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Abstract
Bacterial AB5 toxins are a clinically relevant class of exotoxins that includes several well-known
members such as Shiga, cholera and pertussis toxins. Infections with toxin-producing bacteria
cause devastating human diseases that affect millions of individuals each year and have no
definitive medical treatment. The molecular targets of AB5 toxins reside in the cytosol of infected
cells, and the toxins reach the cytosol by trafficking through the retrograde membrane transport
pathway that avoids degradative late endosomes and lysosomes. Focusing on Shiga toxin as the
archetype member, we review recent advances in understanding the molecular mechanisms
involved in the retrograde trafficking of AB5 toxins and highlight how these basic science
advances are leading to the development of a promising new therapeutic approach based on
inhibiting toxin transport.

Introduction
AB5 toxins are a biomedically important class of bacterial exotoxins that cause devastating
human diseases. Prominent members of this class include Shiga toxin (STx), which causes
life threatening diarrhea, dysentery, hemorrhagic colitis and hemorrhagic uremic syndrome;
cholera toxin (CTx) and E. coli heat labile enterotoxins, which cause endemic and epidemic
diarrhea; and pertussis toxin (PTx), which is the causative agent for whooping cough [1, 2].
Each year, infections with these toxin producing bacteria affect millions of individuals and
cause more than a million deaths [1].

AB5 toxins are so-called because they are formed by the association of a single A subunit
with a pentameric B-subunit (Fig.1) [1, 2]. The toxins exert their cytotoxic effect by altering
the activity of specific molecular targets in the cytosol of infected cells. STx blocks protein
synthesis by removing a single adenine residue from the 28S ribosomal RNA, and CTx and
PTx increase cAMP levels by ADP-ribosylating the Gsα or Giα components of
heterotrimeric G-proteins respectively [1, 2]. While the catalytic activity of the toxins reside
in the A subunit, retrograde trafficking is mediated by the pentameric B-subunits [1]. As
retrograde trafficking is a prerequisite for productive infections, there is significant interest
in designing small molecule inhibitors of B subunit trafficking that may be therapeutically
useful [3-5].

Over the last two decades, the transport of STx has been more extensively studied than other
AB5 toxins. Consequently, our understanding of STx transport is more advanced than that of
other toxins. However, studies performed on other AB5 toxins suggest that there are
common thematic and conceptual similarities in toxin transport although specific molecular
factors may differ. Here we review the important steps in the retrograde trafficking of AB5
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toxins with a specific focus on STx transport and summarize recent progress in developing
small molecule inhibitors of toxin trafficking.

Retrograde trafficking to the endoplasmic reticulum
STx and other AB5 toxins follow an elaborate retrograde trafficking pathway to reach the
cytosol from the cell exterior. Trafficking, mediated by the B-subunits, begins at the plasma
membrane where the toxins bind cell surface receptors. After internalization, the toxins
sequentially traffic through sorting endosomes and the Golgi apparatus to reach the
endoplasmic reticulum from where the A-subunit is translocated to the cytosol (Fig.2)
[6-11]. Studies on toxin trafficking have contributed immensely to our understanding of
retrograde transport in general. Work on STx demonstrated, for the first time, that
exogenous proteins internalized by endocytosis can be transported to the Golgi apparatus
and the endoplasmic reticulum [12]. Later studies on STx led to the discovery of the direct
transport pathway between sorting endosomes and the Golgi apparatus that bypasses
degradative late endosomes [13]. Numerous endogenous proteins are now known to traffic
via the retrograde pathway suggesting that the toxins co-opt a pre-existing endogenous
pathway.

Endocytosis—The glycolipid globotriaosylceramide (GB3) acts as the functional cell
surface receptor for STx [14-16]. Receptor binding is essential for endocytosis. Mice
depleted in the GB3 synthase gene are resistant to Shiga toxicosis [17], and in humans,
endothelial cells of the microvasculature are primary targets of STx because they express
high levels of GB3 [18, 19].

