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Venous thromboembolism (VTE), including deep vein thrombosis (DVT) and its life-
threatening complication, pulmonary embolism (PE), are among the most frequent causes of
morbidity and mortality in developed countries. In the United States alone, the number of
deaths due to VTE approaches 300,000 annually [1]. Blood flow restriction or stasis is
considered a major factor driving DVT [2]. Regardless of its initial cause (bed-ridden
position, long-haul flights, limb paralysis, etc.), delayed blood renewal in stasis is believed
to produce limited oxygen supply to the vein walls (hypoxia), especially in the valvular
sinus, which triggers thrombus development [2].

Certain circumstances may lead to an imbalance between tissue demand and actual oxygen
supply. This can be caused by tissue requirement exceeding the capacity of oxygen delivery
systems (e.g., physical exercise) or inadequate oxygen content in the ambient air. The latter
case can be found in situations such as mountain climbing or commercial flights where the
cabin is pressurized to a level corresponding to an altitude of 1.5 – 2.5 kilometers [3, 4].
Indeed, clinical studies have linked recent air travel of >4 hours to increased risk of
developing DVT [5] and traveling patients with pro-thrombotic mutations predisposing to
DVT are at even higher risk for thrombosis [6]. Moreover, an "absolute" risk for VTE in a
ratio of 1 event per about 4,500 flights has been reported [7]. Even in healthy individuals,
oxyhemoglobin saturation is decreased by 5 – 10% during flight, whereas in patients with
chronic obstructive pulmonary disease a greater decrease has been reported [4].

In the majority of cases, hypoxia is followed by restoration of oxygen supply, i.e.,
reoxygenation. Hypoxia-reoxygenation (H/R), which is known to be harmful to tissues [8,
9], is proposed to be an exacerbating factor for thrombus development in veins although this
causal relationship has not been directly proven. A crucial role of the reoxygenation phase in
DVT can be suggested because thrombotic events frequently occur after landing [7, 10]. We
report that exposure to 6% oxygen for 24 hours followed by 1–3 hours of reoxygenation in
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normal room air led to significantly increased thrombus prevalence in a mouse model of
DVT. Eleven of 15 mice (73%) developed a thrombus after one hour stenosis of the inferior
vena cava (IVC) as compared to 1 of 8 (13%) in control animals maintained in normoxic
conditions (Figure A,B) (P<0.01). Weight and length of the thrombi from animals that
underwent H/R significantly exceeded those in the control group. Thus, mice that were
subjected to IVC stenosis after H/R demonstrated a clear pro-thrombotic phenotype.

Endothelial cells contain Weibel-Palade bodies (WPB) that store multiple thrombosis- and
inflammation-related constituents, such as von Willebrand factor (VWF) and P-selectin [11–
13] and hypoxia is a known inducer of WPB secretion [14]. von Willebrand factor is a large
multimeric protein that mediates platelet adhesion and recruitment via its binding to
receptors GPIbα and GPIIb-IIIa on the platelet surface [15]. Using a mouse model, we have
recently demonstrated that release of WPB is a central event in the initiation of DVT [16].
This implies that DVT is most likely a thrombo-inflammatory pathology rather than a
disease entirely based on defects of the hemostatic system. Liberation of VWF and platelet
recruitment through the VWF/GPIbα axis was of particular importance. Therefore, we
hypothesized that H/R would activate these pathways and thus promote DVT. Indeed, we
confirmed that exposure to hypoxia for 24 hours followed by reoxygenation significantly
elevated plasma VWF levels in our hypoxia model (data not shown). We therefore tested
whether H/R exerts its pro-thrombotic effect through VWF. We administered GPG-290, a
chimeric protein that prevents GPIbα interaction with VWF to wild-type (WT) mice as well
as utilized mice that lack either the extracellular domain of GPIbα or VWF. Infusion of
GPG-290 abolished the pro-thrombotic effect of H/R (Figure A,B). Mice lacking the
extracellular domain of GPIbα and VWF−/− mice were protected against H/R-promoted
DVT (22 and 0% of mice with a thrombus, respectively; thrombus analysis is shown in
figure C,D). Thus, VWF released from WPBs and platelet binding through GPIbα are likely
implicated in H/R-induced DVT.

It has been reported that hypoxia does not induce a pro-coagulant shift sufficient to explain
thrombosis [17, 18]. In our model, we have confirmed these reports as the time to clotting
onset was increased and clotting rate reduced in recalcified whole blood samples after H/R
(Figure E,F), suggesting slower fibrin formation compared to normoxic samples.

Here, we demonstrate that H/R accelerates thrombosis in a mouse model of DVT.
Interestingly, increased incidence of DVT under H/R conditions occurs despite decreased ex
vivo blood clotting. The process is dependent on VWF-mediated interactions indicating that
H/R enhances WPB secretion initiating rapid thrombosis in the stenosis model [16]. Many
factors are proposed to lead to DVT in long flights, such as hypoxia in the cabin,
dehydration and motionless limbs [4]. We demonstrate that hypoxia is at least partially
responsible for this unfortunate side effect of travel.

Mice
Wild-type C57BL/6J mice purchased from the Jackson laboratory (Bar Harbor, ME, USA).
GPIbα/IL4R mice [19] and VWF−/− mice [20] were also on C57BL/6J background. All
experimental procedures involving mice were approved by the Animal Care and Use
Committee of the Immune Disease Institute.

Hypoxia/Reoxygenation
Male mice, 7–8 weeks of age, were housed in a controlled atmosphere animal chamber
(A-15274-P, Biospherix, Lacona, NY, USA) with 6.0 ± 0.2% oxygen for 24 h (hypoxia).
Upon removal from the hypoxic chamber, mice were reoxygenated in normal room air for at
least one hour and DVT surgery was performed during 1–3 hours of reoxygenation.
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DVT model in mice
DVT was induced by applying stenosis to the inferior vena cava (IVC) as described [16].
Animals were re-opened after 1 h, thrombi were excised and their length and weight were
measured. DVT on untreated WT (normoxic and H/R) groups was carried out in every
experiment thus thrombus evaluation is combined in panels A–D.

Administration of GPG-290
GPG-290, a soluble chimeric GPIbα conjugated to the Fc fragment of human IgG was
infused i.v. through the retroorbital plexus immediately after DVT surgery as previously
described [16].

Whole blood recalcification analysis
The test was performed using the Sonoclot analyzer and non-activated clotting test kit
(Sienco, CO) as described [21].

Statistics
Weight and length of thrombi were compared using the Mann-Whitney test. Thrombi
prevalence between groups was compared by Fisher's exact test. Student's t-test was used for
comparison of the blood clotting parameters. P<0.05 was considered statistically significant.
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Figure.
Hypoxia/Reoxygenation (H/R) promotes DVT. Mice subjected to H/R or normoxia followed
by 1 h of IVC stenosis were euthanized and thrombi examined. Thrombus weight and length
are shown in WT (normoxic), n=8; WT (H/R), n=15; WT (H/R + GPG-290), n=6;
TgGP1bα/IL4R, n=9 and VWF−/− mice, n=4 (A–D). Onset and rate of coagulation were
measured in WT mice exposed to normoxia (n=6) or H/R (n=5) (E, F).
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