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Abstract

Recognizing direct relationships between variables connected in a network is a pervasive problem 

in biological, social and information sciences as correlation-based networks contain numerous 

indirect relationships. Here we present a general method for inferring direct effects from an 

observed correlation matrix containing both direct and indirect effects. We formulate the problem 

as the inverse of network convolution, and introduce an algorithm that removes the combined 

effect of all indirect paths of arbitrary length in a closed-form solution by exploiting eigen-

decomposition and infinite-series sums. We demonstrate the effectiveness of our approach in 

several network applications: distinguishing direct targets in gene expression regulatory networks; 

recognizing directly-interacting amino-acid residues for protein structure prediction from sequence 

alignments; and distinguishing strong collaborations in co-authorship social networks using 

connectivity information alone.

Network science has been widely adopted in recent years in diverse settings, including 

molecular and cell biology1, social sciences2, information science3, document mining4 and 

other data mining applications. Networks provide an efficient representation for variable 

interdependencies, represented as weighted edges between pairs of nodes, with the edge 

weight typically corresponding to the confidence or the strength of a given relationship. 

Given a set of observations relating the values that elements of the network take in different 

conditions, a network structure is typically inferred by computing the pairwise correlation, 

mutual information or other similarity metrics between each pair of nodes.

The resulting edges include numerous indirect dependencies owing to transitive effects of 

correlations. For example, if there is a strong dependency between nodes 1 and 2, and 
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between nodes 2 and 3 in the true (direct) network, high correlations will also be visible 

between nodes 1 and 3 in the observed (direct and indirect) network, thus inferring an edge 

from node 1 to node 3, even though there is no direct information flow between them (Fig. 

1a). Moreover, even if a true relationship exists between a pair of nodes, its strength may be 

over-estimated owing to additional indirect relationships, and distinguishing the convolved 

direct and indirect contributions is a daunting task. As the size of networks increases, a very 

large number of indirect edges may be due to second-order, third-order and higher-order 

interactions, resulting in diffusion of the information contained in the direct network, and 

leading to inaccurate network structures and network weights in many applications1,5–11.

Several approaches have been proposed to infer direct dependencies among variables in a 

network. For example, partial correlations have been used to characterize conditional 

relationships among small sets of variables12–14, and probabilistic approaches, such as 

maximum entropy models, have been used to identify informative network edges10,15,16. 

Other works use graphical models and message passing algorithms to characterize direct 

information flows in a network17,18, or variations of Granger causality19 to capture the 

dynamic relationships among variables20–22. Alternative approaches formulated the problem 

of separating direct from indirect dependencies as a general feature-selection problem23–25, 

using Bayesian networks26–28, or using an information-theoretic approach to eliminate 

indirect information flow in the network29. These methods are limited to relatively low-

order interaction terms29, or are computationally very expensive12–14, or are designed for 

specific applications10,15–17,30,31, thus limiting their applicability.

In this paper, we formulate the problem of network deconvolution in a graph-theoretic 

framework. Our goal is a systematic method for inferring the direct dependencies in a 

network, corresponding to true interactions, and removing the effects of transitive 

relationships that result from indirect effects. When the matrix of direct dependencies is 

known, all transitive relationships can be computed by summing this direct matrix and all its 

powers, corresponding to the transitive closure of a weighted adjacency matrix, which 

convolves all direct and indirect paths at all lengths (Fig. 1b). Given an observed matrix of 

correlations that contains both direct and indirect effects, our task is to recover the original 

direct matrix that gave rise to the observed matrix. For a weighted network where edge 

weights represent the confidence, mutual information or correlation strength relating two 

elements in the network, the inverse problem seeks to recognize the fraction of the weight of 

each edge attributable to direct vs. indirect contributions, rather than to keep or remove unit-

weight edges. This inverse problem is dramatically harder than the forward problem of 

transitive closure, as the original matrix is not known.

