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Abstract
Activity recognition has received increasing attention from the machine learning community. Of
particular interest is the ability to recognize activities in real time from streaming data, but this
presents a number of challenges not faced by traditional offline approaches. Among these
challenges is handling the large amount of data that does not belong to a predefined class. In this
paper, we describe a method by which activity discovery can be used to identify behavioral
patterns in observational data. Discovering patterns in the data that does not belong to a predefined
class aids in understanding this data and segmenting it into learnable classes. We demonstrate that
activity discovery not only sheds light on behavioral patterns, but it can also boost the
performance of recognition algorithms. We introduce this partnership between activity discovery
and online activity recognition in the context of the CASAS smart home project and validate our
approach using CASAS datasets.

Index Terms
sequence discovery; activity recognition; out of vocabulary detection

1 Introduction
The machine learning and pervasive computing technologies developed in the last decade
offer unprecedented opportunities to provide ubiquitous and context-aware services to
individuals. In response to these emerging opportunities, researchers have designed a variety
of approaches to model and recognize activities. The process of discerning relevant activity
information from sensor streams is a non-trivial task and introduces many difficulties for
traditional machine learning algorithms. These difficulties include spatio-temporal variations
in activity patterns, sparse occurrences for some activities, and the prevalence of sensor data
that does not fall into predefined activity classes.

One application that makes use of activity recognition is health-assistive smart homes and
smart environments. To function independently at home, individuals need to be able to
complete Activities of Daily Living (ADLs) [1] such as eating, dressing, cooking, drinking,
and taking medicine. Automating the recognition of activities is an important step toward
monitoring the functional health of a smart home resident [2], [3], [4] and intervening to
improve their functional independence [5], [6].
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The generally accepted approach to activity recognition is to design and/or use machine
learning techniques to map a sequence of sensor events to a corresponding activity label.
Online activity recognition, or recognizing activities in real time from streaming data,
introduces challenges that do not occur in the case of offline learning with pre-segmented
data. One of these challenges is recognizing, and labeling or discarding, data that does not
belong to any of the targeted activity classes. Such “out of vocabulary” detection is difficult
in the context of activity recognition, and is particularly challenging when the out of
vocabulary data represents a majority of the data that is observed.

In this paper we introduce an unsupervised method of discovering activities from sensor
data. The unsupervised nature of our approach provides a method of analyzing data that does
not belong to a predefined class. By modeling and tracking occurrences of these patterns
alongside predefined activities, the combined approach can also boost the performance of
activity recognition for the predefined activities.

Here we introduce our approaches to online activity recognition, activity discovery, and our
discovery-based boosting of activity recognition. We evaluate the effectiveness of our
algorithms using sensor data collected from three smart apartments while the residents of the
apartment live in the space and perform their normal daily routines.

2 Datasets
We treat a smart environment as an intelligent agent that perceives the state of the residents
and the physical surrounding using sensors, and acts on the environment using controllers in
such a way that specified performance measures are optimized [7].

To test our ideas, we analyze sensor event datasets collected from three smart apartment
testbeds. Figure 1 shows the floorplan and sensor layout for the three apartments and Figure
2 shows occurrences of activities in each of the testbeds for a sample of the data. Each of the
smart apartments housed an older adult resident and is equipped with infrared motion
detectors and magnetic door sensors. During the six months that we collected data in the
apartments, the residents lived in these apartments and performed normal daily routines.

In order to provide ground truth for the activity recognition algorithms, human annotators
analyzed a 2D visualization of the sensor events. They tagged sensor event data with the
beginning and ending of activity occurrences for the 11 activities listed in Figure 2. Table 1
lists characteristics of these datasets. Note that although there are many occurrences of the
activities, only 42% of the sensor events on average belong to one of the predefined
activities.

3 Activity Recognition
The goal of activity recognition is to recognize common human activities in real life
settings. In terms of a machine learning approach, an algorithm must learn a mapping from
observable data (typically a sequence of sensor events) to an activity label. We describe
previous work done in this area together with the approach we adopt for online activity
recognition.

3.1 Previous Work
Activity recognition is not an untapped area of research. Because the need for activity
recognition algorithms is great, researchers have explored a number of approaches to this
problem [8]. The approaches can be broadly categorized according to the type of sensor data
that is used for classification, the model that is designed to learn activity definitions, and the
realism of the environment in which recognition is performed.
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Sensor data—Researchers have found that different types of sensor information are
effective for classifying different types of activities. When trying to recognize ambulatory
movements (e.g., walking, running, sitting, standing, climbing stairs, and falling), data
collected from accelerometers positioned on the body has been used [9], [10]. More recent
research has tapped into the ability of a smart phone to act as a wearable / carryable sensor
with accelerometer and gyroscope capabilities. Researchers have used phones to recognize
gestures and motion patterns [11], [12].

