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Abstract
We consider the problem of variable selection for monotone single-index models. A single-index
model assumes that the expectation of the outcome is an unknown function of a linear
combination of covariates. Assuming monotonicity of the unknown function is often reasonable,
and allows for more straightforward inference. We present an adaptive LASSO penalized least
squares approach to estimating the index parameter and the unknown function in these models for
continuous outcome. Monotone function estimates are achieved using the pooled adjacent
violators algorithm, followed by kernel regression. In the iterative estimation process, a linear
approximation to the unknown function is used, therefore reducing the situation to that of linear
regression, and allowing for the use of standard LASSO algorithms, such as coordinate descent.
Results of a simulation study indicate that the proposed methods perform well under a variety of
circumstances, and that an assumption of monotonicity, when appropriate, noticeably improves
performance. The proposed methods are applied to data from a randomized clinical trial for the
treatment of a critical illness in the intensive care unit.
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1. Introduction
Linear regression is a simple and commonly-used technique for assessing relationships of
the form y = βT x + ε between an outcome of interest, y, and a set of covariates, x1, …, xp;
however, in many cases, a more general model may be desirable. As noted by [1], one
particularly useful and more general variation of the linear regression formulation is the
single-index model

(1)

where xi’s are subject-specific covariate vectors, β = (β1, …, βp)T, yi ∈ ℝ, η is an unknown
function, ε1, …, εn are iid errors with mean zero and variance σ2, and εi’s and xi’s are
independent. To ensure identifiability, no intercept is included, and β1 is assumed to be
equal to 1. These models are able to capture important features in high-dimensional data,
while avoiding the difficulties associated with high-dimensionality, as dimensionality is
reduced from many covariates to a univariate index [2]. Single-index models have
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applications to a number of fields, including discrete choice analysis in econometrics and
dose-response models in biometrics [1].

There is a rich literature on estimation of β and η, including [1], [2], [3], [4], [5], [6], among
many others. Additionally, variable selection for single-index models was considered by [7],
who proposed the separated cross-validation method, and [8], who applied the smoothly
clipped absolute deviation (SCAD) approach to partially linear single-index models.
However, little consideration has been given to such problems for monotone single-index
models, where η is required to be non-decreasing (or non-increasing). In the case of linear
models, a great many authors, including [9], [10], [11] and [12] have considered variable
selection via penalized least squares, which allows for simultaneous selection of variables
and estimation of regression parameters. Several penalty functions, including the SCAD
[10], the adaptive LASSO [11] and the adaptive elastic-net [12], have been shown to possess
favorable theoretical properties, including the oracle properties; that is, consistency of
selection and asymptotic normality, with the asymptotic covariance matrix being the same as
that which would be obtained if the true underlying model were known. Hence, for large
samples, oracle procedures perform as well as if the true underlying model were known in
advance. Furthermore, [8] established the oracle properties for the SCAD for partially linear
single-index models. Given the desirable properties of the SCAD, adaptive LASSO and
adaptive elastic-net approaches, it is natural to consider the extension of these methods to
monotone single-index models. Unlike the adaptive LASSO and adaptive elastic-net, which
present a convex optimization problem, the SCAD optimization problem is non-convex, and
thus more computationally demanding [13]. In addition, the adaptive elastic-net and SCAD
methods require the selection of two tuning parameters, whereas the adaptive LASSO
requires the selection of a single tuning parameter. Therefore, for convenience,
computational efficiency, and because covariates in our example data are not highly
correlated (a condition under which the adaptive elastic-net is especially good), we consider
adaptive LASSO penalized least squares estimation of β in monotone single-index models.

