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Abstract
Nrf2:INrf2 (Keap1) are cellular sensors of oxidative and electrophilic stress. Nrf2 is a nuclear
factor that controls the expression and coordinated induction of a battery of genes which encode
detoxifying enzymes, drug transporters (MRPs), anti-apoptotic proteins and proteasomes. In the
basal state, Nrf2 is constantly degraded in the cytoplasm by its inhibitor, INrf2. INrf2 functions as
an adapter for Cul3/Rbx1 E3 ubiquitin ligase mediated degradation of Nrf2. Chemicals including
antioxidants, tocopherols including α-tocopherol (vitamin E), phytochemicals and radiations
antagonize the Nrf2:INrf2 interaction and leads to the stabilization and activation of Nrf2. The
signaling events involve pre-induction, induction and post-induction responses that tightly control
Nrf2 activation and repression back to the basal state. Oxidative/electrophilic signals activate
unknown tyrosine kinase(s) in a pre-induction response which phosphorylates specific residues on
Nrf2 negative-regulators, INrf2, Fyn and Bach1, leading to their nuclear export, ubiquitination and
degradation. This prepares nuclei for unhindered import of Nrf2. Oxidative/electrophilic
modification of INrf2cysteine151 followed by PKC phosphorylation of Nrf2serine40 in the
induction response results in the escape or release of Nrf2 from INrf2. Nrf2 is thus stabilized and
translocates to the nucleus resulting in a coordinated activation of gene expression. This is
followed by a post-induction response that controls the ‘switching off’ of Nrf2-activated gene
expression. GSK3β under the control of AKT and PI3K, phosphorylates Fyn leading to Fyn
nuclear localization. Fyn phosphorylates Nrf2Y568 resulting in nuclear export and degradation of
Nrf2. The activation and repression of Nrf2 provides protection against oxidative/electrophilic
stress and associated diseases, including cancer. However, deregulation of INrf2 and Nrf2 due to
mutations may lead to nuclear accumulation of Nrf2 that reduces apoptosis and promotes
oncogenesis and drug resistance.
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Oxidative Stress
Cells are constantly challenged by environmental (xenobiotics, drugs and UV) and
endogenous (reactive oxygen species, hydroperoxides and quinone) stressors [1–2]. If
unchecked, these lead to oxidative stress and diseases of many organs (Fig. 1). Oxidative
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stress related diseases include skin (dermatitis, psoriasis and burn); kidney (renal graft and
glomeruloneph); eye (Retinal damage and cataract); cardiovascular (heart and vessels
diseases including atherosclerosis); lung [(hyperoxia, ashthma and acute respiratory distress
syndrome (ARDS)]; Joints (rheumatoid arthritis); liver (injury and Ischemic bowel); Brain
(Trauma, Parkinson’s and Alezheimer’s) and multi-organ diseases including diabetes, aging
and cancer [Fig. 1, Ref. 1–2].

Chemical Protection against Oxidative Stress
Phenolic antioxidants, vitamins and naturally occurring phytochemicals are known to reduce
oxidative stress leading to protection of cells against its adverse effects [3–6]. Many of these
compounds are well known drugs in prevention and cure of cancer. The chemical structures
of a few representative phenolic antioxidants, vitamins and phytochemicals are shown (Fig.
2). The phenolic antioxidants BHA (tert-butyl-4-hydroxyanisole) and BHT [3,5-di-tert-
butyl-4-hydroxytoluene] inhibit chemical carcinogenesis [7–8]. Vitamins are essential for
the normal growth and development of organisms. Vitamin E among the various vitamins
demonstrated antioxidant properties. Vitamin E is a group of tocopherols and tocotrienols.
However, only α-tocopherol functions as the vitamin E in vivo. Each Tocopherol contains a
chromanol ring system and a 16 carbons phytyl chain (Fig. 2). Depending on the position
and number of methyl groups they exist as α, β, γ, δ-tocopherols (Fig. 2). All tocopherols are
antioxidants. However, γ- and δ-tocopherols are stronger antioxidants than others because of
unmethylated carbon 5 [9]. Epidemiological studies have shown cancer preventive activity
of vitamin E (α-tocopherol) [4]. However, its role in cancer prevention is controversial.
More recent studies suggest that γ- and δ-tocopherols are cancer preventive, whereas α-
tocopherol is not [4]. Phytochemicals includes a large number of wide varieties of
compounds produced from plants [10]. A few of phytochemicals are sulforaphane, silibinin,
honokiol, (−)-epigallocatechin gallate (EGCG), and quercetin. Sulforaphane, a product from
broccoli sprouts retarded prostate tumor growth in TRAMP mouse and suppressed the
growth of prostate cancer PC-3 cells in nude mice [11–12]. Silymarin and its major
constituent, silibinin, are extracts from the medicinal plant Silybum marianum (milk thistle)
and have traditionally been used for the treatment of liver diseases [13]. Recently, these
orally active, flavonoid agents have also been shown to exert significant anti-neoplastic
effects in a variety of in vitro and in vivo cancer models, including skin, breast, lung, colon,
bladder, prostate and kidney carcinomas [13]. Honokiol is a product of Mangnolia
officinalis that restarted growth of PC-3 xenografts in nude mice [14]. EGCG reduced tumor
size and completely abrogated tumors in both androgen repressed prostate cancer LNCaP
and androgen-refractory the PC3 tumor xenograft in athymic nude mice [15]. Quercetin
from vegetables and fruits suppressed development of preneoplastic lesions and proliferation
of azoxymethane induced aberrant crypt foci [16]. Therefore, phenolic antioxidants,
vitamins and naturally occurring phytochemicals have one thing in common that they
prevent oxidative stress and other diseases.