For other activities that are not as easily distinguishable by body movement alone,
researchers observe an individual’s interaction with key objects in the space such as
medicine containers, key, and refrigerators [13], [14], [15]. Objects are tagged with shake
sensors or RFID tags and are selected based on the activities that will be monitored. Other
researchers rely upon environment sensors including motion detectors and door contact
sensors to recognize ADL activities that are being performed [16], [17], [18].

For recognition of specialized classes of activities, researchers use more specialized sources
of information. As an example, Yang, et al. [19] collected computer usage information to
recognize computer-based activities including multiplayer gaming, movie downloading, and
music streaming. In addition, some researchers such as Brdiczka et al. [20] video tape smart
home residents and process the video to recognize activities. Because our study participants
are uniformly reluctant to allow video data or to wear sensors, and because object sensors
require frequent charging and are not practical in participant homes, our data collection has
consisted solely of passive sensors that could be installed in a smart environment.

Activity models—The number of machine learning models that have been used for
activity recognition varies as greatly as the number of sensor data types that have been
explored. Naive Bayes classifiers have been used with promising results for offline learning
of activities [20], [21], [22], [23] when large amounts of sample data are available. Other
researchers [17], [9] have employed decision trees to learn logical descriptions of the
activities, and still others [24] employ kNNs. Gu et al. [13] take a slightly different approach
by looking for emerging frequent sensor sequences that can be associated with activities and
can aid with recognition.

An alternative approach that has been explored by a number of research groups is to exploit
the representational power of probabilistic graphs. Markov models [21], [25], [26], [18],
dynamic Bayes networks [15], and conditional random fields [27], [28] have all been
successfully used to recognize activities, even in complex environments. Researchers have
found that these probabilistic graphs, along with neural network approaches [29], [26], are
quite effective at mapping pre-segmented sensor streams to activity labels.

Recognition Tasks—A third way to look at earlier work on activity recognition is to
consider the range of experimental conditions that have been attempted for activity
recognition. The most common type of experiment is to ask subjects to perform a set of
scripted activities, one at a time, using the selected sensors [20], [29], [12], [15]. In this case
the sensor sequences are well segmented, which allows the researchers to focus on the task
of mapping sequences to activity labels.

Building on this foundation, researchers have begun looking at increasingly realistic and
complex activity recognition tasks. These setups include recognizing activities that are
performed with embedded errors [21], with interleaved activities [30], and with concurrent
activities performed by multiple residents [31], [32], [18]. The next major step that
researchers have pursued is to recognize activities in unscripted settings (e.g., in a smart
home while residents perform normal daily routines) [17], [26]. These naturalistic tasks have
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relied on human annotators to segment, analyze, and label the data. However, they do bring
the technology even closer to practical everyday usage. The realism of activity recognition
has been brought into sharper focus using tools for automated segmentation [20], [13], for
automated selection of objects to tag and monitor [14], and for transfer of learned activities
to new environment settings [16].

3.2 Online Activity Recognition Using AR
One feature that distinguishes previous work in activity recognition from the situation we
describe in this paper is the need to perform continuous activity recognition from streaming
data, even when not all of the data fits any of the activity classes. In order to perform
activity recognition from streaming sensor data, the data cannot be segmented into separate
sensor streams for different activities. Instead, we adopt the approach of moving a sliding
window over the sensor event stream and identifying the activity that corresponds to the
most recent event in the window. This sliding window approach has been used in other work
[30], but not yet for activity recognition in unscripted settings. In this study we consider data
collected from environmental sensors such as motion and door sensors, but other types of
sensors could be included in these approaches as well.

We experimented with a number of machine learning models that could be applied to this
task, including naive Bayes, hidden Markov models, conditional random fields, and support
vector machines. These approaches are considered for this task because they traditionally are
robust in the presence of a moderate amount of noise and are designed to handle sequential
data. Among these three choices there is no clear best model to employ - they each utilize
methods that offer strengths and weaknesses for the task at hand.

