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Abstract The implementation of Hubel-Wiesel hypoth-

esis that orientation selectivity of a simple cell is based on

ordered arrangement of its afferent cells has some diffi-

culties. It requires the receptive fields (RFs) of those gan-

glion cells (GCs) and LGN cells to be similar in size and

sub-structure and highly arranged in a perfect order. It also

requires an adequate number of regularly distributed sim-

ple cells to match ubiquitous edges. However, the ana-

tomical and electrophysiological evidence is not strong

enough to support this geometry-based model. These strict

regularities also make the model very uneconomical in

both evolution and neural computation. We propose a new

neural model based on an algebraic method to estimate

orientations. This approach synthesizes the guesses made

by multiple GCs or LGN cells and calculates local orien-

tation information subject to a group of constraints. This

algebraic model need not obey the constraints of Hubel-

Wiesel hypothesis, and is easily implemented with a neural

network. By using the idea of a satisfiability problem with

constraints, we also prove that the precision and efficiency

of this model are mathematically practicable. The proposed

model makes clear several major questions which Hubel-

Wiesel model does not account for. Image-rebuilding

experiments are conducted to check whether this model

misses any important boundary in the visual field because

of the estimation strategy. This study is significant in terms

of explaining the neural mechanism of orientation detec-

tion, and finding the circuit structure and computational

route in neural networks. For engineering applications, our

model can be used in orientation detection and as a simu-

lation platform for cell-to-cell communications to develop

bio-inspired eye chips.

Keywords Simple cell � Ganglion cell � Receptive field �
Orientation selectivity � Orientation detection

Introduction

Orientation detection importance in scene perception

From a semantic perspective, orientations are a type of

geometrical features at the intermediate level, between the

lower pixel level and the higher shape level. Almost all

images, from natural scenes to man-made environments,

contain a rich amount of information about orientations.

Besides their universality, orientations always provide

essential structural clues to form the semantics of an image.

Also, as a type of feature, orientations are the results of

integration, and begin to have semantic attributes. Itti and

Koch (2001) proposed a saliency map model for visual

search that is underlain by detected orientations and lines as

key features. Orientation detection is task-independent and

indispensable to image understanding. These aspects make

orientations one of the most fundamental and general kinds

of features for image representation. Comparing mammal

vision and machine vision, the former is not as powerful as

the latter when distinguishing minute differences. Human

eyes are absolutely imprecise compared with a laser range-

finder, sonar or a light meter. The real and dominant

advantage of human vision is its ability to quickly grasp the
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overall meaning of image. There have been many researches

on the integrations of oriented edges for object recognition

related tasks (Sakai and Nishimura 2006; Craft et al. 2007;

Mihalas et al. 2011; Wagatsuma et al. 2008; Sajda and Baek

2004).

Orientation detection problems in traditional digital

image processing

Many studies of orientation detection have been conducted

in traditional digital image processing. Generally, the

process can be realized in two steps: the first step is edge

detection, the pixels with large gradient values of gray-

level are marked as edges (all of the pixels are merely

discrete points); the second step is line detection, collinear

edges are aggregated and then the line equations which best

fit these points are found. However, these methods are

normally based on combinations, searches and optimiza-

tions. There are several drawbacks including high algo-

rithm complexity, sensitivity to parameter selection, few

interventions with high level knowledge.

Also, problems such as how to combine the results of

orientation detection processes, how to produce a high

level structure description for the image content and how to

formalize these processes are extremely difficult successive

operations. Line detection algorithms cannot generate an

abstract and spatial organization for the detection results.

In other words, the generation of an explicit symbolic

representation to reflect the spatial correlation of the lines

is not the object of line detection. Therefore, traditional

representation of the orientations using a concise mathe-

matical vector is not necessarily appropriate for the follow-

up tasks such as searching, combination and optimization,

despite its low memory cost.

Orientation detection in the brain

According to the neurobiological studies on the neural

mechanism of vision, a multi-level network with a feed-

back control can achieve orientation detection instanta-

neously, and the results are eventually stored in the primary

visual cortex. The GCs and the LGN cells play important

roles in orientation detection. These two level cells serve as

inevitable links between the levels of stimuli and the level

of meaning. The concentric RFs of GCs and LGN cells are

responsible for the primary integrations of physical stimuli,

and all the subsequent visual tasks stem from the repre-

sentation produced by these cells. It is found that the ori-

entation preference maps caused by correlated visual

stimuli show geometrical regularities similar to those

observed in natural images (Tang et al. 2011). Hubel and

Wiesel, two Nobel Prize laureates, proposed a famous

hypothesis about the construction of simple cells’ RFs.

This theory has become the basic model for the visual

cortex to perceive and represent orientations in the outside

world.