We introduce an algorithm for Network Deconvolution (ND) that can efficiently solve the 

inverse problem of transitive closure of a weighted adjacency matrix, by use of 

decomposition principles of eigenvectors and eigenvalues, and by exploiting the closed form 

solution of infinite Taylor series. We demonstrate the effectiveness of this approach and our 

algorithm in several large-scale networks from different domains and with different 

properties (Supplementary Table S1). First, we seek to distinguish likely direct targets in 

gene regulatory networks as a post-processing step for diverse gene network inference 

methods, and show that ND improves both global and local network quality. Second, we 
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show effectiveness of network deconvolution in distinguishing directly-interacting amino-

acid residues based on pairwise mutual information data in multi-species protein alignments. 

Third, we apply ND to a social network setting using a co-authorship network that contains 

solely connectivity information, and show that the resulting edge weights are able to 

distinguish strong and weak ties independently inferred based on the number of joint papers 

and additional co-authors. The wide applicability of ND suggests that such a closed-form 

solution is not only of important theoretical use in reversing the effect of matrix transitive 

closure, but also of wide practical applicability in a diverse set of real-world networks.

Results

Resolving direct and indirect dependencies in a graph

Mathematically, we model the weights of an observed network Gobs whose diagonal is set to 

zero as the sum of both direct weights in the true network Gdir, and indirect weights due to 

indirect paths of increasing length in , , etc (Fig. 1a). The inverse problem of 

inferring the direct network from the observed network is seemingly intractable, as the direct 

information has now diffused through the observed network beyond recognition. However, 

expressing Gobs as an infinite sum of the exponentially-decreasing contributions of 

increasingly-indirect paths leads to a closed form solution for Gobs as a function of Gdir 

using an infinite-series summation (Fig. 1b). Moreover, by decomposing the observed 

network into its eigenvalues and eigenvectors, we can express each eigenvalue of the direct 

matrix as a function of the corresponding eigenvalue of the observed matrix (Fig. 1c). This 

decomposition leads to a simple closed-form solution for Gdir and provides a framework for 

an efficient globally-optimal algorithm to deconvolve the contributions of direct and indirect 

edges given an observed network (Methods and Supplementary Note S1).

The resulting Network Deconvolution (ND) algorithm can be viewed as a nonlinear filter 

over eigenvalues of a locally observed network to compute global edge significance, for 

each eigenvalue computing the inverse of a Taylor series expansion. This results in the 

decrease of large positive eigenvalues of the observed dependency matrix that are inflated 

owing to indirect effects. The eigenvalue/eigenvector matrix decomposition holds for all 

symmetric matrices, including all correlation or information-based matrices, and also for 

some asymmetric input matrices as we show in Supplementary Note S1.4.1. For non-

decomposable matrices, we present an iterative conjugate gradient descent approach for 

network deconvolution that converges to a globally optimal solution by convex optimization 

(Supplementary Note S1.4.2 and Fig. S2).

Our formulation of network deconvolution has two underlying modeling assumptions: first 

that indirect flow weights can be approximated as the product of direct edge weights, and 

second, that observed edge weights are the sum of direct and indirect flows. When these 

assumptions hold, network deconvolution provides an exact closed-form solution for 

completely removing all indirect flow effects and inferring all direct interactions and 

weights exactly (Fig. 1d). We show that ND performs well even when these assumptions do 

not hold, by inclusion of non-linear effects through simulations when the direct edges are 

known (Fig. 1e and Supplementary Note S1.3) and by application to diverse real-world 
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biological and social networks where additional properties can be independently evaluated. 

Our Taylor series closed-form solution assumes that all eigenvalues of the direct 

dependency matrix are between -1 and 1, which leads to a geometric decrease in the 

contributions of indirect paths of increasing lengths (Supplementary Note S1.2). This 

assumption can be achieved for any matrix by scaling the observed input network by a 

function of the magnitude of its eigenvalues (Supplementary Note S1.6).

We also provide a useful generalization of network deconvolution when the observation 

dependency matrix is itself noisy (Supplementary Note S1.5). Although direct dependency 

weights cannot be recovered exactly from the noisy observations, we show that the resulting 

estimates are close to true weights for moderate noise levels in the input datasets (Fig. S3). 