The naive Bayes (NB) classifier uses relative frequencies of feature values as well as the
frequency of activity labels found in sample training data to learn a mapping from activity
features, D, to an activity label, a, calculated using the formula argmaxa∈AP (a|D) = P(D|
a)P(a)/P(D). In contrast, the hidden Markov model (HMM) is a statistical approach in which
the underlying model is a stochastic Markovian process that is not observable (i.e., hidden)
which can be observed through other processes that produce the sequence of observed
features. In our HMM we let the hidden nodes represent activities and the observable nodes
represent combinations of feature values. The probabilistic relationships between hidden
nodes and observable nodes and the probabilistic transitions between hidden nodes are
estimated by the relative frequency with which these relationships occur in the sample data.

Like the hidden Markov model, the conditional random field (CRF) model makes use of
transition likelihoods between states as well as emission likelihoods between activity states
and observable states to output a label for the current data point. The CRF learns a label
sequence which correpsonds to the observed sequence of features. Unlike the hidden markov
model, weights are applied to each of the transition and emission features. These weights are
learned through an expectation maximization process based on the training data.

Our last approach employs support vector machines (SVMs) to model activities. Support
vector machines identifies class boundaries that maximize the size of the gap between the
boundary and data points. We employ a one vs one support vector machine paradigm that is
computationally efficient when learning multiple classes with possible imbalance in the
amount of available training data for each class. For the experiments reported in this paper
we used the libSVM implementation of Chang et al [33].

We compared the performance of these machine learning models on our real-world smart
home datasets. Table 2 summarizes recognition accuracy based on threefold cross validation
over each of the real-world datasets. As shown in the table, all of the algorithms perform
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well at recognizing the 10 predefined activities listed in Figure 2. Although they perform
well for these predefined activity classes, there are slight variances in recognition accuracy.
The support vector machine model yield the most consistent performance across the
datasets. As a result, we utilize only this approach for modeling and recognizing activities
for the experiments described in the rest of this paper.

For real-time labeling of activity data from a window of sensor data, we experimented with
a number of window sizes and found that using a window size of 20 sensor events
performed best. For this reason we adopt these choices for our algorithm recognition
approach, called AR. Each input data point is described by a set of features that describes
the sensor events in the 20-event window. These features include:

• Number of events triggered by each sensor in the space within the window.

• Time of day of the first and last events in the window (rounded to the nearest hour).

• Timespan of the entire window (rounded to the nearest hour).

The machine learning algorithm learns a mapping from the feature representation of the
sensor event sequence to a label that indicates the activity corresponding to the last event in
the sequence. The default parameters are used for the support vector machine and the
shrinking heuristic is employed. All results are reported based on 3-fold cross validation. We
recognize that the models could be fine tuned to yield even greater performance for some
cases. We also note that alternative models might perform better in different activity
recognition situations. In this paper we commit to using a straightforward model that yields
consistently strong performance in order to focus on our main contribution: the role of
activity discovery in the activity recognition process.

4 Activity Discovery Using AD
A main contribution of this paper is the introduction of an unsupervised learning algorithm
to discover activities in raw sensor event sequence data, which we refer to as AD. Here we
describe previous work in the area and introduce our method for activity discovery.

4.1 Previous Work
Our approach to activity discovery builds on a rich history of discovery research, including
methods for mining frequent sequences [34], [13], mining frequent patterns using regular
expressions [35], constraint-based mining [36], mining frequent temporal relationships [37],
and frequent-periodic pattern mining [38].

More recent work extends these early approaches to look for more complex patterns.
Ruotsalainen et al. [39] design the Gais genetic algorithm to detect interleaved patterns in a
unsupervised learning fashion. Other approaches have been proposed to mine discontinuous
patterns [40], [41], [42] in different types of sequence datasets and to allow variations in
occurrences of the patterns [43]. Huynh et al. [44] explored the use of topic models and
LDAs to discovery daily activity patterns in wearable sensor data.

Aspects of these earlier techniques are useful in analyzing sensor sequence data. In addition
to finding frequent sequences that allow for variation as some of these others do, we also
want for our purposes to identify sequences of sufficient length that may constitute an
activity of interest. We are interested in characterizing as much of the sensor data as possible
but want to minimize the number of distinct patterns to increase the chance of identifying
more abstract activity patterns. We describe our approach to meeting these goals next.
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4.2 The AD Algorithm
As with other sequence mining approaches, our AD algorithm searches the space of sensor
event sequences in order by increasing length. Because the space of possible sequence
patterns is exponential in the size of the input data, AD employs a greedy search approach,
similar to what can be found in the Subdue [45] and GBI [46] algorithms for graph-based
pattern discovery. Input to the AR discovery algorithm includes the input sensor data set, a
beam length, and a specified number of discovery iterations.