Clathrin-dependent endocytosis: Studies show that both clathrin dependent and
independent processes are involved in STx endocytosis (Fig.3). Ultrastructural analyses
performed on HeLa cells incubated with STx reveal that at low temperatures (0°C), STx
diffusely binds the plasma membrane but a short incubation at 37°C leads to accumulation
of STx in coated pits, which are sites of clathrin-mediated endocytosis, as well as in
uncoated pits [20]. When clathrin mediated endocytosis is blocked by depleting clathrin
heavy chain using small interfering RNA (siRNA), STxB endocytosis decreases by ~40%
while the same conditions reduce endocytosis of the clathrin pathway marker transferrin by
~80% [21]. Moreover, expression of dominant negative mutants of epsin or eps15 (proteins
required for clathrin mediated endocytosis) reduce the endocytosis of the B-subunit of STx
[(STxB), which shows similar transport kinetics to the STx holotoxin], by 40-50% but
inhibit transferrin endocytosis by ~70% [22]. The fact that interfering with clathrin inhibits
but does not abolish STxB endocytosis implies that clathrin independent pathways
internalize a proportion of the toxin. Further, endocytosis assays performed over longer time
frames suggest that clathrin independent pathways can compensate for the loss of clathrin
function with time. Time course analysis performed in cells treated with anti-clathrin siRNA
show that STxB endocytosis is ~30% less than control at 10 min but becomes equal to
control by 40 min [23]. Additionally, when clathrin function is inhibited by K+ depletion or
hypertonic treatment (these treatments disperse membrane associated clathrin lattices), there
is no difference in STxB internalization into control or clathrin-inhibited cells at 60 min
[24].

Clathrin-independent endocytosis: In comparison to clathrin mediated endocytosis, our
understanding of the mechanisms involved in clathrin independent endocytosis is in its
infancy. The pathways currently known have been classified into two major categories,
dynamin dependent and independent, based on whether they require dynamin for membrane
scission [25]. These categories have been further sub-divided according to known molecular
requirements e.g. caveolae-mediated and RhoA-regulated in the dynamin dependent
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category, and Cdc42-regulated and Arf6-regulated in the dynamin independent category
[25]. Further, the actin based endocytic processes of macropinocytosis and phagocytosis are
also clathrin independent and not included in the above classification [25]. The role of
individual clathrin independent pathways in STx endocytosis has not yet been rigorously
investigated but, at the minimum, there is clear evidence that dynamin independent
internalization can take place. One study reported that inhibition of dynamin activity by
expression of a dominant negative mutant of dynamin (K44A) reduces STx endocytosis by
only ~30-35% [21]. While the reduction in STx endocytosis is likely due to loss of clathrin-
mediated internalization, which is also dynamin-dependent, the remaining STx endocytosis
shows the participation of dynamin and clathrin independent endocytic pathways.
Expression of dominant negative mutants of RhoA and Cdc42 also partially inhibits STx
endocytosis, indicating that both RhoA and Cdc42 are required for optimal STx endocytosis
[26]. Like dynamin, Rho GTPases play a role in clathrin-mediated endocytosis thus it is
unclear whether the inhibitory effect is due to an effect on clathrin dependent or independent
endocytosis. In contrast, dominant negative Cdc42 expression does not affect transferrin
endocytosis indicating that the requirement of Cdc42 for STx endocytosis is independent of
clathrin [26]. Remarkably, binding of STxB to GB3 containing cellular or model membranes
induces narrow tubular invaginations [27]. This provides a mechanism for clathrin-
independence since the toxin acting from the cell exterior is capable of inducing membrane
curvature changes similar to those that clathrin promotes from the cell interior. While it is
clear that STx utilizes both clathrin dependent and independent pathways to enter into cells,
quantifying the exact contribution of individual endocytic pathways is difficult, if not
impossible, because of cross talk between pathways and compensatory mechanisms that are
activated when one or more pathways are blocked. Interestingly, work on CTx reveals that it
also enters cells via clathrin dependent and independent mechanisms with the exact
contribution of each pathway depending on the cell type studied and experimental system
used [9, 28-30].