We also present two extensions of the network deconvolution algorithm (Supplementary 

Note S1.7) that make it scalable to very large networks: the first exploits the sparsity of 

eigenvalues of low rank networks, and the second parallelizes network deconvolution over 

potentially-overlapping subgraphs of the network (Fig. S5).

We next apply our network deconvolution approach to three settings of inferring gene 

regulatory networks, inferring protein structural constraints and inferring weak and strong 

ties in social networks..

Application to gene regulatory networks

We first apply our network deconvolution algorithm to gene regulatory networks, which are 

pervasively used in molecular biology to describe regulatory relationships between 

transcription factors (regulators) and their target genes1. Regulatory network inference from 

high-throughput gene expression data1,6,32, or by integrating complementary types of 

datasets33–35, is a well-studied problem in computational molecular biology26,29,36,37, 

enabling us to benefit from available datasets and community efforts for direct method 

comparisons1,6. Perhaps the largest such comparison is the recently published network 

inference challenge part of the Dialogue on Reverse Engineering Assessment and Methods 

(DREAM) project5.

In the DREAM5 network inference challenge5, different methods were applied to 

reconstruct networks for the bacterium E. coli and the single-cellular eukaryote S. cerevisiae 

based on experimental datasets, and to reconstruct an in silico network based on simulated 

datasets (Supplementary Note S2.1 and Fig. S6). True positive interactions were defined as a 

set of experimentally validated interactions from the RegulonDB database for E. coli38, and 

a high-confidence set of interactions supported by genome-wide transcription-factor binding 

data (ChIP-chip) and evolutionarily conserved binding motifs for S. cerevisiae39. All 

methods were evaluated using the same four performance evaluation metrics: (a) the area 

under the precision-recall curve; (b) the area under the receiver operating characteristic 

curve; (c) a combined per-network score that utilizes both previous metrics for each 

individual network; and (d) an overall per-method score that summarizes the combined 

performance across all three networks (Methods and Supplementary Note S2.3). The 

DREAM5 challenge provides an ideal benchmark for evaluating ND, given the uniform 

benchmarks for network reconstruction used, and the participation of many of the research 
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teams at the forefront of network inference research, with a total of 35 different prediction 

methods applied across a wide array of methodologies.

Given that ND is designed as a way to eliminate indirect edge weights in mutual 

information–based and correlation-based networks, we first applied it to the networks 

predicted by the top-scoring such methods, including CLR37, ARACNE29 and basic mutual 

information (Relevance networks)40. In all cases, we found that network deconvolution 

substantially improved the performance of each method according to all metrics used and for 

all networks tested in DREAM5 (Fig. 2a). The average per-method score increased by 59%, 

and the per-network scores increased by 53%, 78% and >300-fold in the in silico, E.coli and 

S. cerevisiae networks respectively (the strong S. cerevisiae improvements are due to low 

scores for all methods). It is notable that ARACNE, which seeks to remove transitive edges 

by studying feed-forward loops directly, showed a 75% improvement by network 

deconvolution, indicating that these indirect effects are not always detectable at the local 

level but instead require a global network deconvolution approach. As information theoretic 

methods are among the most widely-used network inference approaches5,6, their use in 

combination with ND can be of great general use.

We next applied ND to other top performing inference methods that are not based on mutual 

information or correlation. These include ANOVerence41 that uses a non-parametric non-

linear similarity metric between transcription factors and target genes, GENIE323 that uses 

regression and a tree-based ensemble method, TIGRESS42 that uses a sparse regression 

formulation and feature selection, and Inferelator32 that uses regression and variable 

selection based on expression data. We found that network deconvolution was effective even 

when applied to these methods, leading to an overall performance increase of 11% on 

average. The performance was increased for three of the four methods, including for the top 

performing method (GENIE3), which increased by 13%. As GENIE3 was the overall top-

performing method, this suggests that the combination of GENIE3 and ND provides the new 

top-performing method, outperforming all other 35 methods that were assessed in the 

DREAM5 challenge5. We also applied ND in combination with the community prediction 

method from DREAM55. We found that community prediction after ND showed 22% 

greater performance than community prediction on the original networks, suggesting that 

network deconvolution maintains the complementary aspects of these networks important in 

community prediction approaches. We note that the community prediction approach is not 

the best predictor here, with or without ND, likely owing to the insufficiently diverse nature 

of the original networks. Overall, these results suggest that despite the ability of even the 

best-performing methods to recover high-quality networks, strong indirect effects remain, 

which can be reduced by use of ND.