The assumption of monotonicity and the desire to select a subset of the covariates are
motivated in part by the randomized clinical trial data considered in [14]. A monotonicity
assumption is often reasonable, and such an assumption may improve prediction and
reduction in model complexity, while also allowing for more straightforward inference.
Foster et al. [14] consider methods for subgroup identification in randomized clinical trial
data. In such cases, should a subgroup be identified, it is desirable that this subgroup be
easily described, and depend on only a small number of covariates. Application of the
methods proposed in this paper result in estimates η̂ and β̂, such that ŷi = η̂(β̂T xi), where η̂

is monotone and β̂ generally includes a number of zero values. Using this model, one can
classify individuals with ŷ’s beyond some predefined threshold, c, as being in the subgroup.
Then, because of the monotonicity of η̂, the predefined threshold can be converted into an
equivalent threshold, c′, on β̂T x, and the impact of the chosen covariates on subgroup
membership can be easily described. Without the assumption of monotonicity, the subgroup
may be a collection of several disjoint subregions of the covariate space, making each
covariate’s impact on subgroup membership more difficult to ascertain.

The remaining sections of this article are as follows. In Section 2, we consider penalized
least-squares estimation for monotone single-index models, briefly discuss asymptotics, and
discuss a method to obtain standard error estimates for β. In Section 3, we present the results
of a simulation study implemented to assess the performance of the adaptive LASSO
penalized single-index models. In Section 4, we briefly discuss the application of this
method to the randomized clinical trial data, and in Section 5, we give concluding remarks.
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2. Estimation for monotone single index models
Our estimation procedure iterates between estimation of β and η until convergence. Given
some η, the penalized least-squares estimator of β can be found by minimizing

(2)

where wj, j = 2, …, p are known weights and covariates xi are standardized to have mean
zero and variance 1. Due to the identifiability constraint specified in model (1), β1 is not
penalized. Following [11], we choose wj = |β̂init;j|−γ for γ > 0, where β̂init is a nα-consistent
estimator of β, where . We use linear ordinary least squares (OLS) estimates for β̂init,
as under the assumptions of Theorem 2.1 in [15], these are shown to be -consistent up to
a multiplicative scalar. Once obtained, β̂init is rescaled by β̂1,init. Alternatively, weights could
be defined using the unpenalized single-index model estimates of β.

For a given β, without considering the monotonicity constraint, η can be estimated at some
point t using the Nadaraya-Watson kernel-weighted average:

(3)

where X is the covariate matrix, K is a fixed kernel function and h is a bandwidth. Note that,
when β is known, η̂ is determined by h, so a value of h must be chosen. We consider kernel
functions which are symmetric probability densities. For numerical stability, we hold (3)
fixed for all t outside the range of the βT x’s. That is, η̂(t) = η̂(mini(βT xi)) if t < mini(βT xi)
and η̂(maxi(βT xi)) if t > maxi(βT xi).

Combining (2) and (3), the adaptive LASSO estimator for β is obtained by minimizing

(4)

with respect to β, where  denotes summation over i such that the denominator in the
kernel estimator is not too close to zero. Details can be found in [1]. With the inclusion of
the penalty term in (4), β̂ becomes a function of λn, so in addition to h, a value of λn must be
chosen if β̂ is to be obtained. Throughout this paper, we refer to the method of estimating β
and η without a monotonicity constraint, using objective function (4), as the unconstrained
approach.

2.1. A smooth monotone function estimate for η with fixed β
There are a variety of ways to obtain smooth monotone regression function estimates,
including quadratic B-splines [16], I-splines [17], empirical distribution tilting [18], the
scatterplot smoothing approach of [19], and the kernel-based approach of [20] and [21]. We
consider the kernel-based method of the latter two papers, which we briefly describe below.

Assume β is known. The proposed monotone estimator η̂m requires two steps:
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Isotonization—This step involves the application of the pooled adjacent violator
algorithm (PAVA) [22]. Using (βT xi, yi) ordered by increasing βT xi as data, PAVA
produces monotone estimates m̂1, …, m̂n, which are averages of yj’s near i (unless y’s are
already monotone, in which case m ̂i = yi), and which are not necessarily smooth [19].

Smoothing—Apply the kernel estimator (3) with yi replaced by m̂i for all i to estimate η.
That is, η̂m(t) = η̂(t; β, m̂, X, h).

