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Cardiovascular diseases are one of the leading causes of mortality. Hypertension (HT) is one of the principal risk factors associated
with death. Chronic kidney disease (CKD), which is probably underestimated, increases the risk and the severity of adverse
cardiovascular events. It is now recognized that lowbirthweight is a risk factor for these diseases, and this relationship is amplified by
a rapid catch-up growth or overfeeding during infancy or childhood.Thepathophysiological andmolecularmechanisms involved in
the “early programming” of CKD aremultiple and partially understood. It has been proposed that the developmental programming
of arterial hypertension and chronic kidney disease is related to a reduced nephron endowment. However, this mechanism is still
discussed.This review discusses the complex relationship between birth weight and nephron endowment and how early growth and
nutrition influence long termHT and CKD.We hypothesize that fetal environment reducesmoderately the nephron number which
appears insufficient by itself to induce long term diseases. Reduced nephron number constitutes a “factor of vulnerability” when
additional factors, in particular a rapid postnatal growth or overfeeding, promote the early onset of diseases through a complex
combination of various pathophysiological pathways.

1. Introduction

Cardiovascular diseases ((CVD) hypertension, coronary dis-
ease and stroke, and heart failure) are one of the leading
causes ofmortality in industrialized countries, and the preva-
lence is increasing in emerging societies. All cardiovascular
diseases account for 4.3 million deaths per year in the
European Union, and the prevalence of chronic heart failure
in the United States of America is approximately 6 million
[1, 2]. In industrialized countries, hypertension (HT) affects
25% to 35% of the global population and reaches 60% to
70% of the population aged 60 or more. Hypertension is
the principal risk factor of death worldwide [3]. It increases
the severity of ischemic vascular diseases and, with obesity
and type 2 diabetes, is one of the important risk factors for
chronic kidney disease (CKD). Chronic kidney disease is
defined as reduced glomerular filtration rate (GFR) up to end-
stage renal disease (ESRD), proteinuria, or both. Prevalence
of ESRD, estimated to be 0.5–2.5‰worldwide, is increasing

in several countries [4]. In turn, impaired renal factor favors
the development of and amplifies the severity of CVD [5–7].

During the last two decades, it has been raised the concept
of developmental programming of adult chronic diseases
(Developmental Origins of Health and Disease (DOHaD))
[8, 9]. The pathophysiological and molecular mechanisms
involved in the early programming of CKD are multiple
and partially understood. Reduced nephron endowment
has been proposed as playing a determinant role [10–13].
Reduced nephron number is responsible for an adaptive
single nephron glomerular hyperfiltration. The consecutive
glomerular hypertension may lead over a long time to
renal injury, proteinuria, impaired GFR, and hypertension
[14]. However, this mechanism is still discussed, and recent
experimental studies have failed to show such a link [15–21].

This review discusses factors which influence nephron
endowment and the complex relationship between nephron
endowment and chronic kidney disease. We hypothesize that
the developmental “programming” of chronic kidney disease
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is a complex phenomenon. It may integrate different factors
and pathophysiological pathways. Reduced nephron number
constitutes a “factor of vulnerability” which is insufficient by
itself when it is moderate. In such a situation, early onset of
CKD occurs with additional factors including early growth
and nutrition.

2. Developmental Origins of CKD

This concept states that chronic and noncommunicable
diseases that are currently observed at adulthood have origins
in the fetal and perinatal periods of life. Events or stimulus
during particular stages of development can alter perma-
nently the structure and function of various systems. After
a silent period, diseases occur at adulthood. David Barker
and colleagues discovered in the 1980s’, in a cohort of people
born inHertfordshire, UK, at the beginning of the nineteenth
century, that themortality ratio due to coronary heart disease
was inversely correlated with birth weight [22, 23]. Low birth
weight ((LBW), birth weight ≤ 2500 g) was associated with
increased rate ofmortality. A number of subsequent epidemi-
ologic and experimental studies confirmed this association
and the association with other chronic diseases including
hypertension, obesity, insulin-resistance and type 2 diabetes
[11, 12, 24–29]. It is of note that low birth weight can be
related to either intrauterine growth restriction (IUGR) or
preterm birth. Recently, other perinatal factors including
maternal obesity, maternal diabetes, fetal exposure to specific
drugs and preterm birth have been reported to alter the
development of various systems increasing the risk for long
term diseases [30, 31].