We next studied how ND affects the prediction of local network connectivity patterns. We 

specifically focused on the ability to correctly predict feed-forward loops, that truly contain 

both an indirect A→B→C path and a feed-forward A→C edge, and regulatory cascades, for 

which A and C are only connected through B (Supplementary Note S2.4). Consistent with 

previous studies5,43, we found that network inference methods tend to perform better on one 

or the other network motif, based on their approach for dealing with indirect information 

(Fig. 2b). For example, mutual information-based network inference (MI) is biased towards 
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including feed-forward edges, leading to increased accuracy for feed-forward loops but 

many spurious transitive edges for cascades, while the Inferelator and ANOVerence are 

biased towards excluding feed-forward edges, leading to increased accuracy for cascades but 

many missing feed-forward edges in feed-forward loops. Notably, the ARACNE algorithm, 

which seeks to directly remove transitive edges, shows a decreased performance for feed 

forward loops relative to MI, highlighting the difficulty of distinguishing transitive edges 

from true feed-forward edges. If ND can accurately identify spurious indirect edges but 

preserve true feed-forward edges, we should expect substantially increased accuracy for 

cascades, and no decrease in accuracy for feed-forward edges. Indeed, we found that 

deconvolved networks lead to improved prediction accuracy for true cascades for each 

method, thus correctly eliminating spurious A→C edges (Fig. 2b). Importantly, the 

improved performance on cascades did not lead to an increased error rate on feed-forward 

loops, where prediction accuracy remained similar or improved in most deconvolved 

networks, with the exception of TIGRESS, which was also the only method where ND did 

not lead to an improved overall performance. Taken together, these results show that ND 

effectively distinguishes direct from indirect edges, improving the predictions of a wide 

range of gene regulatory network inference approaches.

Application to protein structural constraints

We next applied ND to infer structural constraints between pairs of amino-acids for protein 

structure prediction44–46. Prior work used evolutionary information to reveal pairs of amino 

acid residues that are proximal in the three-dimensional protein structure. However, the 

pairwise evolutionary correlation matrix may contain many transitive relationships between 

pairs of residues7–10,17,31,47–50. For example, if two amino-acid residues both interact with 

an intermediate residue, but are not directly interacting with each other, they will show high 

mutual information owing to indirect effects. One approach to remove transitive noise is to 

use a probabilistic maximum entropy solution10 that is specifically designed for inferring 

directly interacting residues15,16,30. Our aim here is to demonstrate effectiveness of using 

network deconvolution as a general method to infer directly interacting residues over protein 

contact networks.

As strong clusters of high mutual information have been shown to hinder identification of 

directly-interacting residues, we reasoned that network deconvolution may be able to break 

up these clusters and reveal directly-interacting residues, by distinguishing those correlations 

that can be explained by transitive relationships. Here, we build on an approach which uses 

comparative genomics information of residue co-variation across evolutionarily-diverged 

species.

We applied network deconvolution to predict contact maps on fifteen proteins in different 

folding classes with sizes ranging from 50 to 260 residues15. In our input network, the nodes 

represent amino acid residues, and each edge between a pair of residues represents their co-

variation across multiple sequence alignments spanning 2,000–72,000 sequences, quantified 

by their mutual information. Applying ND to a mutual information network leads to a 

systematic and substantial increase in the discovery rate of interacting amino-acids, based on 

non-adjacent amino-acid contact maps for known structures (Fig. 3a and Supplementary 
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Figure S7). High mutual information residue pairs contain both physically-interacting 

residues and non-interacting residues, presumably owing to indirect interactions. 