Since m̂1, …, m̂n are monotone, the resulting function estimate is monotone in t. It is worth
noting that this may not necessarily be the case for other smoothing methods, such as local
linear regression.

As previously mentioned, a bandwidth is needed to estimate η, and can be found using
cross-validation; however, our algorithm requires estimation of both η and its derivative η′,
so care must be taken. In particular, to ensure good algorithmic convergence, it is crucial
that η̂′ be smooth, but to obtain a smooth estimate of η′, it is often necessary to oversmooth
η. Thus, we restrict the range of potential bandwidths in our cross-validation. Specifically, h
is restricted to be between 0.1*sd(Xβ) and sd(Xβ), as values in this range were found to
perform well in our simulations.

2.2. Estimation for β with fixed η
The shooting algorithm proposed by [23] has been shown to perform well in solving LASSO
penalized least-squares problems for linear models [24]. Therefore, we consider the
application of this algorithm to LASSO problems for the single-index model. One way to
achieve this is to employ a linear approximation via Taylor series expansion of η(βT xi)

about , where β0 is known. We define the linear approximation as follows:

(5)

Let

and

Then we have

and (4) can be approximated by
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(6)

which is a LASSO penalized least-squares problem for the linear model, and can thus be
solved using the shooting algorithm.

Note that (5) involves an estimate of η′. This estimate is obtained as follows. Sort the

observations by increasing , and define new data {(x̃i, ỹi) :, i = 1, …, n − 1} where

, and . This new data should “look like” data coming
from the model ỹi = η′(βT xi) + ε̃i, so η′(t) can be estimated using (3), but with {(xi, yi) : i =
1, …, n} replaced by {(x̃i, ỹi) : i = 1, …, n − 1}, i.e. η̂′(t) = η̂(t; β, ỹ, X̃, h̃), where h̃ is a new
bandwidth for the derivative estimate. To select h̃, cross-validation can again be used.

2.3. Algorithm
The algorithm to obtain final estimates of η and β iterates between the steps in Sections 2.1

and 2.2 until convergence. After k iterations, let β̂(k),  and  denote the current
estimates of β and η and the current PAVA estimates respectively. For a given λn, the “final”
estimates of β and η are obtained as follows:

1. Using data {(β̂(k)T xi, yi) : i = 1, …, n}, apply PAVA to obtain new monotone data

, and define the monotone function estimate 
using (3). Select h via a grid search on values {0.1*sd(Xβ̂(k)), 0.2*sd(Xβ̂(k)), …,
sd(Xβ̂(k))} using leave-one-out cross-validation. For computational convenience,
fix h after a small number, say a, of iterations (i.e. when k = a).

2.
Using data , obtain the derivative data

, and define the derivative η̂(k+1)′(t) using (3). Select
h̃ from the grid {0.1*sd(Xβ̂(k)), 0.2*sd(Xβ̂(k)), …, sd(Xβ̂(k))} using leave-one-out
cross-validation. As with h, h̃ is fixed after a iterations.

3. Let the general notation z(kl) indicate the lth update to z(k). Using approximation

(5), obtain data , and minimize  from (6), giving
β̂(k

1). Repeat this step m − 1 more times, for a total of m iterations, each time
updating the linear approximation (5), so that β̂(k

m) ≡ β̂(k+1) comes from data

.

4. Cycle through steps 1–3 until ||β̂(k+1) − β̂(k)|| becomes smaller than a prespecified
precision level. The final estimate of η is then obtained by implementing step 1
once more using the converged β estimate.