Modulation of internalization: In addition to exploiting endocytic pathways for uptake,
recent work suggests that STx also modulates the activity of the cellular trafficking
machinery to facilitate its own internalization and transport. Electron microscopy studies
reveal that upon treatment with STx there is ~28-38% increase in the number of clathrin
coated pits per unit plasma membrane [31]. Similarly, cells treated with STxB show ~60%
increase in plasma membrane spots positive for the clathrin adaptor AP2 [31]. The
mechanism by which STx induces clathrin recruitment to the plasma membrane is not fully
understood but available data suggests that signaling via syk, a cytosolic tyrosine kinase, is
important. Exposure of cells to STx for 5 min increases the level of phosphorylation of a
variety of proteins including syk and clathrin heavy chain [32]. Phosphorylation of syk
activates the kinase and inhibition of syk activity blocks both STx-induced clathrin
phosphorylation and AP2 membrane recruitment indicating that syk is required for these
events [31, 32]. Further, syk inhibition using siRNA or treatment with the small molecule
inhibitor piceatannol also reduces STx endocytosis indicating that syk is required for
optimal STx uptake [32]. The idea that clathrin phosphorylation enhances its recruitment to
the plasma membrane is supported by the finding that epidermal growth factor induces
tyrosine phosphorylation of clathrin heavy chain at a specific site required for epidermal
growth factor endocytosis [33]. It is now important to identify the clathrin residues
phosphorylated during STx endocytosis, determine the molecular effects of this
phosphorylation on coated vesicle formation and test whether the block in STx endocytosis
on syk inhibition is due to a block in clathrin heavy chain phosphorylation. Finally, in
addition to clathrin mediated endocytosis, recent work suggests that STx increases
microtubule assembly in a syk-independent manner, and the altered microtubule dynamics
facilitate retrograde transport of the toxin [34]. Overall, STx uses multiple pre-existing
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endocytic routes and also activates diverse signaling pathways that enhance its cellular
uptake.

Endosome-to-Golgi transport—After endocytosis, STx traffics to sorting endosomes
from where the toxin is transported to the Golgi apparatus. Direct transport from the sorting
endosome to the Golgi apparatus is essential for intoxication because it diverts the toxin
away from late endosomes and lysosomes where degradative proteolytic enzymes are active.
Over the past few years, a number of cytoplasmically-disposed molecular factors required
for endosome-to-Golgi transport of STx have emerged (Table1). Briefly, at the level of the
endosome, formation of Golgi directed transport intermediates requires clathrin, the clathrin
adaptor epsinR, and the retromer complex (Fig.4) [21, 23, 35-37]. Excellent reviews
describing how clathrin and retromer may co-ordinate endosome tubulation to mediate STx
transport are available [10, 11]. Several other factors including dynamin are also required
(see Table 1) [5, 21, 26, 34, 37-46]. Factors required for fusion with the trans Golgi network
include the tethers golgin97, golgin245 and GCC185, and two SNARE complexes
(syntaxin6, syntaxin16, Vti1a, Vamp3/4 and syntaxin5, Ykt6, GS15, GS28) [40, 47-50].
However, we do not yet have a complete picture of how these factors come together to sort
STx to the Golgi. A particularly challenging problem is that STx and other AB5 toxins are
completely contained within the lumenal compartment and do not directly communicate
with the cytosolic trafficking machinery. Below, we discuss the challenges faced by
lumenally restricted cargo in trafficking out of sorting endosomes and highlight possible
mechanisms involved in STx sorting.

Constraints of geometric sorting: Transport of proteins from the sorting endosome to other
subcellular destinations such as the recycling endosomal compartment, plasma membrane
and the Golgi apparatus occurs via numerous narrow-diameter membrane tubules [51].
Cargo that is not specifically sorted into an endosomal membrane tubule reaches the late
endosome due to endosome maturation. As lysosomal hydrolases are active in the late
endosomal compartment, transport to the late endosome is generally coupled with cargo
degradation. As much as 80% of the sorting endosome membrane surface area, but very
little of its lumenal volume, is pinched off into membrane tubules [51]. Consequently, in the
absence of specific targeting mechanisms, membrane proteins are abundantly present in
tubules whereas lumenal cargo mostly distributes into the degradative path. Thus, the
geometric nature of endosomal sorting provides a first order mechanism for delivering
soluble lumenal cargo to late endosomes for degradation while protecting membrane
receptors and other membrane bound cargo from the same fate. Current data suggest that
AB5 toxins use protein- and lipid-based sorting mechanisms to sort to the Golgi and
overcome what might otherwise be a geometric bias toward trafficking to late endosomes/
lysosomes.

Protein-based sorting: Arguably, the most straightforward mechanism for AB5 toxin
sorting into Golgi-directed membrane tubules is to interact with a cellular receptor
undergoing endosome-to-Golgi transport. Surprisingly, it was only recently that a strong
candidate receptor emerged and it appears to be highly specific for STx (Fig.4).