Application of ND specifically reduces the scores of non-interacting pairs and enables 

distinguishing directly interacting ones (Fig. 3b).

We also applied ND to a weighted interaction network based on direct information15. 

Although using ND over direct information led to a small but consistent improvement over 

the top predictions especially for non-redundant interacting pairs (Supplementary Figure 

S7), a robust performance assessment requires comparison of predicted proteins 3D 

structures which is beyond the scope of this manuscript.

Application to co-authorship collaboration relationships

We next applied our network deconvolution approach to a social network of co-authorship 

information51 to distinguish strong and weak collaborations, that can play different key roles 

in social networks11,52–54. Given the recent surge of social networks like Facebook or 

ResearchGate, recognizing weak and strong ties is increasingly important for recommending 

friends or colleagues, recognizing conflicts of interest or evaluating an author's contribution 

to a team. Previous approaches have defined strong ties using shared indirect contacts55, 

edges that increase network distance upon removal or edges connecting nodes within the 

same module53. In co-authorship networks, strong ties have been defined by using additional 

information beyond network connectivity (Supplementary Note S4), including the number 

of co-authored papers and the number of other co-authors of these papers51,56.

We used an unweighted input network of 1,589 scientists working in the field of network 

science51, in which two authors are connected by an edge if they have co-authored at least 

one paper. We then applied our network deconvolution approach directly on the edges 

provided by the co-authorship network, to recognize whether network connectivity 

information alone is sufficient to capture additional information about strong and weak ties 

previously computed on the same network. Our assumption is that edges resulting from 

indirect paths likely correspond to weak collaborations, diluted over many other co-authors, 

while edges with low indirect contributions are more likely to correspond to meaningful 

collaborations. Application of ND to this unit-weight network led to a weighted network 

whose transitive closure most closely captures the input network information, and whose 

weights represent the inferred strength of likely direct interactions. We then ranked all co-

authorship edges according to the weight assigned to each by the ND approach.

We found that the resulting edge weights indeed capture co-authorship tie strengths 

previously computed by summing the number of co-authored papers and down-weighting 

each paper by the number of additional co-authors56. We defined true strong ties based on 

Newman's weight ≥ 0.5 (36% of edges) that incorporates additional publication information, 

and our predictions based on the network deconvolution weight corresponding to the same 

fraction of edges (ND weight ≥ 0.64). We found that network deconvolution correctly 

recovered 77% of strong co-authorship ties solely by use of the network topology, 

demonstrating that additional information about collaboration strength lies within network 

connectivity information, and that ND is very well-suited for discovering it (Fig. 4a). 

Beyond the binary classification of edges into strong and weak, we found a strong overall 
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agreement between the rank obtained by the true collaboration strength and the rank 

provided by the ND weight (correlation coefficient R2=0.76, Fig. 4b). The exception was a 

population of edges that had strong collaboration scores but weak ND weights, likely due to 

the number of co-authored publications that factors in the collaboration score but is not 

available in the ND network input. Indeed, collaborators connected by a strong edge that 

were incorrectly predicted by ND had on average co-authored 6-fold more papers per author 

than collaborators correctly predicted as weak, suggesting a very strong additional bias 

beyond the information provided by the topology. With the wide-spread availability of 

social networks and the current interest in predicting strong and weak social ties, we expect 

that network deconvolution will be widely useful in many social network applications 

beyond co-authorship.

Discussion

Network deconvolution provides a general framework for computing direct dependencies in 

a network by use of observed similarities. It can recognize and remove spurious transitive 

edges due to indirect effects, decrease edge weights that are overestimated due to indirect 

relationships, and assign edge weights corresponding to direct dependencies to the 

remaining edges. Thereby, network deconvolution can improve the quality of a broad range 

of observed networks that are tainted by indirect edge weights due to transitive effects. We 

introduced an efficient and scalable algorithm for deconvolving an observed network based 

on a nonlinear filter computing the inverse of a Taylor series expansion over each 

eigenvalue. We demonstrated that network deconvolution is effective for gene regulatory 

network inference, protein contact prediction based on protein sequence alignment and 

inference of collaboration strength from co-authorship social networks. In each case, even 

though we did not use domain-specific knowledge, ND was effective illustrating the 

generality and wide applicability of the approach.