The identifiability constraint is imposed by rescaling β̂(k) by  each time Step 3 is
completed, so it is desirable that β1 be nonzero to avoid potential numerical problems. To
help ensure this in practice, one could first fit a linear model, and choose the largest (or most
significant) βj estimate to be that which is subsequently unpenalized and forced to be 1. If in
the final model another coefficient is larger, then one could re-run the analysis with that
coefficient being the one which is upenalized and forced to be 1. As suggested by one of the
reviewers, one could also consider a sensitivity analysis in which multiple models were fit,
each time forcing a different coefficient to be 1.
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A value of λn must be chosen before β can be estimated. Suppose that β̂(λn) and η̂m(t; λn) are
the estimates of β and η(t), given tuning parameter λn. To choose a value of λn, we use the
Bayes information criterion (BIC) measure of [8]. Specifically, we choose the value of λn
that minimizes:

where DFλn is one less than the number of non-zero values in β̂(λn), since β̂1 is forced to be
nonzero. To find the optimal λn, a grid search is employed.

In the remaining sections, the monotone-constrained method described above is referred to
as the constrained approach.

2.4. Asymptotics
Using the results of [1] and arguments similar to [11], it is possible to establish the oracle
properties for the unconstrained approach. We provide an outline of such an argument here.

Suppose the regularity conditions of [1] hold. Then, by their main theorem, we can rewrite
the sum of squares portion of (4) as a sum of three terms, S̃, T, and R, where S̃ and T depend
only on β and h respectively, and the remainder term R is negligible. Thus, as S̃ is the only
term which depends on β, (4) can be reduced to

, where W0
is a p × p matrix, β0 is the true index parameter, and Z is an asymptotically normal N(0, I) p-

vector. Now suppose that , and λnn(γ − 1)/2 → ∞, where , and let ,
where ||u|| ≤ C. From here, following arguments very similar to [11], the oracle properties
can be established.

It seems that the oracle properties will also hold for β estimates from the constrained
approach under certain conditions. Specifically, under the conditions of Theorem 2 in [21],
we have η̂m(t) = η̂(t) + Op(n−8/15), for all t, where η̂m is our monotone estimator of η and η̂

is the Nadaraya-Watson kernel-weighted average. Thus, it is possible to reduce the
penalized sum of squares for the constrained approach to (4) plus a negligible remainder
term. The oracle properties for the constrained approach would hold by the same reasoning
used for the unconstrained approach.

In practice it is difficult to verify that the conditions needed for the theory hold. Because a
data-driven method (BIC) is used to select the tuning parameter, λn, we cannot guarantee the

required rate of convergence. Thus, the assumptions  and λnn(γ − 1)/2 → ∞ may not
hold.

2.5. Bootstrap standard errors
Standard errors for our β estimates can be obtained via the bootstrap. In particular, for a
given data set, we employ the adaptive LASSO-based residual bootstrap (ARB) approach
discussed by [25] to obtain many, say M, bootstrap data sets. A penalized single-index
model is then fit on each of these bootstrap data sets, giving M sets of estimates. The
estimated standard errors are then obtained by taking the standard deviations of the M
estimates for each βj.
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For a given data set, we obtain a residual bootstrap data set as follows. Suppose β̂ and η̂ are
final estimates of β and η for a particular data set. Let ei = yi − η̂(β̂T xi), i = 1, …, n be the
residuals for this data set. A residual bootstrap data set is then obtained by replacing yi with

, i = 1, …, n, where { } is a random sample (drawn with replacement)

from the centered residuals, , i = 1, …, n. The covariate matrix remains the same
across the bootstrap data sets.

Based on additional simulations (results not given), creating residual bootstrap data sets
using permuted (sampled without replacement) residuals gives nearly identical results to
those shown in Table 2. As noted by one reviewer, in practice, the interpretation for the
standard errors can be awkward, particulary in cases where a number of covariates are
highly correlated. In such cases, one might expect the distribution of these estimates to be a
mixture of a continuous distribution and a point mass at zero. Thus, the estimates are a
product of both selection and estimation, which can make interpretation difficult. This may
be due to the known shortcomings of the adaptive LASSO for highly correlated predictors.
If one believes that a number of covariates may be highly correlated, an alternative
approach, such as the adaptive elastic-net, may perform better, and may lead to bootstrap
standard error estimates based on a smaller number of zeros.