Potential difficulties with Hubel-Wiesel hypothesis

Hubel and Wiesels hierarchical model of simple cell RFs

assumes that a V1 simple cell receives inputs from several

LGN cells. The ultimately equivalent RFs of these LGN

cells in the visual field are lined up in a regular band. This

enables the simple cell’s selectivity to the orientation of a

light bar. From a computational perspective, this kind of

simple cell model with a geometric regularity in its RF

pays no cost for the calculation. However, the correctness

of this geometric-based model has not yet been proved.

Anatomical studies have shown that a simple cell truly

receives the outputs of multiple lined-up LGN cells.

However, this does not sufficiently prove that the

achievement of orientation can be attributed only to the

fact that several LGN cells’ RFs are covered by the iden-

tical stimulus patterns and then produce the same

responses.

The assumptions behind this idea are fairly idealized. (1)

The RFs of the LGN cells and the GCs are required to be

arranged in a very orderly manner in the visual field.

Specifically, the center regions of the concentric RFs

should be arranged collinearly. (2) The size of each RF is

required to be uniform. (3) On-cell and off-cell structures

are required to be arranged in an orderly fashion. (4) The

light stimulus bar should be moderate in width and cover

several RFs in almost the same fashion. (5) In order to

precisely detect all orientations with different slopes at

different positions, the distribution of all cells and their

RFs is therefore required to be highly ordered. These ini-

tialization constraints seem to be much idealized for a

biological system, and make it difficult to be generated or

evolved. Alonso et al. (2001) has reported these factors’

negative effects on orientation selectivity acquisition.

Meanwhile, doubts have been expressed about this

classical hypothesis (Sompolinsky and Shapley 1997;

Wielaard et al. 2001; Ferster and Miller 2000). This

hypothesis has been considered insufficient in its original

state (Lauritzen and Miller 2003). Other models describing

the mechanism of simple cells have been proposed. Some

of these models studied new structures of the RFs (Hansen

et al. 2000; Kara et al. 2002; Lee et al. 2000; Liu et al.

2010), while others improved the theories of contrast-

invariant orientation tuning (Troyer et al. 2002). Some re-

examined the formation of orientation selectivity of the

simple cells (Bhaumik and Mathur 2003; Gardner et al.

1999; Wielaard et al. 2001). Yang et al. (2011) developed

a feed-forward hierarchy network constructing the circuitry

for orientation selectivity of the visual cortex. Alexander
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and Van Leeuwen (2010) introduced a hypothesis about the

organization of V1’s contextual response.

Cai et al. (2004) and Tao et al. (2004) studied the issues

such as how the function of the simple cell emerges in the

primary visual cortex and how to design a dynamics model.

Smyth et al. (2003), Stephen and Jack (2005) and Will-

more et al. (2000) discussed whether and how the simple

cells reflect the statistical features of natural images. Wallis

(2001) improved a linear filter commonly used to model

the simple cell. Rich et al. (2001) studied the spatio-tem-

poral effect of cAMP signals in the simple cell. McAdams

and Reid (2005) studied how the response of the simple

cell is influenced by attenuation. Norheim et al. (2012)

proposed a minimal mechanistic model for LGN relay ON

cells including feedforward excitation and inhibition from

retinal ON cells and excitatory and inhibitory feedback

from cortical ON and OFF cells. However, these previous

researches have produced few systematic conclusions for

the computational essence of the hierarchical RF-group.

We have thus continued to speculate that there may be

another type of computational strategy possible under the

same local neural connection.

A new model approach

Because the implementation of the standard model is dif-

ficult, simple cells may use some other method to detect

orientation. The standard model emphasizes a highly

ordered distribution of the GCs and LGN cells. This might

hide some serious problems, such as an over-crowded

arrangement and the inconsistency when sharing a cell and

blind spots for detection. We therefore think that such a

strict arrangement is not necessary as long as (1) single

GCs or LGN cell can recognize the edge falling in their

RFs (2) the simple cell can synthetically analyze the out-

puts from multiple lower LGN cells. Their behaviors are

similar to those of a board of directors making a decision

collectively, so the final determination must be acceptable

for every director. In this case, even randomly-distributed

GCs and LGN cells can also work, and this kind of dis-

tribution can greatly benefit the generation of the cell array

because several strong constraints can be ignored.

Our idea is that a simple cell uses multiple GCs or LGN

cells’ nonlinear responses to a light contrast, and recon-

structs an internal and subjective orientation to approach an

outside edge using constraint satisfaction and group deci-

sion. In other words, the difference between this new

hypothesis and the classical one is that it is an algebraic

model rather than a geometric model. Our brain responds to

outside stimuli and produces reasonable explanations for

them. This indicates a philosophical fact: what we see is not

reality but is only what we sense. It is an image or a virtual

reality, i.e. a result rebuilt by our brain. This inner image is

called a mental image, and it can be manipulated by the

neural system.

The results detected by GCs and LGN cells provide all

the data needed for subsequent visual cortex processing.

