulae for binomial distributions indicated

98 tests were necessary to determine the 95% confidence interval

for predictive efficacy with a margin of error of 0.04%.

We generated one hundred classifier SVMs on randomly

chosen training sets drawn from the population of 300 models. We

tested each classifier on the 75 individuals not included in the

training set. The 95% confidence interval for overall predictive

ability was [92.1%, 92.5%]. The complexity of the classifier

function prevented outright analysis of individual parameter or

variable contributions to decompensation. Thus, we used the

MER algorithm 37 times with a cost function of z2:5% required

for the addition of a new parameter or variable to generate a

family of classifiers requiring fewer inputs for predictive power.

Because training sets were sampled from the collected data,

different sets yielded slightly different choices of parameters for

constructing a classifier function. We present the most common

variables seen in the classification equation in Figure 7. The MER

averaged over 91% effective at predicting decompensation, but

only required, on average, 5.1 variables to achieve that level of

precision.

Discussion

An individual’s parameters are different than any other

individuals, and this difference extends beyond any kind of

Figure 6. The relationship between stressed blood volume and average pressure drop over 5 minute intervals. Crosses represent
eventually compensating, and circles eventually decompensating individuals. Significant pressure drops do not occur until the stressed volume
approaches 0.
doi:10.1371/journal.pone.0074329.g006
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statistical uncertainty. These parametric differences inform all

bodily processes, yielding subtle but real differences in the response

to given stimuli. In a variety of experimental situations, system

nonlinearities produce a spectrum of results that range from no

effect to large effects. By smoothing the differences and relying on

means as in best fit parameterization, we miss a critical part of the

experimental data. By sampling calibrated parameters to generate

a population of models, we can obtain a more realistic physiologic

response and simultaneously increase our understanding of the

relationships between interacting subsystems.

The cardiovascular response to hemorrhage exemplifies these

observations. Similar individuals exposed to similar stimuli exhibit

dissimilar responses, and individuals display a susceptibility to one

outcome or the other. This susceptibility suggests that part of the

dichotomy must be attributable to individual differences; in this

paper we test this notion. This study utilizes a small integrative

model with an automated parameterization algorithm. We tested

the hypothesis that small integrative models can produce a

spectrum of results similar to that obtained in the laboratory.

When applied to the simple model presented here, the Metropolis

algorithm produces a complex joint distribution of parameters that

are identified, via the model, with the joint cardiac output and

peripheral resistance data obtained from individual reports in the

literature. To simplify the analysis, we discretized the outcome into

compensating and decompensating populations in accord with the

experimental standard classification. The results obtained in this

study support our hypothesis. A wide range of decreases in MAP

was observed in the experimental cohort, but overall the

distribution was bimodal. Furthermore, the model produces single

variable correlates of compensation that match previous experi-

mental observations in lower body negative pressure (LBNP)

protocols, which have been shown to be a good human model of

hemorrhage [3,41].

Three differences have been noted in LBNP intolerant

individuals: 1) they have higher heart rate, sympathetic nerve

activity burst frequency, and baseline central venous pressure

(CVP), 2) they do not increase heart rate or SNA burst frequency

in response to LBNP, and 3) they have attenuated gain in the

cardiac baroreflex control of SNA [40,42]. The third condition

refers to the decreased ratio of SNA to maximal SNA observed in

Figure 6. Additionally, MCFP, a correlate for CVP, was

significantly different between model populations. While we do

not predict heart rate in this model, increases in sympathetic

outflow correlate with increased heart rate in humans. Hence the

increased baseline SNA and reduced baseline to maximal SNA

ratio seen in the model decompensating population would be

associated with increased initial heart rate, and decreased ability to

increase heart rate to aid in compensating for hypovolemia.

More generally, of the ten parameters allowed to vary, only the

set point of the autoregulation responses was similar between

compensating and decompensating populations. None of these

parameters was seen to be independently predictive of circulatory

collapse. Correlations between pressure loss and independent

variables did exist for the sensitivity of the blood volume function

mblood and the minimum sympathetic outflow BSymp. Similarly,

there were significant differences between decompensating and

compensating populations in most output variables, with weak

correlations between pressure loss and RAP, compliance, MAP,

blood volume, and baseline sympathetic outflow. Inter-variable

correlation complicated any simple attempt at prediction from

baseline values, despite the many correlations between value and

outcome.

To better understand the influence of parameters and variables

on individual compensation, we used support vector machines to

generate classifying functions predicting individual behavior.

Support vector machines provided, on average, 92% accurate

prediction of compensation and decompensation; this average was

taken over 98 partitions of the data into ‘‘training’’ and ‘‘testing’’

sets. In general, variables were more predictive than parameters.

The nature of SVM classification prevented easy interpretation of

the classifier function.

To circumvent this limitation, we used a series of SVMs to see

the relative predictive powers of different combinations of

parameters. The rubric-generating algorithm, and in particular

its cost function, played an important role in decreasing the

amount of information necessary for making a strong prediction.

By limiting the scope of the SVM classifiers to subsets of the

variables and parameters, we decomposed the classifier into its

most influential parts. The algorithm described increased the

tractability of the approach, reducing the search to a few hundred

combinations rather than trillions of trillions. Because these rubrics

were formed using a training set generated by sampling collected

data, there was some variation in the particular parameters

designated in this process. Common to most classifiers was

Figure 7. A comparison of the most influential factors predicting model decompensation. The 300 individuals were used to generate 37
collections of maximally effective rubrics (MER). The height of the bar represents the number of times the variable or parameter appeared in an MER.
doi:10.1371/journal.pone.0074329.g007
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compliance c, afferent nerve activity, and TPR, MCFP, and SNA.

These were expected, as their covariance with the model outcome

was high in both tiers. The rubric reduced the number of variables

and parameters necessary to successfully classify an individual to

between 5 and 6, depending on the training sample.

The value of the approach used is that, in addition to these

points, we are also able to describe the range of model responses.

By calibrating at steady state, the model was able to predict

dynamic responses to hemorrhage that matched experimental

observation with respect to single variable behavior, and to

establish an etiology of decompensation that is coherent with

current theories. All of these factors suggest that the model is valid,

if simple. The power of this approach is that, once validated, the

population can be used to make hypothetical rubrics that predict

individual behavior on the basis of parameter and baseline

variable values. Due to the empirical nature of this model, the

particular rubrics generated are of limited value. For example,

while we can suggest that baseline sympathetic nerve activity is an

important indicator of circulatory decompensation, we cannot

predict whether the deviant behavior is a factor of burst frequency,

or mean activity, or burst amplitude. Similarly, not every variable

in the model is measurable (e.g. MCFP). A more complete model

would offer more opportunity for leveraging this method into

useful clinical results. However, we feel that the simplicity of the

model presented offers a more relatable context in which to

observe and understand our methods.

In conclusion, this paper utilizes a small nonlinear model of

human circulation to demonstrate a method of automated

calibration from a distributed set of outputs taken from the

literature. The method allows tractable sampling from complex

joint distributions with minimal smoothing or data manipulation.

Sampling from the distributed parameters allows one to generate a

range of model patients, and to test their individual deterministic

responses against a stimulus. We found strong agreement between

the model chosen and the experimental outcome, and were able to

use the parameter space and model outcomes to generate efficient

classification functions for predicting outcomes from future

patients.
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