The problem of indirect spurious edges has been widely recognized in network inference, 

but characterized mostly at the local level. In particular, even top-performing network 

inference methods have been shown to contain many false transitive edges in cascade 

network motifs, and efforts to remedy this situation lead to incorrect removal of true edges 

in feed-forward loops5. At this local level, we have shown that network deconvolution has 

the ability to correctly remove spurious transitive edges in true cascade network motifs, 

while maintaining true feed-forward edges in feed-forward network motifs. In contrast to 

previous methods that make well-documented tradeoffs in sensitivity vs. specificity for these 

transitive edges5, network deconvolution reduces the number of false positives on indirect 

interactions, while maintaining true positives in feed-forward loops.

However, network deconvolution has a much broader effect than simply removing local 

indirect edges. In contrast to previous approaches that study local patterns of dependencies 

to recognize potential indirect edges, network deconvolution takes a global approach by 

directly inverting the transitive closure of the true network. Previous algorithms29 have 

sought local approximations to the removal of indirect effects which have been limited to 

indirect paths of only limited lengths (typically of length 2), owing to the computational 

complexity of enumerating and evaluating all higher-order paths, and the lack of a 
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systematic way to compute their combined effects. By exploiting eigenvector decomposition 

and Taylor series closed form solutions, network deconvolution provides four advantages 

over local approaches: (1) it leads to a much more computationally efficient solution, (2) it 

has the power to remove indirect effects over paths with arbitrary lengths, (3) it can remove 

the combined effects of arbitrarily many indirect paths between two nodes, and (4) it 

eliminates the need for iterative network refinement. These advantages are due to the fact 

that network deconvolution is essentially a single global operation to subtract the transitive 

effects of all powers of an adjacency matrix, rather than testing only pair-wise relationships 

or small network motifs one at a time.

Moreover, we showed that network deconvolution can be applied to networks with very 

different properties. The networks used here were of different size, density, clustering 

coefficient, or network centrality, showing that network deconvolution is robust to these 

parameters. The input networks were also based on different properties, including mutual 

information and correlation that network deconvolution was designed for, but also networks 

based on regression, tree-based ensemble methods, feature selection approaches, and other 

non-linear similarity metrics. We also applied network deconvolution to both weighted and 

unweighted networks, and used the results both for re-weighing of edges and for edge 

classification, demonstrating the discrete and continuous applications of the approach. More 

generally, network deconvolution is not just about edge inclusion or removal, but about 

probabilistic weighing of individual edges to reveal direct interactions based on observed 

relationships across the complete network.

We believe that the network deconvolution algorithm introduced here will serve as a 

foundational graph theoretic tool for computing direct dependencies in many problems in 

network science and other fields. Although the forward problem of repeated matrix 

multiplication, also known as network convolution or matrix interpolation in applied fields, 

has been a key graph theoretical tool, the inverse problem has received relatively little 

attention. Matrix interpolation has been used in protein-protein interaction networks to 

propagate functional information through the network57, in movies and shopping 

applications to make recommendations for users based on previous actions58, in social 

networks to make friend recommendations, etc. We similarly expect network deconvolution 

to lead to a rich set of applications in network science, molecular and cell biology and many 

other fields.

Methods

Network deconvolution

Network deconvolution framework is outlined in Figure 1 (full description in Supplementary 

Note S1). A perennial challenge to inferring networks is that, observed similarity weights 

are the sum of both direct and indirect relationships. A direct information flow modeled by 

an edge in Gdir, can give rise to two or higher level indirect flows. Such indirect flows are 

captured in Gindir:

Feizi et al. Page 9

Nat Biotechnol. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the power associated with each term in Gindir corresponds to the number of edges of 

indirect paths. Gdir + Gindir together capture both direct and indirect dependencies which in 

fact comprise the observed dependencies. Note that, the observed dependency matrix is 

linearly scaled so that the largest absolute eigenvalue of Gdir is smaller than 1. Therefore, 

the effects of indirect information flows decrease exponentially with the length of indirect 

paths (Supplementary Notes S1.2 and S1.6). Self-loops of observed dependency network are 

excluded by setting its diagonal components to zero.

