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Abstract
Medial temporal lobe (MTL) areas are crucial for memory tasks such as spatial working memory
and temporal association memory, which require an active maintenance of memory for a short
period of time (a few hundred milliseconds to tens of seconds). Recent work has shown that the
projection from layer III neurons in the medial entorhinal cortex (MEC) to hippocampal region
CA1, the temporoammonic (TA) pathway, might be specially important for these memory tasks.
In addition, lesions to the entorhinal cortex disrupt persistent firing in CA1 which is believed to
support active maintenance of memory. Injection of cholinergic antagonists and group I mGlu
receptor antagonists to the MEC impairs spatial working memory and temporal association
memory. Consistent with this, we have shown that group I mGlu receptor activation supports
persistent firing in principal cells of the MEC layer III in vitro (Yoshida et al., 2008). However, it
still remains unknown whether cholinergic receptor activation also supports persistent firing in
MEC layer III neurons. In this paper, we tested this in MEC layer III cells using both ruptured and
perforated whole-cell recordings in vitro. We report that the majority of cells we recorded from in
MEC layer III show persistent firing during perfusion of the cholinergic agonist carbachol (2 – 10
μM). In addition, repeated stimulation gradually suppressed persistent firing. We further discuss
the possible role of persistent firing in memory in general.
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1. Introduction
Much evidence supports the involvement of medial temporal lobe (MTL) structures in tasks
that require active maintenance of memory (duration: a few hundred milliseconds to tens of
seconds) such as working memory, delayed match to sample and trace conditioning both in
humans [1–4] and animals [5–10]. Active maintenance of memory may help association of
temporally separated information which is thought to be necessary for the formation of long-
term episodic and sequential memory [11–13]. In vivo recordings in animals [14–16] and
fMRI in humans [14;15] have revealed persistent activity during the trace or delay period of
memory tasks when information retention is necessary (reviewed in [16]). These indicate
that persistent neural firing may support temporal association by providing a means to retain
necessary information across the temporal gap. However, the specific MTL areas of
importance and underlying mechanisms for persistent firing still remain unknown.

Persistent firing can be supported either by synaptic networks or the mechanisms within
individual neurons (reviewed in [17]). Network based persistent firing was introduced by
classical theoretical work which dates back to Donald Hebb's theory of cell assemblies [18]
or to David Marr's theory of memory [19]. In these theories, synaptic excitation maintains
neuron activity. Another line of studies supports the importance of mechanisms in individual
cells to support persistent firing. This view is supported by the experimental observations of
persistent firing in vitro in multiple areas in the MTL including the entorhinal cortex
[20;21], post-subiculum [22] and perirhinal cortex [23]. In these areas, persistent firing is
supported in individual cells by cholinergic and group I mGlu receptor activation which
leads to the activation of the CAN current (reviewed in [24]).

Persistent firing in vivo has been shown in the EC [25;26], and hippocampal regions CA1
and CA3 [27–31] both in DMS tasks and trace conditioning. It has also been clear that
cholinergic [10;32–34] and/or group I mGlu [35–37] receptor activation is necessary for
performance in these memory tasks. These pharmacological studies are consistent with
single cell mechanisms for supporting persistent firing.

Recently, using mutant mice, Suh et al. [38] showed the specific importance of the
temporoammonic (TA) pathway, the direct projection from layer III of the medial entorhinal
cortex (MEC) to the hippocampal CA1 field, in spatial working memory and temporal
association memory. Although place cells and spatial reference memory were normal in
these mutant mice, they exhibited a deficit in spatial working memory tasks such as the
delayed matching-to-place (DMP) version of the water maze task (delay 30 s) and the
delayed non–matching-to-place (DNMP) version of the T-maze task (delay 15 s). Mutants
also had a deficit in a non-spatial temporal association task such as trace fear-conditioning
with 20 s trace period. They further showed that infusion of a cholinergic receptor antagonist
and a group I mGlu receptor antagonist in MEC layer III was effective in disrupting the task
in control mice but no effect was seen in mutants. This study, therefore, indicated a
particular importance of MEC layer III in active maintenance of memory possibly through
persistent firing supported by individual cells.