None of the complicated face, object or handwriting rec-

ognition processes can be independent of those data (De-

lorme and Thorpe 2001; Fukushima 2010; Kang and Lee

2002), and therefore considerable attention has been

devoted to the studies of the mechanisms of GCs and LGN

cells (Hennig and Funke 2001; Niu and Yuan 2007). Gong

et al. (2010) discussed the relationship between spike

timing correlation and pattern correlation is of GCs. Jing

et al. (2010) studied visual pattern recognition based on

spatio-temporal patterns of GCs’ activities.

As a special case of the Gabor function, the difference of

Gaussian (DOG) function is a concise and reliable model,

and its numerical form is also suitable for parallel com-

puting. DOG has also been proved to provide an accurate

explanation of the concentric RFs (Gomes 2002; Miikku-

lainen et al. 2005). The DOG function is widely used to

model RFs in the retina (Miikkulainen et al. 2005; Watson

and Ahumada 1989), and as a type of filter to detect con-

tour features (Grigorescu et al. 2004; Kolesnik et al. 2002;

Long and Li 2008; McKinstry and Guest 2001; Niu and

Yuan 2007; Serre et al. 2007). DOG has also been used to

join an implanted microchip and the neural tissue (Moril-

lasa et al. 2007), because it can stimulate GCs’ or LGN

cells’ responses, and the output signal of the microchip can

be explained and accepted by the neural tissue. Einevoll

and Plesser (2011) proposed an extended DOG model

incorporating cortical feedback for LGN cells.

In view of the benefits of the DOG model in simulating

cell response well, we use it to model the concentric RFs at

the bottom layer of our system. The innovations in our

work are as follows:

1. LGN cells are no longer required to be arranged

linearly in the simple cell’s RF. In the photoreceptor

layer, the equivalent concentric RFs of the LGN cells

are not required to share the same axis. Also, the sizes

of these RFs do not need to be unique.

2. This system makes heavy use of the response curve of

a GC or LGN cell, and emphasizes even a small

variance in the output signal, i.e. it carefully distin-

guishes the meanings of the different positions on this

curve.

3. This system improves the way in which the simple cell

recognizes orientations. The conventional method,

which simply counts whether all LGN cells in the

simple cell’s RF are activated, was abandoned.

Instead, the responses of the different LGN cells are

used as parameters in an instantaneous solution of a

constraint satisfaction problem.
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4. Considering that a limited and localized investigation

could not reflect the validity of this computational

mechanism, we establish a large-scale simple cell layer

to represent each possible orientation occurring in the

visual field. The balance between the functional

requirements and the hardware complexity is also

considered.

5. We establish a mathematical model accounting for

how a simple cell approaches the orientation process

by means of synthesizing multiple localized and

scattered guesses. A mathematical test is also con-

ducted to show the precision that this optimization

method can achieve, and the error estimation is also

considered.

Fig. 1 shows the mechanism of the Hubel-Wiesel model

(a) and that of our model (b). This paper puts forward a

new theoretical hypothesis, and attempts to make clear

several questions which Hubel-Wiesel model does not

account for. The novelty of this paper is the proposed

explanation of the working mechanism in the Hubel-

Wiesel model, and the validity of the explanation is

verified by the experiments.

Single Ganglion-cell modeling

The traditional DOG model

Conceptually, Rodieck (1965) introduced the DOG model

to mathematically describe the RF of a GC. This model has

proved successful in simulating the responses of major

types of GCs to stimuli (such as spot and bar stimuli,

grating drifting). The DOG model is a pair of overlapping

circularly-symmetric Gaussians (Fig. 2):

DOG x; yð Þ ¼ 1

2pd2
c

e
�x2þy2

2d2
c � 1

2pd2
s

e
�x2þy2

2d2
s

¼ acG x; y; dcð Þ � asG x; y; dsð Þ ð1Þ

where dc and ds are the standard deviations of the central

and surrounding Gaussians respectively, and a c and a s are

the peak sensitivities. The attractiveness of the DOG model

is the precision, simplicity and well-formed shape, which

benefits the simulations and mathematical analyses greatly.

It is therefore used to calculate the responses of GCs to

stimuli in our approach.

Using DOG model in a new way

The classical DOG model itself is not new, but we apply it

in a new way. In our system, a cell with a DOG-shaped RF

acts as a localized multi-valued decision maker.

Suppose that there is a sufficiently large stimulus of

grayness g1 that covers part of an RF. The grayness of the

background is g2. This causes an edge between the stimulus

and the background. In Fig. 3a, the area of the RF is S, and

the sub-area covered by the stimulus is A. The response R

of the GC or LGN cell to the stimulus can be calculated as

follows:

R ¼
ZZ

A

g1DOGðx; yÞdxdyþ
ZZ

S�A

g2DOGðx; yÞdxdy

ð2Þ

If the stimulus widens horizontally and continuously

over the RF, the percentage of the RF that is covered and R

Fig. 1 The differences between the two mechanisms. a A geometric hyopothesis. Logical calculation: RF1 ^ . . . ^ RFn !Simple_cell_active. b