Cellular Protection against Oxidative Stress: Nrf2:INrf2 or Keap1 system
Cytoprotective proteins

Cells have evolved adaptive mechanisms to endure oxidative stress. These include a battery
of cytoprotective/defensive proteins that protect cells against oxidative stress and promote
cell survival. Included among the cytoprotective proteins are phase II defenses, such as those
involved in biotransformation of xenobiotics and drugs (e.g. NAD(P)H:quinone
oxidoreductase 1 (NQO1), NRH:quinone oxidoreductase 2 (NQO2), glutathione S-
transferase (GST), and γ-glutamate-cysteine synthetase [GCS], and molecules such as
reduced glutathione [GSH], and metallothioneins [17–18]. NQO1 and NQO2 catalyze
detoxification of quinones, which prevent the generation of reactive semiquinones, O2- and
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H2O2 [19–21]. NQO2 is identified as melatonin binding site MT3 with functions in CNS
[22–23]. NQO1−/− and NQO2−/− mice demonstrated myelogenous hyperplasia [24–28] and
γ-radiation-induced myeloproliferative disease/B-cell lymphoma [27–28] and exhibited
significantly increased sensitivity to chemical-induced skin carcinogenesis [29–31]. GST
conjugates hydrophobic electrophiles, H2O2 and lipid hydroperoxides with glutathione,
aiding in their excretion [32–33]. HO-1 catalyzes the rate-limiting step in heme catabolism
[34]. γ-GCS play a role in glutathione metabolism [32–33, 35]. Glutathione [GSH],
metallothioneins and ferritins scavenge ROS and metal ions. Therefore, GSH and proteins,
like metallothioneins and ferritins, act as endogenous factors in protection against oxidative
stress and associated diseases including cancer. The battery of cytoprotective proteins also
include drug transporters that play important role in drugs intake and efflux [36–40]; anti-
apoptotic proteins Bcl-2 and Bcl-xL that prevent apoptotic cell death and promote cell
survival [41–43]; and proteasomes that remove oxidized/damaged proteins [44].

NQO1, NQO2 and other cytoprotective genes are ubiquitously expressed and induced in
response to xenobiotics, antioxidants, oxidants, heavy metals and UV light [17, 43–48].
Interestingly, the induction of these genes is part of an oxidative/electrophilic stress induced
defense mechanism that includes the coordinated induction of two hundred plus genes [17,
43–48]. Both constitutive and inducible expression of defense genes is regulated by
antioxidant response element (ARE/Core sequence (TGA****GC) that is present in the
upstream regions of such genes [49–51].