Although we have reported that group I mGlu receptor activation supports persistent firing
in principal cells in the MEC layer III, [39] it remains unknown whether cholinergic receptor
activation can support persistent firing in these cells. Therefore, in this study, we tested the
induction of persistent firing in rat MEC layer III cells using in vitro whole cell patch and
perforated patch recordings in the cholinergic receptor agonist carbachol. We show that
persistent firing can be greatly enhanced in carbachol in a dose dependent manner. We
further show that multiple stimulations can gradually terminate persistent firing.
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2. Materials and Methods
2.1 Ruptured whole-cell patch recording

All ruptured whole-cell patch recordings were conducted at Boston University. All
experimental protocols were approved by the Institutional Animal Care and Use Committee
at Boston University. Long-Evans rats (postnatal days 21 to 27; Charles River, Wilmington,
MA) were deeply anesthetized with ketamine/xylazine (95 mg/Kg ketamine and 2.8 mg/Kg
xylazine) through intraperitoneal injection. After the absence of both pedal and tail pinch
reflex was confirmed, ice-cold modified artificial cerebrospinal fluid (ACSF) containing (in
mM) 110 choline chloride, 2.5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, 7 MgCl2, 7
glucose, 3 pyruvic acid and 1 ascorbic acid (pH adjusted to 7.4 by saturation with 95% O2 -
5% CO2) was intracardially perfused. The brain was then removed from the cranium and
placed in ice-cold modified ACSF. 350 μm-thick slices were cut horizontally using a
Vibroslicer (World Precision Instruments, Sarasota, FL, USA). Slices were transferred to a
holding chamber, where they were kept submerged at 30 degrees for 30 min and then at
room temperature at least 30 more min before recording. The holding chamber was filled
with ACSF containing (in mM) 124 NaCl, 3 KCl, 1.25 NaH2PO4, 26 NaHCO3, 1.6 CaCl2,
1.8 MgSO4, 10 glucose (pH adjusted to 7.4 by saturation with 95% O2 - 5% CO2).

Slices were transferred to a submerged recording chamber and superfused with ACSF,
maintaining the temperature in between 34 to 36 °C for recordings. Patch pipettes were
fabricated from borosilicate glass capillaries by means of a P-87 horizontal puller (Sutter
Instrument, Novato, CA, USA). Patch pipettes were filled with intracellular solution
containing (in mM) 120 K-gluconate, 10 HEPES, 0.2 EGTA, 20 KCl, 2 MgCl, 7
phosphocreatine-diTris, 4 Na2ATP, 0.3 TrisGTP and 0.1 % biocytin (pH adjusted to 7.3
with KOH). When filled with this solution, the patch pipettes had a resistance of 3–5 MΩ
Slices were visualized with an upright microscope (Zeiss Axioskop 2), equipped with a ×40
water-immersion objective lens, and a near-infrared charge-coupled device (CCD) camera
(JAI CV-M50IR, San Jose, CA, USA). Tight seals (>1 GΩ) were formed on cell bodies and
the membrane was ruptured with negative pressure. Current-clamp recordings were made
with a Multi Clamp 700B amplifier (Axon Instruments, Foster City, CA, USA). Signals
were lowpass filtered at 5 kHz or 10 kHz and sampled at 10 kHz or 20 kHz, respectively,
using Clampex 9.0 software (Axon Instruments, Foster City, CA, USA). A liquid junction
potential of 10 mV was not corrected. All whole-cell recordings were performed in the
presence of synaptic blockers to suppress ionotropic glutamatergic and GABAergic synaptic
transmission by using kynurenic (2 mM) acid and picrotoxin (100 μM).

Stock solutions of carbachol (10 mM, in water) was prepared and diluted more than a
thousand times in the ACSF. Kynurenic acid and picrotoxin were directly dissolved in the
ACSF. Chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Tocris
Bioscience (Ellisville, MO, USA).