GPP130 is a dimeric transmembrane protein of unknown function that constitutively cycles
between sorting endosomes and the Golgi apparatus [52-54]. STxB directly binds GPP130 at
the lumenal side of its transmembrane domain in a region strongly predicted to form a long
coiled-coil structure [5]. In the absence of GPP130, STxB fails to traffic to the Golgi [5, 55]
and instead accumulates in lysosomes where it is degraded [5]. Binding of STxB to GPP130
and cycling of GPP130 are both required for STxB Golgi transport because transport is not
supported by mutated versions of GPP130 that lack either the STxB binding site or a
sequence stretch known to be critical for GPP130 cycling [5]. The identity of the cytosolic
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factors that mediate endosomal sorting of GPP130 remains unknown. There is a chance to
elucidate the mechanism of STx sorting if it can be shown that the GPP130 cytoplasmic
domain interacts with one or more of the cytosolic factors already implicated in STxB
sorting (Fig.4 & Table 1).

Although other toxins may similarly co-opt host proteins that traffic from sorting endosomes
to the Golgi apparatus, it is unlikely that GPP130 plays a role in their trafficking. CTx
undergoes normal trafficking to the Golgi in the absence of GPP130 [5] and GPP130 fails to
bind closely related variants of STxB (unpublished). Nevertheless, a detailed
characterization of the GPP130-STxB binding interface may lead to the discovery of related
receptors for other AB5 toxins.

Contribution of membrane lipids: In addition to protein based sorting, the properties of
membrane lipids and the surface glycolipid receptors that the toxins bind may contribute to
retrograde transport. Cholesterol depletion, which is employed to disrupt membrane
microdomains, blocks the retrograde transport of STx [43]. Both STxB and its surface
receptor GB3 are recovered with cholesterol enriched, detergent resistant membrane
preparations [56-58]. However, interpretation of these findings is complicated. Positioning
of transmembrane domain containing proteins such as GPP130 may also influence, and be
influenced by, surrounding lipids and membrane curvature. While it is not yet known
whether STx remains bound to GB3 after transport to the sorting endosome, GB3 may be
involved in the endosomal sorting of STx in at least two ways. First, GB3 may increase
concentration of the toxin in a microdomain that contains GPP130 thereby increasing
likelihood of toxin-receptor interaction. Alternatively, GB3 and GPP130 may interact with
the toxin co-operatively thereby increasing the retention of the toxin in the microdomain.
That the transport of other AB5 toxins may similarly depend on membrane characteristics is
suggested by the finding that CTxB retrograde transport is blocked by depletion of either
cholesterol or the microdomain associated protein flotillin [28, 29, 59].

Golgi-to-endoplasmic reticulum transport—After reaching the Golgi apparatus, STx
is transported to the endoplasmic reticulum. Studying the Golgi-to-endoplasmic reticulum
transport of STx and other AB5 toxins has proved challenging in part because perturbation
of trafficking at this step frequently alters transport from sorting endosomes. Endogenous
markers of Golgi-to-endoplasmic reticulum transport mostly depend on the COPI vesicle
coat complex. Best characterized is the recognition of a lumenally disposed KDEL motif in
cargo by the transmembrane KDEL receptor, which in turn, interacts with the cytosolic
COPI coat causing concentration of receptor-bound cargo complex in COPI vesicles that
traffic to the endoplasmic reticulum [60-65]. However, neither STxB nor CTxB contain a
KDEL motif and their transport is COP-I independent [66-68]. Note that the A subunit of
CTx does have a KDEL motif which acts once the subunit has separated from the holotoxin.
Instead of showing COP-I dependence, STxB transport is blocked by expression of a GDP-
restricted dominant negative variant of the Rab6 GTPase [66, 67]. Rab6 has two isomers
(Rab6a and Rab6a’) that differ in 3 amino acids, and Rab6a’ but not Rab6a is required for
STx transport [41]. It is important to note that inhibition of Rab6a’ activity by siRNA-
mediated depletion or dominant negative expression also has a strong inhibitory effect on
endosome-to-Golgi transport (~70% block in STx transport to Golgi) [40, 41]. Therefore,
conclusions about the role of Rab6a’ in STx transport at the Golgi-to-endoplasmic reticulum
step are necessarily complicated. Further confusing matters, CTxB transport is Rab6
independent [69]. Overall, much remains to be learned concerning the presumably
complicated process of toxin movement across the Golgi and into the endoplasmic
reticulum. The identification of GPP130 as a receptor for STx transport to the Golgi raises
the question of where and by what mechanism the toxin is released from GPP130 in
preparation for its subsequent trafficking steps. Based on past difficulties, it may be that
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recent advances allowing acute and/or spatially-restricted inactivation of proteins [70] will
be necessary to identify factors mediating post-Golgi transport of STx and other toxins.