AD searches for a sequence pattern that best compresses the input dataset. A pattern here
consists of a sequence definition and all of its occurrences in the data. The initial state of the
search algorithm is the set of pattern candidates consisting of all uniquely labeled sensor
identifiers. The only operators of the search are the ExtendSequence operator and the
EvaluatePattern operator. The ExtendSequence operator extends a pattern definition by
growing it to include the sensor event that occurs before or after any of the instances of the
pattern.

The entire dataset is scanned to create initial patterns of length one. After this first iteration,
the whole dataset does not need to be scanned again. Instead, AD extends the patterns
discovered in the previous iteration using the ExtendSequence operator and will match the
extended pattern against the patterns already discovered in the current iteration to see if it is
a variation of a previous pattern or is a new pattern. In addition, AD employs an optional
pruning heuristic that removes patterns from consideration if the newly-extended child
pattern evaluates to a value that is less than the value of its parent pattern.

AD uses a beam search to identify candidate sequence patterns by applying the
ExtendSequence operator to each pattern that is currently in the open list of candidate
patterns. The patterns are stored in a beam-limited open list and are ordered based on their
value.

The search terminates upon exhaustion of the search space. Once the search terminates and
AD reports the best patterns that were found, the sensor event data can be compressed using
the best pattern. The compression procedure replaces all instances of the pattern by single
event descriptors, which represent the pattern definition. AD can then be invoked again on
the compressed data. This procedure can be repeated a user-specified number of times.
Alternatively, the search and compression process can be set to repeat until no new patterns
can be found that compress the data. We use the last mode for experiments in this paper.

4.3 Pattern Evaluation
AD’s search is guided by the minimum description length (MDL) [47] principle. The
evaluation heuristic based on the MDL principle assumes that the best pattern is one that
minimizes the description length of the original dataset when it is compressed using the
pattern definition. Specifically, each occurrence of a pattern can be replaced by a single
event labeled with the pattern identifier. As a result, the description length of a pattern P
given the input data D is calculated as DL(P) + DL(D|P), where DL(P) is the description
length of the pattern definition and DL(D|P) is the description length of the dataset
compressed using the pattern definition. Description length is calculated in general as the
number of bits required to minimally encode the dataset. We estimate description length as
the number of sensor events that comprise the dataset. As a result, AD seeks a pattern P that
maximally compresses the data, or maximizes the value of
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Because human behavioral patterns rarely occur exactly the same way twice, we employ an
edit distance measure to determine if a sensor sequence is an acceptable variation of a
current pattern, and thus should be considered as an occurrence of the pattern. This
allowance provides a mechanism for finding fewer patterns that abstract over slight
variations in how activities are performed.

To determine the fit of a variation to a pattern definition we compute the edit distance using
the Damerau-Levenshtein measure [48]. This measure counts the minimum number of
operations needed to transform one sequence, x, to be equivalent to another, y. In the case of
the Damerau-Levenshtein distance, the allowable transformation operators include change
of a symbol (in our case, a sensor event), addition/deletion of a symbol, and transposition of
two symbols. AD considers a sensor event sequence to be equivalent to another if the edit
distance is less than 0.1 times the size of the longer sequence. The edit distance is computed
in time O(|x| × |y|).

As an example, Figure 3 shows a dataset where the sensor identifiers are represented by
varying colors. AD discovers four instances of the pattern P in the data that are sufficiently
similar to the pattern definition. The resulting compressed dataset is shown as well as the
pattern P′ that is found in the new compressed dataset.

4.4 Clustering Patterns
Although the pattern discovery process allows for variations between pattern occurrences,
the final set of discovered patterns can still be quite large with a high degree of similarity
among the sets of patterns. We want to find even more abstract pattern descriptions to
represent the set of pattern activities. The final step of the AD algorithm is therefore to
cluster the discovered patterns into this more abstract set.

To cluster the patterns, we employ QT clustering [49] in which patterns are merged based
purely on similarity and the number of final clusters does not need to be specified a priori.
Similarity in this case is determined based on mutual information of the sensor IDs
comprising the cluster patterns and the closeness of the pattern occurrence times. Once the
AD pattern discovery and cluster process is complete, we can report the set of discovered
activities by expressing the cluster centroids. We can also label occurrences of the patterns
in the original dataset or in new streaming data to use for activity recognition.