2.2 Perforated whole-cell patch recording
All perforated patch recordings were performed at McGill University. All experimental
procedures were approved by the McGill University Animal Care Committee and were in
compliance with the guidelines of the Canadian Council on Animal Care. Long-Evans rats
from young (P12) to adult (6 to 7 weeks old) ages were anesthetized with ketamine:xylazine
cocktail (60:5 mg/kg), and intracardially perfused with ice-cold modified ACSF containing
(in mM) 110 choline chloride, 1.25 NaH2PO4, 25 NaHCO3, 7 MgCl2, 0.5 CaCl2, 2.5 KCl, 7
glucose, 3 pyruvic acid, and 1.3 ascorbic acid. Horizontal slices (350 μm) were obtained
using a VT1000 tissue slicer (Leica) with the same modified ACSF. Slices were transferred
to a holding chamber, where they were kept submerged for ~1 h at room temperature (22
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°C) before recording. The holding chamber was filled with ACSF consisting (in mM) 125
NaCl, 1.25 NaH2PO4, 25 NaHCO3, 2 MgCl2, 1.6 CaCl2, 2.5 KCl, 10 glucose, 3 pyruvic
acid, and 1.3 ascorbic acid. ACSF was constantly bubbled with carbogen (95% O2-5%
CO2).

Slices were transferred to a submerged recording chamber and superfused with ACSF.
Slices were visualized with an upright microscope Axioskop (Zeiss, Oberkochen, Germany)
equipped with a x63 water immersion objective and differential contrast optics. A near-
infrared charged-coupled device (CCD) camera (Sony XC-75) was used to visualize the
neurons.

Layer III medial entorhinal neurons selected for recording using layer II and lamina
dissecans as references and were filled with biocytin for later identification. The cells were
recorded using the current-clamp technique at 33 ± 1°C with an Axopatch 1D amplifier and
Clampex 8.0 recording software (Axon Instruments, Foster City, CA). Whole cell recordings
were performed using the perforated-patch technique. Perforated patch was obtained using
amphotericin-B (175–200 μg/ml) [40]. Intracellular pipette solution was identical to that in
the ruptured whole-cell patch method above. Drugs and chemicals were purchased from
Sigma (St. Louis, MO).

Patch pipettes (5–7 MΩ) were pulled using a Sutter P-97 horizontal puller (Sutter
Instrument, Novato, CA). Tight seals (>5 GΩ) were obtained by applying constant negative
pressure. Electrical access to the cell was obtained by waiting ~30 min for amphotericin-B
to attain a stable access resistance (perforated-patch configuration). Bridge correction was
performed using the built-in circuit of the amplifier. Sampling rate was 20 kHz and the low-
pass filter was set at 5 kHz. All recordings were performed in the presence of the same
synaptic blockers as in the ruptured whole-cell patch recording (kynurenic (2 mM) acid and
picrotoxin (100 μM)).

2.3 Data analysis
Clampfit 9.0 (Axon Instruments, Foster City, CA, USA) and Matlab (MathWorks, Natick,
MA, USA) were used for data analysis. The latency of persistent firing was measured as the
time from the offset of the stimulation and the first spike of persistent firing. The frequency
of persistent firing was measured as an average firing frequency of the neuron during the
period between 10 and 20 s after the termination of the current injection. The membrane
potential difference after stimulation was measured as the difference between an average
membrane potential during the same period (10 to 20 s) and the baseline membrane potential
which was measured as an average of the membrane potential during the period between 1
and 5 s before current injection.

Significance levels were evaluated using paired and unpaired T-tests for comparisons
between two groups. Comparisons of more than two groups were performed by either a one-
way or repeated measures ANOVA followed by Tukey post-hoc tests. Significance level <
0.05 (ns: not significant, *: P < 0.05, **: P < 0.01, ***: P < 0.001) was used. Data are
expressed as means ± SEM.

2.4 Identification of anatomical location
Locations of the cells were confirmed by biocytin staining or photos taken after recordings
with the pipette still attached to the cell through the low magnification objective lens which
was enough to approximate anatomical location of the cell. Figure 1A shows an example of
a biocytin stained neuron in the MEC layer III. Figure 1B shows another example with a
higher magnification in which pyramidal morphology can be seen.
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3. Results
3.1 Cholinergic receptor agonist supports persistent firing

We first tested induction of persistent firing using ruptured whole-cell patch clamp
recordings. After obtaining stable recording, the membrane potential was adjusted to just
below spike threshold in all conditions prior to testing the induction of persistent firing. This
enabled us to compare persistent firing from equal conditions in different neurons and
different experimental conditions. Induction of persistent firing was then tested by applying
a current step (50 pA, 2 s) which mimics an afferent input signal.