Translocation to the cytosol—Once the toxins reach the endoplasmic reticulum, the
active component of the A subunits are transported to the cytosol. Several lines of evidence
suggest that the toxins exploit the endoplasmic reticulum associated degradation pathway to
reach the cytosol, and that their retro-translocation occurs via the sec61 translocon [71-75].
Prior to the retro-translocation step, the catalytically active part of the A-subunit must
separate from the rest of the toxin. We have a better understanding of the mechanisms
involved in the retrotranslocation of CTx than STx. In CTx, the A subunit is present in the
toxin particle as two cleaved but disulfide bonded chains A1, which is the catalytic moiety,
and A2 [76]. In vitro studies show that the endoplasmic reticulum chaperone, protein
disulfide isomerase, binds and unfolds A1, releasing A2 [71, 72]. The A1 subunit is
subsequently translocated across the membrane by the sec61 translocon [73]. The A-subunit
of STx is also proteolytically cleaved for optimal toxicity. Unlike CTx, which is cleaved
after synthesis by a bacterial protease [76], STx cleavage is primarily mediated by the furin
protease in the trans Golgi network and/or endosomes [77, 78]. Protein interaction studies
show that STx can form a complex with several endoplasmic reticulum chaperones (HEDJ,
a luminal Hsp40 chaperone; BiP and GRP94) and the sec61 translocon [74, 75]. While
direct evidence is lacking, the above results suggest that, similar to CTxA, STxA is unfolded
by endoplasmic reticulum chaperones and transported to the cytosol by the sec61 translocon.
Mechanisms by which the active A-subunits interact with endoplasmic reticulum
chaperones, functional relevance of toxin-chaperone interactions, and the process by which
the toxin-chaperone interactions are linked with the sec61-mediated toxin retro-translocation
are as yet unknown.

Blocking trafficking as a therapeutic strategy
Diseases caused by AB5 toxins do not have definitive treatments. As retrograde transport is
essential for cytotoxicity, small molecules and drugs that block toxin transport represent a
promising therapeutic strategy. Targeting the sorting endosome-to-Golgi transport step is
particularly attractive because blocking transport at this step may re-route the toxin to
degradative late endosomes and lysosomes.

Haslam and colleagues screened a chemical library of 14,400 small molecules and identified
two inhibitors of STx transport [3]. Using inhibition of protein synthesis as a measure of
toxicity, they observed that treatment of Vero cells with these compounds yields a protection
factor (ratio of the IC50 of STx with drug treatment over that without drug treatment) range
from 15 to 103 [3]. They further reported that these compounds also protect against ricin-
induced block in protein synthesis in cell culture [3] (ricin is a plant toxin that traffics via the
retrograde pathway and induces cell death by inhibiting protein synthesis [79]). However,
the ability of these compounds to protect against STx or ricin-induced death in animal
models is not known. Further, the molecular targets and mechanisms of action of these
compounds are also not known.

A separate screen of 16,480 small molecules by Johannes and colleagues identified two
inhibitors of toxin transport, named retro-1 and 2 [4]. Both these compounds effectively
protect against STx1 and STx2-induced block in protein synthesis in cell culture. (Note that
STx1 and STx2 are produced by E. coli. STx1 is 100% identical to STx, produced by
Shigella, in the B-subunit and has a single conservative serine to threonine substitution in
the A-subunit. STx2 is ~55% identical to STx [80]) The protection factors for retro-1 and -2
are 22 to 42 for STx1 and 65 to >100 for STx2 respectively. These compounds block STxB
transport at the sorting endosome-to-Golgi step. The mechanism of action is still not clear
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but the localization of the SNARE proteins syntaxin5 and, to a lesser extent, syntaxin6 are
altered in drug-treated cells [4]. Surprisingly, although syntaxin6 mediates the retrograde
transport of various endogenous cargo proteins (e.g. TGN46) [81], and syntaxin5 is also
required for endoplasmic reticulum-to-Golgi and intra-Golgi transport [82], treatment with
retro-1 and 2 does not block retrograde transport of endogenous cargo including TGN46 [4].
However, treatment with these compounds blocks retrograde transport of CTxB and protects
against ricin induced block in protein synthesis in cell culture suggesting that the compounds
are somehow specific to exogenous toxins [4]. Importantly, treatment with retro-2 protects
against ricin toxicity in a mouse model underlining the therapeutic promise of the compound
[4]. The protective effect against STx and CTx in animal models remains to be tested. A
recent attempt to modify retro-2 led to the identification of a dihydroquinazolinone
derivative that exhibits ~200 % improvement in the protection factor in cell culture studies
but the effectiveness of this compound in animal models has not yet been tested [83].