An algebric optimization: y ¼ axþ b;min
Pn

i¼1
ðaxiþb�yiÞ2

a2þ1
� r2

i

� �2
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will change. Given the values of g1 and g2 (for example,

g1 = 251 and g2 = 1) and a distance d (Fig. 3a), the

response R is a function of the ratio d= 2rsð Þ (Fig. 3b). This

response curve is very similar to the results of biological

experiments (Fig. 3c). This proves that the use of the DOG

model for stimulation is feasible. Also, by varying the

values of g1, g2, and d, a three-dimensional surface where

g1 - g2 is the third variable can be plotted (Fig. 3d). The

grayness difference is chosen as a variable to emphasize

the fact that a boundary (i.e. an orientation) is the natural

result of two neighboring areas of different gray-levels or

colors. The most valuable use of this curved surface is to

decide on the varying scope of a variable, given the values

of the other two variables.

Using the response surface, a cell could roughly judge

the approximate position of an edge crossing its RF. We

now consider how this is achieved by a single GC or LGN

cell. First, when a shadow is being projected onto the RF of

a cell, the response R0 is calculated by the method men-

tioned above. The curved surface of that cell is then cut

vertically along the axis of d/2rs, and produces a response

curve according to the exact grayness difference between

the two sides of that shadow. This curve can be expressed

as a function R = f(d/2rs). By cutting the curve using a

Fig. 2 Gaussian function and DOG model. a Center and surround gaussians. b DOG model. c 3D immage of DOG

Fig. 3 A GC responding to

stimuli in its RF. a The shadow

widens horizontally over an RF.

b A GC’s response with respect

to the covrage pattern is a

function of ratio d=ð2rsÞ. c
Response of an on-center GC to

a contrast edge (Enroth-Cugell

and Robson 1966. d The

response surface with respect to

d=ð2rsÞ and g1 � g2)
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horizontal line R = R0, two intersections can normally be

obtained (Fig. 4a). Let bi, i = 1, 2 be the x - coordinates

of the two intersections, and each of them may correspond

to a possible position at which there is a boundary crossing

the RF (Fig. 4b, c). The distance r between the center of

RF and the boundary is expressed as:

ri ¼
rs � 2rsbi 0� bi� 0:5

; i ¼ 1; 2
2rsbi � rs 0:5\bi� 1

8<
: ð3Þ

We consider that the boundary orientation may be arbitrary,

i.e. any boundary with the same r can be a valid candidate

(Fig. 4d). Therefore, the boundary prediction made by this RF

is a concentric circle of radius r of the RF. This circle is a

tangent to all the candidate boundaries (Fig. 4e). Two

particular details must be considered carefully here: (1) when

the response R is close to zero, three possible intersections are

obtained (b 1 = 0, b 2 = 0.5, and b 3 = 1). In this case, the RF

will not to be used to calculate the boundary. (2) The smaller of

the two possible radii is generally chosen to avoid prediction

mistakes. Later, we will show that if the correct prediction

happens to be the larger radius, the lost area will be

compensated by the predictions of other RFs nearby.

Simple cell drawing on collective junior cells

In the previous section, with regard to the boundary of a

shadow, it has been shown that what a single GC or LGN

cell can judgeis no more than a tangent line. There are

infinitely many lines of this kind, and all of them are short

and localized in their spatial position. Luckily, there are

many cells in the RF of a simple cell, and the compound

visual field composed of all these cells has a very limited

area. This means that the stimuli that the cells received are

all very probably the same segment of a boundary. There-

fore, after each inferior cell produces its own speculation, a

superior cell seeks for a union guess subject to all the local

speculations and is scale-extended. If the speculation pro-

duced by a GC or LGN cell is regarded as a set of possible

boundaries with different positions and slopes, then the

union guess made by a superior cell is the conjunction of

Fig. 4 The procedures of

generating a speculation:

a usually, there are two

intersections generated by the

response R0. b, c are two

possible shadow patterns

corresponding to the response

given in (a). d Multiple

possibilities with different

orientations are shown

producing the same response.

e The common part of all

possibilities is a circle, and

every one of its tangent lines is

a candidate shadow boundary

366 Cogn Neurodyn (2013) 7:361–379

123



these small sets. The scope of this conjunction will reduce

dramatically, i.e. the union guess merely includes a few

possibilities that can satisfy every cell’s constraint. In other

words, a common boundary or several similar boundaries

may be found. This reveals a rational method used in a

simple cell to determine the position and the slope of a

boundary, because it can be done in a manner of parallel

distributed processing. This determination process is like

voting. A simple cell collects all the clues from its junior

cells and synthesizes them for a final determination. To

manifest this kind of feasibility, a computational model is

designed in this paper to carry out this guess-making task.

Figure 5 shows the hierarchical neural network used to

calculate the orientation value. This network is composed of

multiple back propagation (BP) sub-nets, and the neural

connections of each sub-net are strictly localized. Each sub-

net simulates a simple cell and its junior cells to implement

a collective voting process. The experimental results shown

later will prove that this kind of assembly network is suf-

ficient for the implementation of the new mechanism. We

choose the traditional BP because it is mature, and its

structure and its algorithm is simple and sound. More

importantly, if a plain neural network is able to implement a

collective voting function, then this function can be easily

implemented in the visual cortex since a hypercolumn

includes six layers of cells and complicated connections.