In the control condition in normal ACSF with synaptic blockers, an injection of current step
(50 pA, 2 s) induced spiking in the theta domain (9 – 13.5 Hz). Following the termination of
the stimulation, 8 out of 14 cells showed no spikes or fewer than 6 spikes in the 30 s period
after the stimulation (Fig. 2A). We categorized these responses as no persistent firing
response since the firing of these cells was not repetitive. In the rest of the cells (6 cells), the
membrane potential gradually depolarized after the offset of the stimulation and persistent
repetitive firing with a very low frequency was observed (more than 6 spikes in the 30 s
period; Fig. 2B). The latency of the persistent firing was on average 4.28 ± 1.55 s (Fig. 2G),
and the frequency of persistent firing in 6 cells that showed persistent firing was 0.43 ± 0.14
Hz (range: 0.4 – 1.4 Hz) and was 0.28 ± 0.12 Hz as an average of all 14 cells tested (Fig.
2H). The depolarization during persistent firing in the 6 cells that showed persistent firing
was 2.05 ± 0.47 mV and 0.52 ± 0.33 mV as an average of all 14 cells (Fig. 2F). These agree
with our previous observation of low-frequency persistent firing in the absence of
cholinergic agonist [39].

Using 11 cells out of the 14 cells discussed above, we tested the effect of relatively low
concentration of cholinergic receptor agonist carbachol (2 – 5 μM; L-Cch). In this condition,
the same stimulation induced persistent firing in the majority of cells (91%; 10 out of 11
cells; 6 out of 7 cells in 2 μM, and 4 out of 4 cells in 5 μM carbachol; Fig. 2C and D). In
these cells, persistent firing lasted more than 30 s. We call this type of response long-lasting
persistent firing. The average frequency of long-lasting persistent firing was 5.00 ± 0.85 Hz
and average depolarization during persistent firing was 8.34 ± 1.20 mV. In the remaining
cell (1 cell) persistent firing was not observed. On average, although the latency of persistent
firing was not significantly different from the control condition (3.53 ± 1.69 s; n = 10;
Tukey post-hoc test, p > 0.05; Fig. 2G), the frequency of persistent firing (4.54 ± 0.90 Hz; n
= 11; Tukey post-hoc test, p < 0.001, Fig. 2H) and depolarization during persistent firing
(7.62 ± 1.31 mV; n = 11; Tukey post-hoc test, p < 0.001; Fig. 2I) were both significantly
higher than the levels in the control condition.

We further tested a higher concentration of carbachol (10 μM; H-Cch) in an additional 23
cells. The same stimulation induced long-lasting persistent firing in 83 % (19 out of 23) of
cells tested (Fig. 2E). The average frequency of long-lasting persistent firing was 5.60 ±
0.40 Hz and average depolarization during persistent firing was 9.82 ± 0.61 mV. Two cells
(9 %) showed persistent firing which terminated by itself before reaching 30 s and repeated
clustered firing as shown in Fig. 2F (self-terminating persistent firing). The rest of the cells
(2 cells) showed no persistent firing. In this condition, the latency of persistent firing (0.03 ±
0.0034 s; n = 21) was significantly shorter than the control condition (Tukey post-hoc test, p
< 0.001) and low carbachol conditions (Tukey post-hoc test, p < 0.05; Fig. 2G). The
frequency of persistent firing (6.54 ± 0.48 Hz; n = 23) was also significantly higher than that
in the control (Tukey post-hoc test, p < 0.001) and the low carbachol conditions (Tukey
post-hoc test, p < 0.05; Fig. 2H). The depolariation during persistent firing (7.62 ± 1.31 mV;
n = 23) was significantly higher than that in the control condition (Tukey post-hoc test, p <
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0.001) but was not different from the low carbachol condition (Tukey post-hoc test, p >
0.05; Fig. 2I).

To address the stability of long-lasting persistent firing (n = 19), the recording was
continued for a longer period of time in this condition (50 s). As shown in Fig. 2J, frequency
of persistent firing was in general stable over a 50 s recording period, with some exceptions
where the frequency went down during the first 10 – 20 s.