By what seems to be an unrelated but opportune occurrence, the physiological role of the
STx receptor GPP130 may be related to manganese (Mn) homeostasis. Remarkably,
exposure of cells to non-toxic doses of extracellular Mn induces rapid degradation of
GPP130 leaving STx without its trafficking receptor (Fig.5) [5, 84, 85]. Mn-induced
GPP130 downregulation requires a Golgi-localized Mn pump, a lumenal sequence stretch in
GPP130, and Golgi-to-late endosome trafficking suggesting that a rise in Golgi Mn diverts
GPP130 to late endosomes and then lysosomes [84, 85]. Mn blocks STx trafficking and the
block is solely due to loss of GPP130 because STx trafficking is rescued in Mn-treated cells
if they express a Mn-insensitive variant of GPP130 [5]. Further, treatment with Mn provides
>3800 fold protection against STx1-induced cell death in culture and studies in mice reveal
that Mn completely protects against STx1-induced death in vivo [5]. Although prolonged
exposure to high levels of Mn can cause neurotoxicity [86], the duration and concentration
of effective doses are non-toxic [5]. It is unlikely that Mn can be used to protect against
STx2-induced disease because GPP130 appears to interact only with the identical B subunits
of STx and STx1 (submitted manuscript under revision). However, a vast majority of all
STx infections worldwide occur due to STx-producing Shigella infections in developing
nations [87]. The prospect of using Mn as a treatment for these infections is appealing due to
its low cost and easy availability. Further, the toxicology of Mn is well-studied, the
molecular target is known and Mn can potentially be given prophylactically during epidemic
outbreaks of S. dysenteriae.

While these studies are promising, further work is needed to develop the aforementioned
small molecules and drugs. Animal studies with the retro compounds and Mn used pre-
treatment protocols where the animals were given the drug prior to toxin exposure.
Importantly, with STx, life-threatening complications develop several days after onset of
enteric symptoms, providing an opportunity for treatment after diagnosis. Nevertheless,
studies are now required to determine whether these drugs can protect against toxicity when
given during or after toxin exposure. Further, the protective effect of Mn and the retro
compounds in animals was evaluated using purified protein forms of the toxin but not
bacterial infection models. While utilizing the purified toxin provides the most virulent form
of toxicity, studies are now required to determine whether these drugs can protect against
STx and other toxin-induced diseases when animals are infected with toxin producing
bacteria.