5 Combining Activity Recognition and Activity Discovery in AD+AR
The use of AD-discovered patterns for activity recognition is shown in Figure 4. Sample
sensor data is shown in the figure that AD uses to find frequent patterns. Instances of the
frequent patterns (in this case, a pattern with the label “Pat_4”) are labeled in the data set in
the same way that other sensor events are labeled with predefined activities (in this example,
Cook and Eat). Features are extracted for the each sliding-window sequence of 20 sensor
events and sent to the AR machine learning model for training. In this case, the activity label
for the last event in the window should be Pat_4. After training, the machine learning
algorithms is now able to label future sensor events with the corresponding label (in this
case the choices would be Cook, Eat or Pat_4).
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To consider how AD and AR can work in partnership to improve activity recognition,
consider the confusion charts shown in Figures 5 a, b and c. These graphs show how the
online SVM classifier performs for the three datasets when only predefined activities are
considered (all sensor events not belonging to one of these activities are removed). We
include a confusion matrix visualization to indicate where typical misclassifications occur
and to highlight how skewed the class distribution is. For each of the datasets, the cooking,
hygiene, and (in the case of B3), work activities dominate the sensor events. This does not
mean that the most time is spent in these activities, they simply generate the most sensor
events. Misclassifications occur among predictably similar activities, such between Sleep
and Bed-toilet and between Bathe and Hygiene.

In contrast, Figures 7 a, b and c show the confusion matrices when all of the sensor data is
considered. In this case, we do not filter sensor events which do not belong to a predefined
class. Instead, we assign them to an “Other” category. The average classification accuracies
in this case are 60.55% for B1, 49.28% for B2, and 74.75% for B3. These accuracies are
computed only for predefined activities, for which we are particularly interested. The
accuracy when the Other class is also considered increases by 15% on average.

As the graphs illustrate, the accuracy performance degrades when the non-labeled data is
included in the analysis. There are a couple of reasons for this change in performance. First,
the Other class dominates the data, thus many data points that belong to predefined activities
are misclassified as Other (this can be seen in the confusion matrix graphs). Second, the
Other class itself represents a number of different activities, transitions, and movement
patterns. As a result, it is difficult to characterize this complex class and difficult to separate
it from the other activity classes.

We hypothesize that in situations such as this where a large number of the data points
belong to an unknown or Other class, activity discovery can play a dual role. First, the
discovered patterns can help understand the nature of the data itself. Second, discovery can
boost activity recognition by separating the large Other class into separate activity classes,
one for each discovered activity pattern and a much-reduced Other class.

To validate our hypothesis, we apply the AD+AR discovery algorithm to our three datasets.
Our goal is to characterize as much of the Other class as possible, so we repeat the AD
discovery-compress process until no more patterns can be found that compress the data.
Table 3 summarizes information about discovered patterns and the amount of data that is
characterized by these patterns. Figure 6 shows three of the top patterns discovered in the B1
dataset. The first two visualized patterns are transition patterns. In the first case the resident
is entering the dining room from the kitchen and next is moving to the bedroom as the
resident gets ready to sleep in the evening. The third pattern represents a stretch of time that
the resident spends in the secondary bedroom. This pattern has a significant length and
number of occurrences but is not a predefined activity, so the pattern occurrences are not
labeled in the input dataset.

In the next step, we use AR to learn models for the predefined activities, the discovered
activities, and the small Other class. The AD program outputs the sensor data annotated with
occurrences of not only the predefined activities but also the discovered activities. This
annotated data can then be fed to AR to learn the models. Figures 8 a, b and c show the
confusion matrices for the predefined and the other classes without discovered patterns. The
accuracies for recognizing the pattern classes are not included for sake of space and to focus
on the ability to recognize the activities of primary interest. Table 4 compares the
recognition results for predefined activities with an Other class and for predefined activities
together with discovered activities and an other class. The improvement due to addition of
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discovered pattern classes is significant (p < 0.01) and is most likely due to the partitioning
of the large Other class into subclasses that are more separable from the predefined
activities.

6 Conclusions and Future Work
In order to provide robust activity-aware services for real-world applications, researchers
need to design techniques to recognize activities in real time from sensor data. This presents
a challenge for machine learning algorithms, particularly when not all of the data belongs to
a predefined activity class.