These observations indicate that cholinergic receptor activation via carbachol greatly
increases the percentage of cells that show persistent firing and the frequency of persistent
firing in MEC layer III cells. In addition, persistent firing is stable for more than 30 s in the
majority of cells.

3.2 Persistent firing with perforated patch clamp method
We next tested the induction of persistent firing using perforated whole-cell patch clamp
recordings. Since this method keeps the chemical components of the cytoplasm intact, the
recording condition is closer to the physiological condition compared to the ruptured whole-
cell patch clamp method [41]. In the control condition in normal ACSF with synaptic
blockers, 89 % (8 out of 9 cells) showed no persistent firing (Fig. 3A) and 11 % (1 out of 9
cells) showed persistent firing with a very low frequency (1 Hz).

Similar to the case of ruptured whole-cell recording, low concentrations of carbachol
induced long-lasting persistent firing (4 out of 4 in 2.5 μM; 4 out of 4 in 5 μM; Fig. 3B)
Compared to the control condition, both the frequency (unpaired T-test, p < 0.001; Control:
n = 9, L-Cch: n = 8) and depolarization during persistent firing (unpaired T-test, p < 0.001;
Control: n = 9, L-Cch: n = 8) increased significantly in carbachol (Fig 3C and D). These
results indicate that persistent firing can be induced in MEC layer III cells using the
perforated patch technique and carbachol significantly promotes persistent firing as in the
whole-cell patch method. This suggests that persistent firing observed in ruptured whole-cell
patch methods is not due to dilution of the cytoplasm.

3.3 Repeated stimulation suppresses persistent firing
In an in vivo condition, a neuron may receive similar stimulation multiple times. Repeated
stimulation tested in vitro has been shown to facilitate persistent firing in MEC layer V
neurons [21] and to terminate persistent firing in lateral entorhinal cortex layer III neurons
[42]We tested repeated current injection (amplitude 10 to 100 pA; duration 1 to 4 s) using
perforated patch recordings (n = 6). Interestingly, while the first stimulation consistently
evoked persistent firing, subsequent repeated application of the same current steps
consistently suppressed persistent firing (Fig. 4A). Figure 4B – D show latency, frequency
and depolarization of persistent firing for 6 cells with repeated stimulation. The latency of
persistent firing increased (Fig. 4A), the frequency of persistent firing decreased as the
stimulation was repeated to almost 0 Hz after the 4th stimulation (Fig. 4C). The plateau
potential also decreased with repeated stimulation (Fig. 4D).

These results suggest that repeated input to these neurons may be able to gradually decrease
the frequency of persistent firing.

4. Discussions
The entorhinal cortex has been shown to be crucial for memory tasks that involve
association of temporally separated information. For example, lesions to the entorhinal
cortex impair trace-conditioning in rabbits [10;43]. Motivated by the recent finding that the
temporoammonic pathway from the MEC layer III to CA1 input is crucial for tasks that
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involve short-term information retention [38], we tested the induction of persistent firing in
MEC layer III principal neurons. We found that persistent firing is observed in a majority of
cells when cholinergic receptors are activated with carbachol. We demonstrated that
persistent firing can be induced both in ruptured and perforated patch recordings with a
carbachol concentration as low as 2 μM. We further showed that repeated stimulation may
gradually inhibit persistent firing. These observations indicate that cholinergic receptor
activation supports persistent firing in MEC layer III cells.

4.1 Comparison to persistent firing observed in other areas in vitro
In in vitro preparations of the EC, similar persistent firing has been reported in MEC layer II
[20;44], layer V [21;45] and in lateral EC (LEC) layer III [42] neurons in the presence of the
cholinergic receptor agonist carbachol. In addition, we have shown that activation of group I
mGlu receptors by an agonist or by synaptic stimulation supports persistent firing in MEC
layer III cells [39]. However, it is still unknown whether persistent firing can be supported
through cholinergic receptor activation in MEC layer III cells. Our current study is therefore
the first to report such persistent firing. Together with our previous study [39], our data
suggest that persistent firing in individual MEC layer III neurons can be supported both
through cholinergic and group I mGlu receptors.