NF-E2 Related Factors and INrf2 (Keap1)
Coordinated induction of cytoprotective gene transcription through the ARE is essential for
cellular protection against oxidative stress and related disorders [17, 45–48]. Induction is
controlled by cap ‘n’ collar (CNC) family of factors that comprises four members namely
Nrf1, Nrf2, Nrf3 and, p45 NF-E2 [17, 43–48, 52–54]. Nrf1 and Nrf2 are ubiquitously
expressed, whereas the expression of Nrf3 is restricted to placenta and liver and NF-E2
restricted to erythrocytes [55, 54]. Knockout studies reveal that Nrf1 and Nrf2 have distinct
phenotypes and different roles [56–57]. The Nrf1 gene is essential for embryonic
development and liver-specific Nrf1 knockout mice develop non-alcoholic steatohepatitis
[58–59]. In contrast, Nrf2 knockout mice are viable and exhibit no obvious phenotypic
defects, but are nevertheless sensitive to oxidative stress [60–63]. Nrf2 reportedly is the
main mediator of cellular adaptation to redox stress [17, 45–48]. Nrf2 is a leucine zipper/
CNC protein which when present in the nucleus functions as transcription factor that
regulates coordinated activation of a battery of cytoprotective genes that include
biotransformation enzymes, antioxidant proteins, drug transporters, anti-apoptotic proteins
and proteasomes [17, 45–48]. The various domains of Nrf2 are depicted in Fig. 3. It contains
an N-terminal hydrophobic domain, followed by INrf2 (Keap1) binding domain,
transcriptional activation domain, CNC domain, basic and leucine zipper domain. Nrf2
through its leucine zipper domain heterodimerizes with small Maf or Jun proteins and bind
to ARE [17, 45–48]. INrf2 (Inhibitor of Nrf2) or KEAP1 (Kelch-like ECH-associated
protein1), a homodimeric protein, retains Nrf2 in the cytoplasm [64–66]. INrf2 functions as
an adapter for Cul3/Rbx1 mediated degradation of Nrf2 [67–71]. INrf2 with its N-terminal
BTB domain binds to Rbx1 bound Cul3 and with C-terminal DGR domain binds to Nrf2.
This leads to ubiquitination and degradation of Nrf2.

Antioxidant induction of Nrf2/ARE-mediated cytoprotective gene
expression as mechanism of antioxidant protection

Nrf2:INrf2 complex serves as a sensor of chemical and radiation-induced oxidative stress in
the cells. Antioxidants are strong activators of Nrf2 since these after metabolism produce
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small amount of oxidative stress that signals Nrf2 activation. Antioxidants have been
frequently used to study the mechanism of signal transduction from antioxidant to the
coordinated induction of cytoprotective gene expression that is essential for cytoprotection
and cell survival. The mechanism of signal transduction from antioxidant to Nrf2 is complex
and involves basal, pre-induction, induction and post-induction phases (Fig. 4).

Under physiological/basal conditions, INrf2/Cul3-RBX1 complex is present in the cytosol
constantly degrading Nrf2 [67–70; Fig. 4]. While the INrf2-mediated ubiquitination and
degradation occurs primarily in the cytosol, INrf2/Cul3-RBX1 complex is also present in the
nucleus and degrades Nrf2 under basal conditions [72]. Along with INrf2/Cul3-RBX1
complex additional negative regulators of Nrf2 are present in the nucleus. These include Src
subfamily A members Fyn, Src, Yes and Fgr that phosphorylate Nrf2Tyr568 leading to
nuclear export and degradation of Nrf2 [73] and Bach1 that competes with Nrf2 for binding
to ARE resulting in suppression of ARE-mediated gene expression [74]. It is noteworthy
that active GSK3β phosphorylates Src A sub-family members including Fyn that enter in the
nucleus leading to phosphorylation of Nrf2Tyr568, nuclear export and degradation of Nrf2
[75–76, 73]. More recently, β-TrCP present in the cytosol is also shown to degrade GSK3β
phosphorylated Nrf2 [77]. Therefore, two independent mechanisms degrade Nrf2 under
basal conditions.

Cellular exposure to antioxidant leads to pre-induction response in which negative regulators
of Nrf2 are exported out of nucleus (Fig. 4). It is reported that unknown tyrosine kinase(s)
phosphorylate INrf2Tyr85, FynTyr213 and Bach1 Tyr486 within 0.5–1 hour of antioxidant
exposure leading to nuclear export, ubiquitination and degradation of INrf2, Fyn and Bach1
[78–80]. The Nrf2 ubiquitin factors Cul3-Rbx1 are also exported out of nucleus through its
interaction with INrf2 [78]. It is suggested that nuclear export and degradation of Nrf2
negative regulators allows for unhindered nuclear import of Nrf2 and efficient induction of
cytoprotective gene expression [78–80].