We generally suggest that one reselect λn with each bootstrap data set; however, our
simulations (results not shown) suggest that holding λn fixed across bootstrap data sets gives
standard error estimates which are nearly identical to those found by reselecting λn for each
bootstrap data set. Thus, it may be reasonable to consider fixed-λn bootstrap standard errors
if reselecting λn for each bootstrap data set is too computationally burdensome.

3. Simulations
A simulation study was performed using R software to evaluate the performance of the
proposed methods. To comply with the conditions in Section 2.4, a value of  was chosen for
γ for adaptive LASSO. Additionally, for each example, a large test set (n = 10, 000) was
generated, and final β estimates from each of the simulated data sets were used to calculate
the mean squared error (MSE) for this large test set. To evaluate the performance of all
methods considered, we recorded the number of correct and incorrect zero values in β̂, as
well as the total proportion of β̂j’s correctly estimated as zero or non-zero for each data set.
The average of these proportions across all simulated data sets is referred to in Table 1 as the
relative frequency correct. We also computed the false discovery rate (FDR), which is the
percentage of non-zero β̂ values which should have been zero. For each data set, the optimal
tuning parameter value λn was chosen from the grid {0, 0.01, …, 0.25} using BIC.

3.1. Examples
For all simulations, 100 data sets of size 100 were generated from the model

where xi’s were , and error terms were normal with mean zero and variance σ2.
We considered five different cases:

i. β = (1, 0.8, 0, 0, 0, 0, −0.7, 0, 0, 0)T, xi’s independent, and ε’s independent with σ =
0.20;

ii. Same as case (i), but with σ = 0.30;
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iii. Same as case (i), but with β changed to (1, 0.8, 0, 0, 0, 0, −0.2, 0, 0, 0)T;

iv. Same as case (i), but with Corr(xij, xik) = 0.5, j ≠ k;

v. Same as case (i), but with an additional 50 noise covariates, so that β = (1, 0.8, 0, 0,
0, 0, −0.7, 0, 0, 0, 01×50)T.

From Table 1, we can see that, in all cases, the constrained approach shows noticeably better
reduction in model complexity and smaller FDR than the unconstrained approach.
Additionally, the constrained approach has mean test MSEs which are smaller, and closer to
the corresponding oracle test MSEs than the unconstrained approach. Reduction in model
complexity for the constrained approach appears to be reasonably insensitive to the changes
in simulation settings considered above; however, the unconstrained approach appears to
suffer in this regard, especially when true parameter values are decreased or error standard
deviation is increased.

Additional simulations were implemented to evaluate the performance of the proposed
methods under alternative monotonic functions, η (results not shown). In particular, we
considered a linear function, and two spline functions; one resembling the cubic function
from the above examples, but with two knots chosen to create a wider “flat” section around
the origin, and one which is constant to the left of the origin and quadratic to the right. As
expected, both methods performed well in the linear case. In the cubic spline case, reduction
in model complexity was good, but mean test MSE became noticeably larger, and in the case
of the constant spline with the quadratic knot, mean test MSE was good, but reduction in
model complexity was noticeably worse. Thus, as one might expect, the proposed methods
are less useful in cases where η contains large sections which are nearly flat, or exactly
constant.

To evaluate the performance of our standard error estimates, residual bootstrap standard
errors (based on 100 bootstrap data sets) were calculated for case (i) above. Let SD denote
the standard deviation of the 100 βj estimates, j = 1, …, p. Additionally, let SE and SEsd
denote the mean and the standard deviation of the 100 estimated SE’s respectively. Looking
at Table 2, we can see that the standard error estimates appear to perform reasonably well,
though they sometimes slightly underestimate or overestimate the true values.

To demonstrate the ability of penalized monotone single-index models to capture non linear
relationships, we computed η̂m values across a fine grid of input values and averaged these
η̂m’s across the 100 data sets in case (i). These average values can be found in Figure 1,
along with the true function η and 90% empirical pointwise confidence bands for η̂m. As we
can see, the monotone function estimate η̂m appears to closely follow the true function.