Induction of persistent firing through both cholinergic and group I mGlu receptors is
supported by intracellular mechanisms. In vitro studies using brain slices from the MTL
areas have indicated that the following steps are involved in the induction of persistent firing
under cholinergic receptor activation: (1) calcium influx to the cell, (2) activation of
phospholipase Cβ (PLCβ), and (3) activation of the calcium activated non-specific cationic
(CAN) current [21–23;42;46]. The CAN current is shown to be mediated by transient
receptor potential cation (TRPC) channels [46;47], reviewed in [24] which can be activated
both through muscarinic cholinergic receptor activation and through group I mGlu receptor
activation [48–52]. This is consistent with the fact that tasks that require active maintenance
of memory are impaired by the blockade of both cholinergic receptors and group I mGlu
receptors [38].

4.2 Distinct properties of persistent firing in MEC layer III cells
In this study, MEC layer III cells showed persistent firing with low firing frequency even in
normal ACSF in a subset of cells (Fig. 2). This is in agreement with our previous report
where similar persistent firing with a low frequency was observed in the presence of the
muscarinic receptor antagonist atropine without cholinergic or group I mGlu receptor
agonists [39]. As discussed in our earlier paper, this could be because a small amount of the
CAN current may be activated solely by the increase in intra-cellular calcium [48] due to
spiking during current injection. Such persistent firing has not been reported from other
areas of the EC without cholinergic agonist: MEC layer II [22;44] and V [21] cells and LEC
layer III cells [42]. MEC layer III neurons have a high input resistance compared to other
types of neurons in the EC (76.9 ± 20.1 MΩ; [53–55]) and very little or no voltage `sag' is
observed at the soma of these cells indicating less membrane potential damping by the
hyperpolarization-activated cation current compared to other entorhinal neurons [53].
Relatively high excitability due to these properties may enable the small amount of CAN
current activated in the absence of the cholinergic agonist to depolarize the membrane
potential of these cells sufficiently to induce persistent firing. MEC Layer III cells,
therefore, could be more prone to induction of persistent firing compared to cells from other
layers of the MEC. In addition, the percentage of cells with persistent firing in carbachol (83
– 100 %) was one of the highest among different MTL areas: 67 % in MEC layer II
(unpublished observation by Yoshida, Jochems and Hasselmo), 84 – 98% in MEC layer V
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cells [21] and 79 – 84 % in the postsubiculum [22], Therefore, MEC layer III cells seem to
have a low threshold for persistent firing and are prone to persistent firing.

Previous reports which tested repeated excitatory stimulation showed a gradual increase in
firing frequency in MEC layer V [21] and complete termination of persistent firing by the
second application of stimulation in LEC layer III neurons [42]. Our observation added a
novel type of response where frequency of persistent firing gradually decreased with the
repetition of identical excitatory stimulation. Although we did not test the mechanisms
underlying the gradual decrease in the frequency of persistent firing, activation of calcium
activated potassium current such as the large conductance calcium-activated (BK) channels
may underlie the suppression [56]. This gradual suppression may serve several purposes.
First, multistability of the firing rate of the persistent firing may allow neurons to code
multiple memories using different firing rates, rather than using only `on' and `off' states.
Such rate coding may increase the information which can be maintained by a limited
number of cells. Second, gradual suppression might be used as a means to integrate repeated
input. While the MEC layer V cells integrate repeated excitatory input as a positive increase
in frequency of persistent firing [21], layer III cells may hold the same information as a
decrease in firing. This, in theory, will enable layer III and layer V of the MEC to code
novel and familiar information, respectively. Consider that the same stimulation activates a
group of cells both in layer III and V. When this stimulation is given for the first time, layer
III cells will be firing with a high frequency while layer V cells will be firing with a low
frequency, resulting in a strong representation of the novel signal in the layer III. However,
as this stimulation is repeated and becomes familiar, the layer V cells will code this with a
higher frequency than the layer III cells do, resulting in a stronger representation of a
familiar signal in the layer V. Therefore, a novel stimulus might be coded by the layer III
initially and it could be gradually shifted to the layer V as this stimulus becomes more
familiar. Third, the reduction of persistent firing frequency following subsequent excitatory
stimulation could serve as a mechanism for implementing grid cell firing [57]. The
theoretical framework for grid cell firing using graded persistent firing cells was described
earlier by us [58–60] and this can be extended to graded persistent firing cells that reduce
firing frequency upon subsequent stimulation. In the original framework, different graded
persistent firing cells start out with the same baseline frequency of persistent firing and
provide convergent input to a grid cell. The grid cell will fire when the inputs are in
synchrony. Speed modulated head direction input to different graded persistent firing cells
will alter the frequency of the graded persistent firing cells and thus also the phase of firing.
A reduction in firing frequency of a graded persistent firing cell, following depolarizing
input from head direction cells, can also support synchronization and desynchronization of
multiple graded persistent firing cells. These graded persistent firing cells provide their input
to a grid cell and thereby form grid cell firing.