In this paper we discussed a method for handling this type of online activity recognition by
forming a partnership between activity discovery and activity recognition. In our approach,
the AD activity discovery algorithm identifies patterns in sensor data that can partition the
undefined class and provide insights on behavior patterns. We demonstrate that treating
these discovered patterns as additional classes to learn also improves the accuracy of the AR
online activity recognition algorithm.

While this is a useful advancement to the field of activity recognition, there is additional
research that can be pursued to enhance the algorithms. Although AD processes the entire
data set to find patterns of interest in our experiments, when AD is used in production mode
it will only perform discovery on a sample of the data and use the results to boost AR for
real-time recognition of new data that is received. As a result, we would like to investigate a
streaming version of AD that incrementally refines patterns based on this continual stream
of data. We would also like to design methods of identifying commonalities between
discoveries in different datasets as well as transferring the discovered activities to new
settings to boost activity recognition across multiple environments and residents. By looking
for common patterns across multiple settings we may common patterns of interest that
provide insight on behavioral characteristics for target population groups.

When we look at the patterns that AD discovers, we notice some similarity between some of
the patterns and the predefined activities. However, these occurrences of the predefined
activities are not always correctly annotated in the dataset itself (most often occurrences of
predefined activities are missed). We hypothesize that the AD+AR approach can be used to
identify and correct possible sources of annotation error and thereby improve the quality of
the annotated data as well.

Furthermore, we observe ways in which the AR algorithm itself can be improved. By
making the window size dependent on the likely activities that are being observed the
window size can be dynamic and not reliant upon a fixed value. This is a direction that will
be pursued to make real-time activity recognition more adaptive to varying activities and
settings.

This study is part of the larger CASAS smart home project. A number of CASAS tools,
demos, and datasets can be downloaded from the project web page at http://ailab.wsu.edu/
casas to facilitate use, enhancement and comparison of approaches. Tackling the
complexities of activity recognition in realistic settings moves this project closer to the goal
of providing functional assessment of adults in their everyday settings and providing
activity-aware interventions that sustain functional independence. We also believe that
examining these challenging issues allows us to consider a wider range of real-world
machine learning uses in noisy, sensor-rich applications.
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Fig. 1.
Floorplans for the B1, B2, and B3 testbeds.
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Fig. 2.
Plot of activity occurrences for the three testbeds. The x axis represents time of day starting
at midnight, and the y axis represents a specific day.
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Fig. 3.
Example of the AD discovery algorithm. A sequence pattern (P) is identified and used to
compress the dataset. A new best pattern (pattern P′) is found in the next iteration of the
algorithm.

Cook et al. Page 15

IEEE Trans Cybern. Author manuscript; available in PMC 2013 September 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Flowchart for the AD+AR algorithm.
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Fig. 5.
Confusion charts for the three datasets, shown by raw number of data points classified for
each label (left) and percentage of data points classified for each label (right).
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Fig. 6.
Three top patterns discovered in B1 dataset.
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Fig. 7.
Confusion charts for the three datasets with Other class, shown by raw number of data
points classified for each label (left) and percentage of data points classified for each label
(right).
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Fig. 8.
Confusion charts for the three datasets with discovered patterns and Other class, shown by
number of data points classified for each label (left) and percentage of data points classified
for each label (right).
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TABLE 1

Characteristics of the three datasets used for this study.

Dataset B1 B2 B3

#Sensors 32 32 32

#Days Monitored 202 234 177

#Sensor Events 658,811 572,255 518,759

Activity Occurrences 5,714 4,320 3,361
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TABLE 2

Characteristics of the three datasets used for this study.

Dataset B1 B2 B3 Average

NB 92.91% 90.74% 88.81% 90.82%

HMM 92.07% 89.61% 90.87% 90.85%

CRF 85.09% 82.66% 90.36% 86.04%

SVM 90.95% 89.35% 94.26% 91.52%

IEEE Trans Cybern. Author manuscript; available in PMC 2013 September 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Cook et al. Page 23

TABLE 3

Statistics of patterns found for B1, B2, and B3.

Dataset B1 B2 B3

%Data in Other Class (before compression) 59.45% 66.83% 48.04%

#Discovered patterns 67 45 52

#Pattern clusters 19 18 16

%Data in Other Class (after compression) 4.00% 10.25% 7.05%
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TABLE 4

Recognition accuracy for predefined activities with and without activity discovery.

Dataset B1 B2 B3

No patterns 60.55% 49.28% 74.75%

With patterns 71.08% 59.76% 84.89%
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