Concluding remarks
In conclusion, advances made in understanding the cell biology of retrograde toxin transport
are leading to the development of promising new therapeutic options. Further development
of current experimental drugs retro-1, retro-2, and Mn needs to be aggressively pursued to
develop approved treatments for infections caused by toxin-producing bacteria.
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Additionally, understanding the molecular basis of the endosomal sorting of AB5 toxins and
determining whether endosomal receptors, like GPP130 for STxB, mediate the endosome-
to-Golgi transport of other AB5 toxins is also essential. Such studies will enable us to
generate new small molecules that can specifically block the ability of AB5 toxins to sort
and traffic to the Golgi apparatus but leave endogenous cargo proteins unaffected. Blocking
endosome-to-Golgi transport is therapeutically attractive because, as shown with Mn,
inhibiting transport at this step can rapidly clear the toxin from infected cells due to
degradation in late endosomes and lysosomes. Drugs that only selectively target toxin
trafficking without affecting other cellular processes are likely to be safer and more effective
alternatives in human patients.
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Figure 1.
Subunit structure of AB5 toxins. Shiga toxin (STx, PDB ID: 1R4Q, [88]) and Cholera toxin
(CTx, PDB ID: 1XTC, [89]) are compared as representative members of the AB5 toxin
family. Each subunit is distinctly colored. Catalytic A subunits have a single alpha helix
penetrating the center of the pentameric B subunits. The basal surface of the B subunit
pentamer contains binding sites for the glycolipid receptors and is shown in the lower panel.
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Figure 2.
Retrograde trafficking pathway of AB5 toxins. Toxins bind the cell surface, undergo
endocytosis and enter sorting endosomes where they move into Golgi-directed tubular
extensions. Trafficking to the Golgi bypasses degradative late endosomes (LE) and
lysosomes. From the Golgi the toxins move to the endoplasmic reticulum and then the A-
subunits are transported to the cytoplasm where they affect specific molecular targets.
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Figure 3.
Clathrin-dependent and -independent endocytosis of STx. The schematic diagram shows
speculative relationship of two of the pathways by which STx gains access to the cell
interior. Components known to be required in the respective pathways are highlighted. Also
indicated are the upregulation of the clathrin-mediated pathway by STx-induced syk
signaling and the ability of STx itself to induce membrane curvature leading to non-clathrin
mediated internalization.
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Figure 4.
Endosomal sorting of STx into Golgi-directed tubules. A. The schematic diagram shows
STx binding the GPP130 ectodomain promoting its entry into Golgi-directed membrane
tubules. Other membrane tubules participate in other pathways such as recycling to the
plasma membrane. The remaining endosomal central cavity becomes part of degradative late
endosomes and then lysosomes. Cytoplasmic sorting factors that mediate STx trafficking
and may directly or indirectly interact with the GPP130 cytoplasmic domain are listed. B.
Hypothetical sorting complex showing STx oriented with its basal surface binding the
membrane and its B subunit sidewall binding the coiled-coil stem domain of GPP130. Other
GPP130 domains indicated are its cytoplasmic (cyto), transmembrane (TMD) and acidic
domains.
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Figure 5.
Mechanism of manganese (Mn) protection against STx (reprinted from [5], Supplemental
Fig. 16). In control cells (-Mn), the Golgi-to-endosome cycling of GPP130 is depicted in
blue and the GPP130-dependent retrograde trafficking of STx is depicted in red.Manganese
addition (+Mn) diverts GPP130 to lysosomes leaving STx without a receptor for sorting into
Golgi-directed endosome tubules. Consequently, STx is degraded in lysosomes.
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Table 1

Factors required for sorting endosome-to-Golgi transport of STx.

Factor Function Reference

Clathrin Coat [23], [21]

Retromer Presumptive coat; senses/ induces membrane curvature

    SNX1 [35]

    Vps26 [36]

    Vps35 [37]

Epsin R Clathrin adaptor [23]

RME-8 DnaJ protein; retromer and Hsc70-interacting partner; proposed to link retromer to
Hsc70

[37]

Hsc-70 Clathrin uncoating ATPase; RME-8 interacting protein; proposed to uncoat clathrin
from endosome tubules

[37]

Hrs ESCRT-0 subunit; clathrin and retromer interacting protein; proposed to compete with
RME-8 for retromer binding

[37]

Dynamin Membrane scission [21]

EHD3 Eps15 homology domain protein; Knockdown alters SNX1 localization. [38]

Rabenosyn-5 EDH3 interacting protein; Rab4/5 effector; knockdown alters SNX1localization. [38]

GPP130 Endosomal receptor [5]

OCRL1 PI(4,5)P2 5-phosphatase; clathrin interacting protein [39]

Rab6a’ small GTPase [40], [41]

Rab11 small GTPase [42]

Cdc42 GTPase [26]

ARHGAP21 Cdc42 GTPase activating protein [26]

Arl1 small GTPase [48]

Golgin97 Tether, Arl1 effector [48]

Golgin245 Tether, Arl1 effector [47]

GCC185 Tether [49]

Syntaxin6,Syntaxin16, Vti1a, Vamp3/4 SNARE complex [40]

Syntaxin5, Ykt6, GS15, GS28 SNARE complex [50]

Microtubules Cytoskeletal component [34]

Actin Cytoskeletal component [26]

Dynein Motor [34]

Cholesterol Microdomain organization [43]

V-ATPase Proton pump [44]

p38 Kinase [45]

PKCδ Kinase [46]
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