In this paper, an experiment based on the BP Toolkit in

Matlab is designed to train and test the network shown in

Fig. 5. Given the parameters and the coordinates, eight RFs

are distributed over a small region. A set of shadows is also

present in this region, and their boundaries swing in at an

angle of 20� in total. The orientation difference between

two adjacent boundaries is 0.5�, and thus the total number of

boundaries is 40. Also, boundaries are expressed as

y = ax ? b, where x and y are variables, and a and b are

parameters. For each shadow stimulus, the eight RFs gen-

erate their circular guesses to format an 8 9 1 vector as the

input of the network, and the two parameters of this

boundary constitute the corresponding output vector of the

network. This vector-pair composes a training sample. By

repeating this process, a training set can be generated. This

training set and the BP algorithm are then used to train the

network. The performance of the training process is shown

in Fig. 6. It can be seen that the ability to detect orientations

can be learned quickly, through no more than a few dozen

epochs. Afterwards, some test lines are randomly chosen to

format the input vectors, and the corresponding output of

this trained network is obtained. After that, we compare the

rebuilt lines with the original ones. The results shown in

Fig. 7 indicate that this network is precise for boundary

detection. This experiment proves that if there are natural

boundaries in the scene activating the neural system, then a

neural network to detect them could be formed very rapidly.

The mathematical nature of ensemble fitting

Numeric method

Our problem here is to find a common tangent line

y = ax ? b for a group of circles centered at

xi; yið Þ; i ¼ 1; 2; . . .; n. If the line does not exist, we seek the

line that minimizes
Pn

i¼1
yi�axi�bj jffiffiffiffiffiffiffiffi

a2þ1
p � ri

� �2

. The problem

now becomes a generalized least square. Apparently,

Fig. 5 A neural network model for orientation detection

Fig. 6 In Matlab BP toolkit, only 48 epochs are used to reduce the

error to 0.001
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min
Xn

i¼1

yi � axi � bj jffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p � ri

� �2

¼ min
Xn

i¼1

sgn yi � axi � bð Þ yi � axi � bð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p � ri

� �2

ð4Þ

where sgn xð Þ ¼ 1 for x C 0, and otherwise sgn xð Þ ¼ �1.

Let

where y!¼ y1; y2; . . .; ynð Þ, and z!¼ a; bð ÞT . We then

obtain a pair of equivalent minimizations:

min
Xn

i¼1

sgn yi � axi � bð Þ yi � axi � bð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1
p � ri

� �2

, min tD y!� r!� tDA z!
�� ��2

2
ð5Þ

and eventually this is found to be equivalent to solving the

following equation:

Fig. 7 Comparisons between the actual boundaries and the detected lines. The contrast stimuli with boundaries are generated in the x - y plane

D ¼

sgn y1 � ax1 � bð Þ 0 � � � 0

0 sgn y2 � ax2 � bð Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � sgn yn � axn � bð Þ

0
BBB@

1
CCCA; r!¼ r1; r2; � � � ; rnð Þ; t ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 1
p ;A

¼ x1 x2 � � � xn

1 1 � � � 1

� �
;
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tDAð ÞT tDAð Þ z!¼ tDAð ÞT � tD y!� r!
� 	

ð6Þ

However, because t is a function of a, an iterative method

is needed to find z!, i.e. iteratively substituting the value of

a into t and solving (6) until a becomes desirably precise.

Specifically, by introducing a pseudo-inverse matrix, we

have

z!nþ1 ¼ tnDnAð Þþ � tnDn y!� r!
� 	

¼ Aþ y!� 1=tnAþDn r!

ð7Þ

where the initial vector can be taken as z0 ¼ Aþ y!.

Convergence analysis

It can be easily verified that

We denote the first and the second rows of A? by u1
T and u2

T,

and denote the first and second elements of Aþ y! by c1 and

c2. By substituting them into (7), we obtain the explicit

computing process:

akþ1 ¼ c1 � uT
1 Dk r!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k þ 1
p

bkþ1 ¼ c2 � uT
2 Dk r!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k þ 1
p



ð9Þ

At the end of the kth iteration, if Dk does not change, i.e.

the position relationships between the target line and all the

circle centers are determined, then

akþ1 � akj j ¼ ut
1Dk r! ak þ akþ1ð Þ ak � akþ1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
k þ 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

kþ1 þ 1
q

�������

�������
\ ut

1Dk r!
�� �� ak � ak�1j j

ð10Þ

A necessary condition for the convergence of the iterative

process (9) is ut
1Dk r!

�� ��� 1.