Because we are interested in using the proposed methods to identify subgroups, we also
compared “enhancement” classification between the two methods for case (i). For this
comparison, we consider a subject to be enhanced if η(xT β) > 0. On average, 88% of
subjects identified as enhanced by the constrained approach were truly enhanced, whereas
for the unconstrained approach, only 73% were correctly identified on average. Thus, the
constrained approach may be advantageous for applications to subgroup identification.

The two methods methods require approximately the same amount of time to complete a
single iteration of our algorithm for a given value of λ. However, for some data sets, the
constrained approach requires more iterations to achieve the same degree of convergence as
the unconstrained approach. For example, for case (i) of our simulations, the median run
time for a data set for the constrained approach was approximately 64% longer than that for
the unconstrained approach.
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4. Example data
In this example, we apply the proposed methods to the Eli Lilly data in [14], which come
from a randomized, double-blinded clinical trial in patients with a critical illness in the ICU
conducted over a decade ago. We consider 1019 individuals, of whom 512 received the
experimental treatment in addition to the standard of care. The remaining patients received
placebo with the standard of care. The intervention is a drug that is intended to improve
survival in patients with a critical illness, and the endpoint was survival at 28 days post-
randomization to treatment/placebo. We consider 58 covariates analyzed by [14], which
include demographic, laboratory, medical history and questionnaire data. Of these, 9 are
binary, 22 are regarded as continuous, and 27 are dummy variables coming from subdivision
of 12 categorical variables.

In [14], a random forest was used to obtain two predicted probabilities, P̂1i and P̂0i, for each
individual, where P1i is the probability of survival at 28 days post-randomization for subject
i if that individual had received treatment and P0i is that if subject i had received placebo.
The estimation of these probabilities was motivated by the fact that the methods of [14] were
designed to identify subgroups of enhanced treatment effect in randomized clinical trial data.
Therefore, a new outcome representing the treatment effect for person i, Zi = P̂1i − P̂0i, i = 1,
… n, was subsequently defined, since individuals in such a subgroup should ideally have
values of P1i which are much larger than P0i. Then, a single regression tree was fit using Z
as the outcome and the covariates as predictors. This tree identified subgroups of enhanced
treatment effect which depended on age at admission, baseline creatinine clearance, baseline
interleukin 6 and hypertension (yes, no or unknown). This method was referred to by [14] as
“Virtual Twins.”

Using Z as the outcome and the 58 covariates as predictors, we fit penalized single-index
models with and without monotonicity constraints. All covariates were standardized in this
analysis due to large differences in scale, and age at admission was chosen to be the first
column of X, as its corresponding initial estimate was the largest and most significant value
of β̂init It should be noted that this analysis was also performed with baseline creatinine
clearance as the first column (results now shown), and the same six additional covariates
were chosen, along with one other. The relative magnitude of the coefficients in this analysis
were similar for most variables. Results from these models (with age at admission as first
column of X) can be found in Table 3. Estimates for the constrained and unconstrained
approaches were fairly similar, though an additional covariate, baseline index of
independence in activities of daily living (ADL) [26], was included by the constrained
approach.

In addition to β estimates, we computed bootstrap standard errors using 300 bootstrap
samples. Because less important covariates will tend to be removed from the model in most
bootstrap samples, resulting in many zero bootstrap estimates, we expect such covariates to
have very small bootstrap standard errors.