The induction phase presumably runs in parallel to pre-induction phase upon exposure to
antioxidant. As the Nrf2 negative regulators are going out of nucleus, Nrf2 is imported in the
nucleus to activate ARE-mediated cytoprotective gene expression. Antioxidant modification
of INrf2Cys151 followed by PKCδ phosphorylation of Nrf2Ser40 results in the escape or
release of Nrf2 from INrf2 [70–71]. Nrf2 is stabilized, translocate to the nucleus,
heterodimerize with small Maf or c-Jun protein, and binds with ARE that leads to
coordinated activation of cytoprotective gene expression [17, 81].

Induction phase is followed by post-induction phase that switches ‘OFF’ Nrf2 activation.
Activation of GSK3β phosphorylates Fyn leading to nuclear localization of Fyn [76]. Fyn
phosphorylates Nrf2Tyr568 resulting in nuclear export of Nrf2, binding with INrf2, and
degradation of Nrf2 [75]. By this time the negative regulators of Nrf2 including INrf2/Cul3-
RBX1, Fyn and Bach1 are de novo synthesized and imported in the nucleus. INrf2 through
ubiquitination and degradation of Nrf2; Fyn through phosphorylation of Nrf2Tyr568
followed by ubiquitination and degradation of Nrf2 and Bach1 through competition with
Nrf2 for binding to ARE leads to switching ‘OFF’ of Nrf2 and suppression of cytoprotective
gene expression to basal level. Bach1 is known to form heterodimers with small Maf
proteins and Bach1:Maf dimers compete with Nrf2 for binding to ARE [74].

Autoregulatory loop that controls cellular abundance of Nrf2 and INrf2/
Cul3-Rbx1

Recently, we have shown that a feedback auto-regulatory loop between Nrf2 and INrf2 exist
that controls cellular abundance of Nrf2 and INrf2 [Ref. 82; Fig. 5]. Nrf2 regulated
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transcription of INrf2 and INrf2 degraded Nrf2. More recently, we found that another
autoregulatory loop exists between Nrf2 and Cul3-Rbx1 [83]. Nrf2 controls transcription of
Cul3 and Rbx1 and Cul3-Rbx1 complex ubiquitinate and degrade Nrf2. In other words,
there exist cellular homeostasis between Nrf2 and INrf2/Cul3-RBX1 complex. The
autoregulatory loop between Nrf2 and INrf2/Cul3-Rbx1 is deregulated in cells carrying
mutations in one of the component of the autoregulatory loop. Many cancer cells have loss
of function mutations in INrf2 resulting in nuclear accumulation of Nrf2 and persistent
activation of cytoprotective proteins [84–85]. Similarly, mutations are also known in Nrf2
that leads to abrogation of the interaction between Nrf2 and INrf2 and nuclear accumulation
of Nrf2 [86].

Proteins that regulate Nrf2 and INrf2
Protein-protein and protein-DNA interactions are known that affect Nrf2 and/or INrf2
stabilization and/or expression with implications in cytoprotective gene expression/
induction. Nrf2 interaction with INrf2 and PKCδ are described above. The role of Cul3-
Rbx1, Bach1, Src subfamily members, GSK3β and β-TrCP all are also described above. In
addition, p21 through its KRR motif is known to directly interact with the DLG and ETGE
motifs in Nrf2 resulting in Nrf2 stabilization and accumulation [87]. Autophagy related p62
protein sequesters INrf2 into aggregates resulting in stabilization and activation of Nrf2 [88–
90]. PALB2 through its ETGE motif interacts directly with Kelch domain of INrf2 that leads
to stabilization of Nrf2 [91]. K-Ras, B-Raf and Myc all increase Nrf2 transcription and
increase basal Nrf2 expression [92]. Casein kinase II phosphorylates INrf2Thre55 leading to
INrf2 interaction with HSP90 and stabilization of INrf2 [93]. Prothymosin-α interaction
with INrf2 is required for nuclear import of INrf2 [72].

Role of Nrf2:INrf2 system in tocopherols including α-tocopherol (vitamin E)
and Phytochemicals protection of cells against adverse effects of oxidative
stress

Epidemiological studies suggested a role of tocopherols in cancer prevention [94]. However,
the chemoprevention studies with α-tocopherols were disappointing [95–96]. Recently,
several reports have suggested a role of γ and not α-tocopherol in cancer prevention [4].
Dietary tocopherols especially γ-tocopherol inhibits cell proliferation and decrease serum
inflammatory markers during development of mammary hyperplasia [97]. In addition, γ-
tocopherol enriched diet was reported to inhibit prostate carcinogenesis in TRAMP mice
[98]. The role of Nrf2 in tocopherols-mediated protection is also controversial. Nrf2 is
shown to mediate tocopherol including α-tocopherol (vitamin E) protection against acrolein-
induced oxidative stress and mitochondrial dysfunction [99]; allergens-induced alveolar
macrophages in vivo [100]; development of mammary hyperplasia [97; and prostate tumors
in TRAMP mice [101]. On contrary, it is also reported that the antioxidant and anti-
inflammatory activities of tocopherols are independent of Nrf2 in mice [102]. Further
studies are required to determine the relative role of Nrf2 in different tocopherols-mediated
protection against oxidative stress and associated diseases.