Suppose Gobs represents the matrix of observed dependencies: a properly-scaled similarity 

matrix between variables (nodes in the network). Gobs can be derived by use of different 

pairwise similarity metrics such as correlation or mutual information, and scaled linearly 

based on the largest absolute eigenvalue of the un-scaled similarity matrix. The observed 

dependency matrix captures both direct and indirect effects; i.e., Gobs=Gdir + Gindir. Note 

that, the indirect dependency matrix, Gindir, is a function of another unknown Gdir. The main 

question is how to compute Gdir by using the tainted observed similarities Gobs.

Although Gindir may at first appear intractable because it is an infinite sum, one may note 

that, similarly to Taylor series expansions, under mild conditions (Supplementary Note S1.1 

and S1.2) that are generally present in the setting that we consider, we have:

The above observation leads to a simple closed-form expression for Gdir (Fig. 1b):

For symmetric input matrices and some asymmetric ones, we show that, the observed 

dependency matrix Gobs can be decomposed to its eigenvalues and eigenvectors 

(Supplementary Note S1.4). Say U and Σobs represent the matrix of eigenvectors and a 

diagonal matrix of eigenvalues of matrix Gobs. The i-th diagonal component of the matrix 

Σobs represents the i-th eigenvalue  of the observed dependency matrix Gobs. Then, by 

using the eigen decomposition principle, we have Gobs = UΣobsU−1.

In this framework, an optimal solution to compute direct dependencies can be computed in 

the following steps, which comprise the main parts of the proposed Network Deconvolution 

(ND) algorithm (Fig. 1c)

Step 1 (Decomposition Step)—Decompose the observed dependency matrix Gobs to its 

eigenvalues and eigenvectors such that Gobs = UΣobsU−1.
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Step 2 (Deconvolution Step)—Form a diagonal matrix Σdir whose i-th diagonal 

component is . Then, the output direct dependency matrix is Gdir = UΣdirU−1.

We show that this algorithm finds a globally optimal direct dependency matrix without error 

(Supplementary Note S1.2).

Performance metrics for gene regulatory networks

A detailed description of gene regulatory network performance metrics is given in 

Supplementary Note S2.3. Network predictions were evaluated as binary classification tasks 

where edges were predicted to be present or absent. Then, standard performance metrics 

from machine learning were used: precision-recall (PR) and receiver operating characteristic 

(ROC) curves. Similar to DREAM55, only the top 100,000 edge predictions were accepted. 

Then, AUROC and AUPR were separately transformed into p-values by simulating a null 

distribution for 25,000 random networks. To compute an overall score that summarizes the 

performance over the three networks with available gold standards (E. coli, S. cerevisiae and 

in silico), we used the same metric as in the DREAM5 project, which is defined as the mean 

of the (log-transformed) network specific p-values:

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Network deconvolution overview
a. Direct edges in a network (solid blue arrows) can lead to indirect relationships (dashed 

red arrows) as a result of transitive information flow. These indirect contributions can be of 

length two (e.g. 1→2→3), three (e.g. 1→2→3→5) or higher, and can combine both direct 

and indirect effects (e.g. 2→4), and multiple indirect effects along varying paths (e.g. 