The six covariates selected by both methods were age at admission, baseline central lab
platelet count, baseline creatinine clearance, baseline interleukin 6 (log scale), number of
baseline organ failures, and pre-infusion acute physiology and chronic health evaluation II
(APACHE II) score, of which age at admission, creatinine clearance and interleukin 6 were
also selected by the Virtual Twins method. Plots of the data (from the constrained approach)
and the final η estimates can be found in Figure 2. We can see that both estimates of η are
reasonably close, with the constrained estimate being noticeably more smooth. From Figure
2, we can see that the predicted region of enhanced treatment effect consists of β̂T x values
which are larger than approximately −2, with the degree of enhancement increasing as β̂T x
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becomes larger. The constrained and unconstrained approaches identified 847 and 864
subjects as being enhanced, respectively, and of the 864 identified by the unconstrained
approach, 845 were also identified by the constrained approach. Furthermore, for the
constrained model, older individuals and those with higher baseline IL-6 respond very well
to treatment, and patients with lower baseline creatinine clearance show a greater treatment
differential. The findings from this analysis are reasonably consistent with the original
conclusions from this trial, which suggested that patients who had higher risk factors for
mortality responded better to the treatment.

As both fits suggest a relationship which is close to linear, an adaptive LASSO penalized
linear model was also fit (results not shown), once using the default tuning parameter
selection settings (10-fold cross-validation using squared error loss) in the R glmnet
package, and once using BIC to select the tuning parameter. The model resulting from the
default tuning parameter selection settings contained 24 covariates, while the model selected
using BIC contained 7 covariates. Although BIC is known to give smaller models than
cross-validation, this dramatic difference in model complexity was mildly surprising to us.
Based on the results of the linear model (using BIC), it appears that the single-index models
may not have added much compared to a linear model in this case.

5. Discussion
We proposed the use of adaptive LASSO variable selection for monotone single-index
models, and showed that it performs well in a variety of situations. The constrained
approach noticeably outperformed the unconstrained, and has the advantage of more
straightforward interpretation. A linear approximation to η via Taylor series was also
proposed, thus allowing for the use of standard LASSO algorithms, such as coordinate
descent, which have been shown to perform well. In addition, we suggested the use of
residual bootstrap standard errors for β estimates, and showed that they perform reasonably
well in simulations.

We argue that the unconstrained adaptive LASSO penalized single-index model estimates
possess the oracle properties when η is estimated using the Nadaraya-Watson formula.
Additionally, we briefly argue that, following the results of [21], the oracle properties may
also hold for the constrained approach, and it would be interesting to investigate this more
formally. Furthermore, the proof outlined in Section 2.4 assumes that β is in a -
neighborhood of the true value, which is likely true given that the initial estimator of β is in
a -neighborhood of β0.

Our method of obtaining a monotone function estimate is very similar to that of [19]. They
suggested that it may be possible to improve the estimation of the monotone penalized
single-index model if one considers “one-step” monotone function estimates, such as those
suggested by [16] and [17]. This is worthy of further investigation.

The adaptive LASSO penalty was chosen for convenience; however, one may wish to
consider other penalty functions. For instance, as noted by a reviewer, the adaptive elastic-
net can often outperform the adaptive LASSO approach, particularly when covariates are
highly correlated. Note that the linear approximation to the function η does not involve the
penalty function. Thus, the proposed method and algorithm could easily be modified if one
wished to use a different penalty function, such as the SCAD or adaptive elastic-net.
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Figure 1.
Average η̂m values from 100 simulations
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Figure 2.
Estimates of function η̂(·) from Eli Lilly data. Index values in the plotted data are β̂T x,
where β̂ comes from the constrained approach, and treatment effect estimates are the Z
values from Virtual Twins procedure. Those points to the right of the vertical dotted line
would be considered “enhanced” based on this analysis.
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Table 3

Estimates for Eli Lilly data

Variable Unconstrained Estimate SE Constrained Estimate SE

Age 1.00 - 1.00 -

ADL1 - - −0.13 0.04

Platelet Count −0.12 0.03 −0.19 0.08

Creat. Clear. −0.70 0.17 −0.81 0.21

Interleukin 6 0.60 0.11 0.70 0.13

# Organ Fail. 0.14 0.06 0.23 0.11

APACHE II2 0.24 0.09 0.33 0.14

1
Baseline index of independence in activities of daily living.

2
Pre-infusion acute physiology and chronic health evaluation II score.
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