Phytochemicals are promising chemopreventive agents that can prevent macromolecular
damages including mutations and block carcinogenesis [6]. Several different mechanisms
involving direct reaction with carcinogens and/or modulation of phase I enzymes and/or
alterations in phase II enzymes contribute to the mode of action of phytochemicals.
Phytochemicals are also known to protect against neurodegenerative, cardiovascular and
renal diseases [6]. We will discuss here phytochemicals activation of phase II enzymes as
mechanism of its activity as cytoprotective agent. Sulforaphane is a potent Nrf2 dependent
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inducer of phase II gene expression that leads to protection against oxidative stress and
associated adverse effects [103]. Sulforaphane stabilizes Nrf2 through the modification of
INrf2 (Keap1) and release of Nrf2 as described above [104]. Curcumin and (−)-epigallo-
catechin-3-gallate are also known to activate Nrf2 for its antioxidant function [105–106].
Similarly, the flavanol (−)-epicatechin prevents stroke damage through activation of Nrf2/
HO-1 pathway [107]. In addition, food polyphenols activated Nrf2 protect against
neurodegenerative disorders [108]. In summary, many phytochemicals activate Nrf2 to
coordinately increase phase II detoxifying enzymes and other cytoprotective proteins that
play significant role not only in chemoprotection but also prevention of neurodegenerative,
cardiovascular and renal diseases.

Nrf2 in cancer prevention, oncogenesis and drug resistance
The precise role of Nrf2 in cancer prevention and cancer remains unknown. It is considered
to be both tumor suppressor, as well as tumor promoter [81]. The property of Nrf2 to
coordinately activate cytoprotective proteins including detoxifying enzymes, drug
transporters, antioxidants and anti-inflammatory proteins as described above plays
significant role in reducing electrophiles and ROS, decrease genomic instability and
mutations that leads to chemoprotection and tumor suppression. Tumor suppressor function
of Nrf2 is also supported by in vivo studies using Nrf2-null mice. Nrf2−/− mice are prone to
acute damages induced by acetaminophen, ovalbumin, pentachlorophenol and 4-
vinylcyclohexene diepoxide [109–113]. Nrf2−/− mice showed increased pulmonary DNA
adducts and bladder tumors when exposed to diesel exhaust and N-nitrosobutyl (4-
hydroxybutyl) amine, respectively [114–116]. Moreover, loss of Nrf2 in lung cancer cells
has been associated with providing a microenvironment that favors metastasis [117]. Nrf2
and downstream protein level declines with age that could also contribute to tumorigenesis
[118]. Another line of evidence supporting Nrf2 as tumor suppressor is that one of the
important property of chemopreventive compounds, such as curcumin, sulforaphane,
isothiocynates, green and black tea, and others, is their ability to activate Nrf2 [45, 116].
Tumor suppressor function of Nrf2 is further supported by observations that tumor
suppressors target Nrf2 stabilization and oncoproteins degrade Nrf2. Tumor suppressors p21
and BRCA2 (PALB2) are known to stabilize Nrf2 by preventing INrf2 interaction with Nrf2
[87, 91]. In addition, oncoproteins Src subfamily A members Fyn and Src and SCFβ-TrCP
degrade Nrf2 [73, 77]. It is noteworthy that SCFβ-TrCP degradation of Nrf2 is independent
of INrf2 (Keap1). Collectively, the above observations suggest that Nrf2 is chemoprotector
and a tumor suppressor.