4.3 Functional relevance of persistent firing in the MEC layer III
During trace-conditioning, the entorhinal cortex shows persistent firing similar to that
observed in the hippocampus [61]. Persistent firing can also be found in the EC during the
memory delay phase of delayed matching and nonmatching-to-sample tasks (DMS and
DNMS tasks; [25;26]). The frequency of persistent firing observed in our study with the low
concentration of carbachol (2 to 5 μM) is in agreement with that recorded in vivo (typically
0.5 – 4 Hz) in rat entorhinal neurons [25]. Moreover, lesions to the entorhinal cortex disrupt
persistent firing in hippocampal region CA1 [43]. Cholinergic receptor blockade by
scopolamine in the entorhinal cortex disrupts trace-conditioning [10] and cholinergic
deafferentation of the entorhinal cortex impairs DNMS tasks with novel stimuli [32]. These
findings are consistent with the idea that EC is important for active maintenance of memory
and that persistent firing and cholinergic receptor activation may underlie this function.
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Our observation is also in agreement with the idea that the MEC could serve as a temporal
memory buffer [11]. Modeling studies have shown that temporally separated input signals
could be maintained in the temporal buffer in the entorhinal cortex through persistent firing
of groups of cells, and this could enable the hippocampus to associate these signals [60; 62].
Our observation provides the first evidence that the projection neurons from MEC layer III
to the CA1 pyramidal cells support long-lasting persistent firing in the presence of the
cholinergic agonist carbachol. Acetylcholine levels in the brain are higher during active
waking and acetylcholine is believed to support memory encoding in the hippocampus [63].
Our findings thus suggest that during encoding, MEC layer III neurons can strongly support
a temporal buffer function. An association of temporally separated signals may then be
supported by hippocampal region CA1 which has been shown to be crucial for formation of
associations across short delays between items [8;64;65].

Persistent firing may be supported by either network or intrinsic activity [17]. Since our
recordings were performed in the presence of ionotropic synaptic blockers, our observations
suggest that persistent firing observed in this study is supported by mechanisms intrinsic to
cells as in other in vitro studies of persistent firing in the EC [20;21;42]. However, our data
does not eliminate the possibility that ionotropic synaptic network can also support
persistent firing. In fact, it has been shown that short-lasting plateau potentials (the UP state)
during slow-wave-oscillation-like activity observed in the in vitro EC preparation depends
on ionotropic synapses [64 – 66]. However, it should be noted that the duration of an UP
state is 1 – 3 s [66]. This duration is much shorter than the persistent firing we observed (>
30 s) and the memory retention period in many memory tasks that require active
maintenance of memory. In addition, while working memory and temporal association
memory rely on intact cholinergic and group I mGlu receptor activation, it is not clear
whether the ionotropic network origin of persistent firing could be supported by these
receptors. In fact, cholinergic agonists in general suppress synaptic transmission [67–69]
which will not support network based persistent firing.

Suh et al. [38] showed that the projection from MEC layer III to hippocampal region CA1 is
necessary for encoding but not for recall after the animals has acquired a trace conditioning
task. This is in accordance with the idea that the MEC serves as a temporal buffer for
encoding as mentioned above. Interestingly, novel but not familiar stimuli increase
acetylcholine levels in the hippocampus [70]. Persistent firing in trace conditioning studies
is observed during the initial phase of learning but it disappears once the animal has
acquired the task in hippocampal CA1 neurons [71]. These findings are consistent with the
idea that persistent firing supported by cholinergic activation is the key for obtaining the
association and once the association is obtained, the task does not rely on persistent firing.
However, it may not be the case in other memory tasks where animals need to retain some
information even after the acquisition of the tasks. For example, in a spatial working
memory task, an intact hippocampus is required even after training [72].