Next we investigate the convergence rate. We denote the

accurate solution of thecurrentproblem by a*, and suppose that

Dk will no longer change after the kth iteration. Then we have

akþ1 � akj j
ak � a�j j ¼

ut
1Dk r!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k þ 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
� þ 1

p� �

ut
1Dk r!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k�1 þ 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
� þ 1

p� �
������

������
� ak � a�j j

ak�1 � a�j j ð11Þ

The convergence is therefore of order 1. Let D ¼ ut
1Dk r!,

and the convergent rate is related to D. Similarly, we can

prove the stability of the solution under convergent

conditions. Specifically,

akþ1 � a�j j ¼ ut
1Dk r!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k þ 1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
� þ 1

q� �����
����\ ak � a�j j

ð12Þ

Finally, because iterative process (9) involves computing

the QR factorization of matrix A2 9 n, its time complexity

is O n2ð Þ.
In view of the above, we know that the essential

mathematical issue for orientation detection is to find a

feasible solution for the constraint satisfaction problem.

However, we know that a neural system is not a digital

computer, and solving equations through a computer is not

really practical in the neural system. The neural system

must apply an equivalent method to solve the problem. A

computational circuit is thus the solely natural choice.

Experiments

In the previous section, we obtained iterative method (9)

which solves for a and b. We have statistically investigated

the minimum iteration time required to achieve a specific

error bound and the statistical data are given in Table 1. It

can be seen that this method reaches an acceptable accu-

racy (0.001) with a small number of iterations (less than 3).

Recurrent networks are quite appropriate for the imple-

mentation of iterative computation. By combining the

connections between the GCs and the SCs, we derive a

neural computational circuit. As shown in Fig. 8, the

computing task for each computational unit is mathemati-

cally a smooth curve for the sake of easy implementation.

Here, some representative experiments are conducted to

verify the correctness and precision of our approach. These

Table 1 The computing time for the desired error bounds

Error bound 1e - 12 1e - 10 1e - 8 1e - 3

Average iteration time 7.46 6.29 5.42 2.67

Aþ ¼

nx1 �
Pn

i¼1 xi nx2 �
Pn

i¼1 xi � � � nxn �
Pn

i¼1 xiPn
i¼1 x2

i � x1

Pn
i¼1 xi

Pn
i¼1 x2

i � x2

Pn
i¼1 xi � � �

Pn
i¼1 x2

i � xn

Pn
i¼1 xi

� �

n
Pn

i¼1 x2
i �

Pn
i¼1 xi

� 	2
ð8Þ
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experiments concern the rebuilding of complex polygons

and natural images.

Boundary rebuilding of polygons

In the x - y plane, n points are chosen, indicated as

ðxi; yiÞ; i ¼ 1; 2; . . .; n. These points are connected to format a

closed polygon and this polygon is regarded as a stimulus.

Then, the RFs of the GCs (in Fig. 9) are distributed on the

stimulus. According to the physiological finding on retinas, the

sizes of the RFs increase gradually with the increment of the

centrifugal degree. From each RF, a circular speculation is

generated and its center coordinates and its radius are saved.

Fig. 8 A recurrent network for

orientation calculation. Lines

with arrow ends represent

excitatory connections (?)

while lines with round ends

represents inhibitory

connections (-).ui,j denotes the

jth element of ui
T

Fig. 9 A typical distribution of neuronal RFs
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After all of the RFs have made their predictions, the view is

divided into many small regions, and the trained neural network

discussed in section ‘‘Single ganglion-cell modeling‘‘ is used to

process every region iteratively. For each region, the RFs’

circular speculations serve as the inputs to the network, and the

outputs of the network are the predicted boundary parameters.

The experimental results shown in Fig. 10 reveals that the

linear edges can be found properly by the proposed model.

Explanations of visual illusions

In this group of experiments, our algorithms are examined

with several optical illusive images.

The Müller-Lyer illusion is used first. This experiment tests

how our model can be used to explain the occurrence of the

Müller-Lyer illusion. As shown in Fig. 11a, two line segments

are of identical length but the upper line seems to be shorter

than the lower line. The illusion must appear somewhere

around the intersections. We generate two images of the

enlarged simplified Müller-Lyer illusion, and then run the

algorithm over several corner regions. Selected corners are

designated with green windows. The detected lines are drawn

in purple. Figure 11b illustrates the results with geometrical

analyses. The results obtained with the above line occurred in

a slightly inward manner, thus shortening the horizontal line.

Those below occurred in a slightly outward manner, thus

lengthening the horizontal line. The results turn out to be in

accordance with the observers’ perceptions.

The Hering illusion is used next. As shown in Fig. 12a, the

Hering illusive image contains two long parallel lines which

are densely intersected by many segments. It seems that the

two parallel lines are bending away from each other at the

center, as all the acute angles are exaggerated by the eyes. We

simplify this image by reducing several segments and enlarge

two segmentations containing all of the intersections. Again,

we examine our algorithm over the corners, where parts of the

long lines are to be detected with short distracting segments.