On contrary to above, Nrf2 is also considered as tumor promoter that promotes oncogenesis.
Several reports support a role of Nrf2 in oncogenesis. First, a report showed that oncogenes
K-Ras, B-Raf and Myc targeted the transcription and amplification of Nrf2 in cancer cells
[92]. Overexpression of these oncogenes in mice led to increased Nrf2 transcription,
increased basal expression of Nrf2, and decreased ROS leading to oncogenesis. In addition,
genetic knock down of Nrf2 led to decreased ability of K-Ras to induce oncogenesis. These
results supported a role of Nrf2 in oncogenesis due to escaping of cancer cell death because
of lower ROS. Second, recently a paper showed that higher Nrf2 in tumor cells up-regulates
many of the enzymes of glucose metabolism towards glycolysis that redirects cells in
anabolic mode, which promotes nucleotide synthesis and cell proliferation [119]. This also
supported a role of Nrf2 in oncogenesis. Third, more recently, we have shown that Nrf2 up-
regulates transcription of anti-apoptotic genes encoding Bcl-2 and Bcl-xL [42, 120]. This
leads to increased anti-apoptotic proteins Bcl-2 and Bcl-xL that reduces apoptosis.
Therefore, Nrf2-mediated decreased apoptosis contributes to increased cancer cell survival
and oncogenesis. Fourth, many cancers show up-regulation of Nrf2 because of mutations in
INrf2 and Nrf2 that abolishes INrf2 and Nrf2 interaction and degradation of Nrf2 [84–86].
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Mutations in INrf2 resulting in loss of expression and function and hypermethylation of
INrf2 leading to decreased INrf2 expression are known in many cancers including that of
lung, breast and prostate cancer [84–85]. The loss of INrf2 because of mutations leads to
stabilization and nuclear accumulation of Nrf2 and increased expression of cytoprotective
proteins and cell survival. Mutations are also known in the region of Nrf2 that interacts with
INrf2 leading to stabilization of Nrf2, nuclear accumulation of Nrf2, activation of
cytoprotective proteins, reduced apoptosis and increased cell survival [86]. The above
evidences suggest that Nrf2 is an oncoprotein that reduces apoptosis and promotes cell
survival and oncogenesis.

The persistent activation of Nrf2 due to mutations or deregulation of factors controlling Nrf2
also leads to drug resistance [121–123]. Nuclear accumulation of Nrf2 leads to higher levels
of cytoprotective proteins including detoxifying/biotransformation enzymes, drug
transporters, antioxidants and anti-apoptotic proteins. This leads to decreased apoptosis,
increased cell survival and drug resistance.

The dual function of Nrf2 under different circumstances suggests that Nrf2 is a
protooncogene [81]. Nrf2 when expressed at normal level and is properly regulated by
positive and negative factors is essential for cellular protection against chemical and
radiation stressors, normal growth and survival of cells. However, deregulation of Nrf2
either due to gain of function mutations or altered because of regulatory factors becomes
oncogenic.

Future Perspectives
Future investigations are required to understand a complete mechanism of signal
transduction from antioxidant, tocopherols including α-tocopherol (vitamin E) and
phytochemicals to Nrf2 leading to coordinated activation of Nrf2 downstream gene
expression. In addition, in vivo role of Nrf2 and INrf2 in apoptosis and protection against
chemical and radiation induced neurodegeneration, cardiovascular diseases and cancer also
requires further investigation. INrf2 is mutated in many cancers including that of lung,
breast and prostate. However, the precise role of Nrf2 and/or INrf2 in oncogenesis remains
obscure and warrants further studies. Similarly, the role of Nrf2 in cancer metastasis is
another area that requires investigation. Development of natural activators of Nrf2 as
effective agents of chemoprotection is also warranted. Similarly, development of inhibitors
of Nrf2 is expected to help reduce drug resistance and improve therapy.
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Highlights

Nrf2:INrf2 system protects cells against chemical and radiation stress.

Antioxidants, tocopherols and phytochemicals are activators of Nrf2.

Positive and negative factors regulate activation and suppression of Nrf2.

Nrf2 if properly regulated protects against inflammation and cancer.

Nuclear accumulation of Nrf2 promotes oncogenesis and drug resistance.

Nrf2 may be a proto-oncogene?
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Fig. 1.
Oxidative stress related diseases.
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Fig. 2.
Structures of a few representative antioxidants, tocopherols including α-tocopherol (vitamin
E) and phytochemicals.
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Fig. 3.
Protein domain structures of Nrf2 and INrf2 (Keap1).
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Fig. 4.
Mechanism of signal transduction from antioxidants, tocopherols including α-topherol
(vitamin E) and phytochemicals to Nrf2.
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Fig. 5.
Autoregulatory loop between Nrf2 and INrf2/Cul3-Rbx1.
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