Suh et al., [38] showed that the projection from region CA3 to region CA1 is not critically
important for the trace conditioning task. This may indicate that the EC-CA1 pathway plays
a more important role in short-term memory, as many other studies support the importance
of region CA1 for encoding associations across short delays [8;64;65]. However, studies
also support the role of CA3 in memory tasks such as spatial working memory [73] and
sequential nonspatial memory [65]. In addition, persistent firing is observed in region CA3
in vivo as well [27;74]. We have recently shown that region CA3 pyramidal cells support
persistent firing at a single cell level similar to current observation of persistent firing in EC
layer III neurons in vitro [75]. It could be that region CA3 is involved when the task
involves a spatial or sequential component in addition to an active maintenance of memory.
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4.4 Concluding remarks
We have reported persistent firing supported by a cholinergic receptor activation in a single
cell level in MEC layer III cells. This persistent firing may support active maintenance of
memory in working memory and temporal association tasks that were recently shown to
depend on the output of these cells [38]. The cholinergic dependency of these tasks supports
single cell level persistent firing over the network based persistent firing as the mechanism
for active maintenance of memory. Blockade of persistent activity may impair encoding into
long-term memory [11]. This could contribute to the impairment of encoding of episodic
memories caused by muscarinic cholinergic antagonists such as scopolamine [76;77]. In
addition, this cholinergic modulation of the persistent firing property might support
switching between encoding and consolidation functions of the MTL [16;63].
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Research Highlights

• We report persistent firing in MEC layer III cells in vitro.

• Cholinergic stimulation increases the fraction of cells that show persistent firing.

• Repeated stimulation gradually suppresses persistent firing.

• Persistent firing in MEC layer III may help temporal association tasks.
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Figure 1.
Location and morphology of MEC layer III neurons from which recordings were obtained.
(A) A low magnification image showing a biocytin stained MEC layer III neuron (arrow).
Dotted lines indicate the upper and the lower borders of the layer III. Sub: subiculum, PrS:
presubiculum, PaS: parasubiculum, LEC: lateral entorhinal cortex. (B) A higher
magnification image showing another example of biocytin stained MEC layer III neuron.
Typical pyramidal cell morphology can be seen.
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Figure 2.
Cholinergic receptor agonist supports persistent firing. A, An example of no persistent firing
response of MEC layer III neuron in normal ACSF. The upper trace shows membrane
potential and the lower graph shows frequency of firing. A current injection (2 s, 50 pA;
shown in F, bottom trace) drove spiking during stimulation but did not induce persistent
firing. B, An example of a low-frequency long-lasting persistent firing in ACSF. C–E,
Examples of long-lasting persistent firing in 2, 5, and 10 μM carbachol (Cch) respectively.
F, An example of repetitive clustered firing in Cch (10 μM). G, Latency to the onset of
persistent firing in different pharmacological conditions. One way ANOVA test, F(2, 36) =
12.45, p < 0.001. H, Frequency of persistent firing in different pharmacological conditions.
One way ANOVA test, F(2, 45) = 36.82, p < 0.001. I, Plateau potential in different
pharmacological conditions. One way ANOVA test, F(2, 45) = 36.3, p < 0.001. J, Average
persistent firing frequency from different time intervals. Repeated measures ANOVA test,
F(4, 72) = 7.647, p < 0.001.
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Figure 3.
Persistent firing recorded with perforated patch clamp method. A, An example of no
persistent firing response in normal ACSF. A current injection (1 s, 100 pA; shown in B,
bottom trace) drove spiking during stimulation but did not induce persistent firing. B, An
example of long-lasting persistent firing induced in Cch (2.5 μM). C, Frequency of
persistent firing in different pharmacological conditions. D, Plateau potential in different
pharmacological conditions.
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Figure 4.
Repeated stimulation suppresses persistent firing. A, An example of persistent firing during
repeated stimulations. From top to bottom, traces show the membrane potential, the firing
frequency and the injected current. B – D, Latency, frequency and plateau potential of
persistent firing of individual cells after repeated stimulation. These recordings were
performed with perforated patch clamp method.
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