Natural image experiments and the evaluations

The RFs of an SC’s afferent GCs can be regarded as a

window within which an orientation is detected. Sufficient

windows can therefore piecewise detect the orientations

Fig. 10 The results of polygon rebuilding. Colors are used to

separate detected lines. a Original images of complex polygon.

b Boundaries genrated by collective estimation. (Color figure online)

Fig. 11 The Müller-Lyer

illusion and the explanations.

a The Müller-Lyer illusion.

b Geometric analyses of the

Müller-Lyer illusion. Two

detected lines (results) are

marked by a ‘a’, and the actual

lines (targets) are drawn in red

and marked by ‘b’. This

diagram shows why the lines are

perceived to be longer/shorter

around the corners. The relative

length of each line between the

arrows is meaningless. (Color

figure online)
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within a natural image when they cover the entire image.

Two examples are illustrated in Fig. 13b. The corre-

sponding results obtained with the Hough transform, a

traditional approach for line detection, are illustrated in

Fig. 13c. In terms of accuracy, it is quite apparent that the

current approach outperforms the Hough transform. Our

results contain fewer mistaken lines, which are neither the

internal nor the external contours of the objects in the

images.

Furthermore, boundary detection is conducted on more

challenging natural images. Our algorithm does not aim

just to extract the key orientation information which con-

stitutes the semantic framework of tan object, but to

remove the insignificant elements which barely play a role

in scene understanding. For comparisons, our algorithm,

edge detection with Canny operator (Medina-Carnicer

et al. 2011) and line detection with Hough transform

(Zhang and Webber 1996) are all performed in the same

windows.

This paper takes the BSDS500 (Martin et al. 2001)

which has been a benchmark for segmentation/recognition

as a test set. Fig. 14 illustrates several images and the

experiment results. It is obvious that the orientation maps

are not just cleaner than the corresponding edge/line maps

but preserve more complete essential clues for recognition.

It is worth noting that for the texture regions, our algorithm

can suppress most undesirable local orientations. The short

segments largely existing in the textures are insignificant

for understanding the scenes.

Statistical evaluations

Cost-effectiveness

To make a quantitative comparison, we propose an eval-

uation criterion: the ratio of effectiveness to cost. A corner

is the intersection of two edges, and is an important feature

in an image. Corners can be found by many corner

detection algorithms. As seen in Fig. 13a, a corner usually

indicates the existence of two significant line segments

which are parts of lines or curves. Let the number of all

detected corners be nc, and the number of them that appear

(as black points) in the orientation/line map be nd, nd/nc

then measures the computational effectiveness. Neverthe-

less, because all line detectors will judge more lines when

the thresholds are lowered, the effectiveness alone is not

enough to evaluate the approach. Let the number of the

pixels in the image be np and that of the valid points (on

lines, black) in the orientation/line map be nl, np/nl mea-

sures the computational cost. A cost-effective detector

should have higher
nd=nc

np=nl
.

This paper takes 200 test images from the BSDS500 and

makes statistics of the effectiveness/cost of the two approa-

ches. Because corner detectors differ in their definitions of

corners, and for the sake of objectivity, the comparisons are

made using three popular algorithms: SUSAN (Smith and

Brady 1997), Harris (Harris and Stephens 1988) and mini-

mum eigenvalue (Shi and Tomasi 1994) algorithms.

Fig. 12 The Hering illusion

and the explanations. a The

Hering illusion. b Geometric

analyses of the Hering illusion.

Selected corners are designated

with green windows and

detected lines are drawn in

purple
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As shown in Fig. 15, the three statistical curves further

prove that the current approach outperforms the Hough

transform in most cases. Our algorithm greatly eliminates

false edges and finds a majority of significant contour lines.

In contrast, the lines found by Hough transform cannot

reflect the real topological structures of the objects. For

example, the line map of the ‘‘Kung Fu Panda’’ image

contains several through-top-down lines which do not exist

in the real image. The results of Hough transform are

affected by the parameters in this algorithm and the pre-

processing algorithm, i.e. edge detection, and are therefore

unstable.

Signal-to-noise ratio

Although the BSDS500 dataset Arbeláez et al. (2011) is

mainly for image segmentation, the groundTruth contains

the most significant contours of the objects in the images.

Too many details will bring side-effect that disturbs seg-

mentation and recognition. In order to test whether our

approach can find the most important boundaries and to

measure the redundant degree of the obtained information,

we take the groundTruth as the standard references. Thus

the differences between the references and the corre-

sponding results obtained with each approach are the noise.

The signal-to-noise ratio (SNR) given below is defined as

in Russ (2011), and the statistical curves are shown in

Fig. 16. It is obvious that the current work is more efficient

in attracting the semantics of images than the other two

approaches.

SNRDB ¼ 10 � log10

rimage

rnoise

ð13Þ

where r denotes the standard deviation.

Fig. 13 The corner maps, the

orientation maps and the line

maps of two images. a Key

points (in light green) obtained

with SUSAN corner detection

algroithm. Left: A380 airplane.