2→3→5, 2→4→5). Self-loops are excluded from networks. Network deconvolution seeks 

to reverse the effect of transitive information flow across all indirect paths, in order to 

recover the true direct network (blue edges, Gdir) based on the observed network (combined 

Feizi et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blue and red edges, Gobs). b. Algebraically, the transitive closure of a network can be 

expressed as an infinite sum of the true direct network and all indirect effects along paths of 

increasing lengths, which can be written in a closed form as an infinite-series sum. Network 

deconvolution exploits this closed form to express the direct network Gdir as a function of 

the observed network Gobs. c. To efficiently compute this inverse operation, we express both 

the true and observed networks Gdir and Gobs by decomposition into their eigenvectors and 

eigenvalues, which enables each eigenvalue λi dir of the original network to be expressed as 

a nonlinear function of a single corresponding eigenvalue λi obs of the convolved observed 

network. d,e. Network deconvolution assumes that indirect flow weights can be 

approximated as the product of direct edge weights and that observed edge weights are the 

sum of direct and indirect flows. When these assumptions hold (d), network deconvolution 

removes all indirect flow effects and infers all direct interactions and weights exactly. Even 

when these assumptions do not hold (e), ND infers 87% of direct edges, showing robustness 

to non-linear effects.
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Figure 2. Deconvolution of gene regulatory networks
a. Network Deconvolution (ND) applied to the inferred networks of top-scoring methods 

from DREAM5 leads to consistent improvements for mutual information (MI) and 

correlation based methods (average performance increase 59%). ND also improves other 

top-scoring methods (11% on average), including the best performing method of the 

DREAM5 challenge (GENIE3), thus leading to a new overall highest performance. 

Moreover, the community network obtained by integrating network predictions from 

individual methods (1–9) before ND is outperformed by the community network based on 

deconvolved networks by ∼22%. b. Network motif analysis showing the relative 

performance of inference methods for cascades (casc.) and feed-forward loops (FFL) before 

and after ND. Red/blue corresponds to increased/decreased prediction accuracy of the two 

motif types relative to the overall performance of the method before ND (measured by the 

area under the ROC curve, AUROC; Supplementary Note S2.4). The original methods 

(before ND, left side) have different relative performances for cascades and FFLs, e.g., 

mutual information-based network inference (MI) tends to include feed-forward edges (red 

arrow), resulting in higher accuracy for FFLs but lower accuracy for cascades, while the 

opposite is true for the Inferelator and ANOVerence. The deconvolved networks (after ND, 

right side) show significantly higher accuracy for true cascade network motifs for all 

methods, and moderately improved accuracy for FFLs on average, showing that ND 

Feizi et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2014 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



successfully eliminates spurious indirect feed-forward edges for true cascade motifs, without 

sacrificing accuracy for true FFLs.
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Figure 3. Application to protein structure prediction
a. Applying ND to predict experimentally-determined residue contacts (gray dots) based on 

amino-acid sequence alignments on fifteen proteins in different folding classes with sizes 

ranging from 50 to 260 residues in human. We applied ND to networks derived by mutual 

information (MI, lower left triangles) and direct information15 (DI, upper-right triangles). 

Arrows highlight distinct residue interactions captured by each method, highlighting the 

improvement over both MI and DI. b. Cumulative distributions of graph weights for 

interacting (solid lines) and non-interacting (dashed lines) amino acid pairs, for both MI 

(blue) and ND (red). Network deconvolution assigns higher weights to true positive edges 

and lower weights to false negatives, leading to 5-fold higher discrimination between true 

contacts and indirect mutual information for the 10% of edges with highest scores
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Figure 4. Application to co-authorship social network
a. Use of network deconvolution to distinguishing strong ties (red) and weak ties (green) in 

the largest connected component of a co-authorship network containing 379 authors. True 

collaboration strengths were computed by summing the number of co-authored papers and 

down-weighting each paper by the number of additional co-authors. ND only had access to 

unweighted co-authorship edges, but exploiting transitive relationships to weigh down weak 

ties resulting in 77% accurate predictions (solid lines) and only 23% inaccurate predictions 

(dashed lines), demonstrating that this information lies within the network edges, and that 

ND is well-suited for discovering it. b. Beyond the binary classification of strong and weak 

ties, we found a strong correlation (R2=0.76) across all 2,742 edges connecting 1,589 

authors, between the weights assigned by ND (y-axis) and the true collaboration strengths 

(x-axis) obtained using additional publication details.
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