Right: Kung Fu Panda.

b Orientation maps obtained

with our approach. c Line maps

obtained with Hough

Transform. (Color figure online)
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Pinwheel simulation

Figure 17 shows a four-layer neural computational model

for orientation calculation. The first layer has photorecep-

tors where RFs of the GCs are located. The second layer

has GCs/LGN cells that are clustered in different groups.

The third layer has inter-cells that are also clustered. The

fourth layer has simple cells that selectively respond to

orientations. The colors purple, green and red in Fig. 17

mark three different orientation columns, respectively,

which are partially overlapped. The SOM algorithm is

applied between the second and the third layers to train and

to localize the approximate scope of an inter cell’s RF. The

back propagation (BP) algorithm is applied between the

third and the fourth layer to train a simple cell’s response to

the two parameters, the slope of a straight line and its

ordinate at the origin.

Here we prove that based on the ensemble fitting

mechanism this model can also generate an orientation

column in the visual cortex. Figure 18 presents the simu-

lation result. Each small hexagon is a simple cell and 19

hexagons constitute a column of orientations. All columns

are drawn in different colors. In each column we find all

orientations between 0� and 180�. Specifically, at the

juncture of several columns, pinwheels (marked by red

circles) come into being. On the right is the orientation map

drawn with pseudo colors.

Discussion

The criterion for biological evolution is ‘‘no better than

barely enough ‘‘or’’knowing when to stop’’. The neural

system is also a product of evolution, and thus it should obey

this discipline: its structure should meet its functional

demand without over-evolution. We believe that it is luxu-

rious for RFs to be distributed coaxially and lined up equally

in all directions, because it places a very high demand on the

neural connections. This will then surely put pressure on the

evolution of the neural system. In contrast to this highly

ordered arrangement, a random structure is much less

expensive. Therefore, if a simple structure can work well,

then it is not necessary to evolve a complex one.

The findings in neurobiology obtained with stain or

fluorescence labeling techniques could only prove the pro-

jection directions of neural connections, but they could not

explain the meanings of the signals transmitted using these

connections. Because of the noise and the scope of the

recording, electrophysiological recording of a single elec-

trode could not explain the meaning of the data or the control

carried by the signals. Because of the complexity of signal

decomposition and temporal coding, multi-channel elec-

trophysiological recording is also insufficient to explain the

computational meaning of coding. This means that there is

still not enough evidence to prove whether either the geo-

metrical model or algebraic model is absolutely impossible.

In this paper, Hubel-Wiesel hypothesis is considered to

be more rigorous under the initial conditions, but our

method of fitting the orientation by collective estimation is

gentle. In mathematical terms, this method is a single-

object optimization under constraints, and has a low
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Fig. 15 The effectiveness-cost curves of the proposed algorithm and

Hough transform obtained with different corner maps. The image

label numbers are rearranged to make ascending curves of our

algorithm. a With SUSAN corner detector. b With Harris corner

detector. c With minimum-eigenvalue corner detector

Fig. 14 Boundary detection. In each cell from the top down are:

original image from the BSDS500 dataset, its orientation map,

Canny-edge map and Hough-line map

b
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Fig. 16 The results obtained with one image (201080.jpg) in the

BSDS500-test and the statistical curves obtained with all images.

a Origin. b Ground. c Current. d Canny. e Hough. f The SNR

statistcal curves obtained with BSDS500. The image label numbers

are adjusted to make an ascending curve of Hough transform

Fig. 17 A neural network

model of collective decision-

making
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computing complexity. It conforms to the common per-

spective that perception is a type of subjective operation of

reconstruction. It can also be implemented with parallel

distributed processing, and the precision is acceptable.

Table 2 summarized the main difficulties of Hubel-Wiesel

model and the proposed improvements in this paper.

Neural systems generate inner representation for the

external world, and this representation are used to accomplish

many tasks such as scene understanding, object recognition

and visual tracking. The neural systems should balance two

competing goals: the quality of the representation and the

hardware and time costs. The discoveries of place cells and

grid cells in the brain (Doeller et al. 2010) precisely indicate

that the neural systems can refer to limitedly rough represen-

tations and can predict the environment based on multiple

cells’ outputs. The prediction accuracy of a single GC or LGN

cell is coarse and localized, but these cells are rich in quantity

and are shareable. The mechanism, based on these character-

istics and an information-integration method, is consistent in

logic, rational in psychology, and feasible in physiology. This

indicates its significance in cognition. The network design in

this paper is enlightened by the projection relation and the RF

characteristics of the GCs, LGN cells and V1 cells. Our future

research will focus on the integration of related evidence in

anatomy, electrophysiology and animal behaviors into the

computational model. Information on detected lines will be

integrated mainly by V2, V4 and other higher visual areas to

determine the ownerships of the lines, and this integration also

requires visual attention (Zhou et al. 2000; Qiu et al. 2007; Ito

and Komatsu 2004). We will also deal with these issues.
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