2.1. Birth Weight and Chronic Kidney Disease. More recently
the risk of chronic kidney disease (CKD) has been related
to low birth weight [32–35]. In a population-based study, the
estimated glomerular filtration rate (eGFR) has been shown
to increase of 2.6 to 7mL/min per each kilogram increase
in birth weight [33, 36]. In a case control study, Lackland
et al. have shown in a population of South Carolina, USA,
that the odds ratio for end-stage renal disease (ESDR) was 1.4
(95% confidence interval, 1.1–1.8) in adults with birth weight
below 2.5 kg [32]. Such results have been recently confirmed
in a Norwegian study (the Medical Birth Registry and the
Norwegian Renal Registry) where patients with birth weight
< 10th percentile had a relative risk (RR) for ESRD of 1.7 (95%
confidence interval 1.4 to 2.2) [35]. Finally, LBW is associated
with amore rapid progression of various kidney diseases such
asmembranous and IgAnephropathies, nephrotic syndrome,
renal cystic diseases, or kidney disease related to obesity and
metabolic disorders [37–41]. In animals, maternal diabetes,
maternal obesity, and fetal exposure to drugs can alter
nephrogenesis and impair renal function on the long term.
Such effects have to be demonstrated in humans.

Adults born preterm constitute an emerging population
at risk for cardiovascular and renal diseases. Prenatal and
postnatal events may influence renal function and struc-
ture later on. The Dutch POP study revealed an inverse
relationship between birth weight and long term urinary

microalbumin/creatinine ratio and plasma creatinin level in
young adults born preterm [42]. Increasedmicroalbuminuria
and decreased glomerular filtration rate were observed in
patients who were born small for gestational age (SGA)
[43]. Impaired renal function has been reported in preterm
children with previous history of neonatal hypotension and
renal dysfunction [44, 45]. Data are scarce regarding renal
structure [46, 47]. Recently, Hodgin et al. have reported 6
adults born preterm (mean age of 32 years) with isolated
proteinuria and focal segmental glomerular sclerosis [47].
Aside from renal consequences, preterm birth is associated
with early markers of cardiovascular disease and higher risk
of HT [48–51]. Preterm birth has to be taken into account as a
risk factor of CKD since approximately 130million infants are
born pretermworldwide (frequencies vary from5.5% tomore
than 12%) and the prevalence is increasing [52]. Moreover,
with a significant improvement in perinatal care, the number
of preterm infants reaching adulthood is increasing.

2.2. Early Postnatal Growth and the Risk of CKD. While a
rapid postnatal growth during childhood and infancy favours
the development of cardiovascular diseases, obesity, and type
2 diabetes; the consequences on renal function and structure
are relatively unknown in humans [53–57].The critical period
at which the organism is more sensitive to nutrition and
growth is still being debated. Faster weight gain during the
first 6months of life, promoted by a high protein diet, favours
the accumulation of the metabolic visceral adipose tissue,
reduces insulin sensitivity, and increases blood pressure later
in life [56–58]. These effects are exacerbated in low birth
weight infants related to preterm birth, IUGR, or both [53,
54, 59–62]. In a longitudinal study of a Finnish cohort,
Barker et al. showed that adults who developed coronary
heart disease or hypertension were born small, grew slowly
within the first months of life, and caught up the BMI early in
infancy [53–59]. The proportion of hypertension was higher
in patients who were born with LBW and were overweight at
adulthood. In contrast, breastfeeding and/or slow postnatal
growth appear as a protective factor in LBW infants [63,
64]. Indeed, breastfeeding prevents on the long term the
development of central adiposity and obesity, a major risk
factor of metabolic and cardiovascular diseases [65, 66].

Similar effects have been reproduced in animals. We,
and others, have shown that early postnatal overfeeding,
obtained by reduction of litter size and limited to the
suckling period, induces obesity, cardiovascular, metabolic,
and renal diseases in ageing adult rat offspring [67–70].
Such effects were amplified in IUGR offspring [16, 71, 72].
Blood pressure, fasting insulin, and leptin levels are elevated
in young adults IUGR rat offspring nourished during the
peripubertal period by a hypercaloric diet (applied after
the weaning) [72]. The underlying mechanism is complex.
Early overfeeding/overgrowth is associated with overactivity
of the sympathetic nervous activity, upregulation of the HPA-
axis, early hyperinsulinism, and hyperleptinemia. Hyperin-
sulinism affects endothelial nitric oxide synthase (eNOS),
and hyperleptinemia stimulates the sympathetic nervous
system activity. Sustained alteration of the control of appetite
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with leptin resistance and hyperphagia may exacerbate such
metabolic, hormonal, and vascular disorders and hence
favour the development of cardiovascular and renal diseases
[68, 73]. In contrast, adult diseases can be prevented by slow
postnatal growth and manipulation of diet early during the
development. In rodents, an increase in litter size (a model of
neonatal undernutrition) or prolonged maternal gestational
low protein diet after birth and during the neonatal period
prevents, in normal birth weight and in IUGR offspring,
metabolic disorders and adiposity, long term hypertension
and glomerular sclerosis [11, 74–77]. In the sameway, we have
observed that renal function and structure were unaffected
in ageing IUGR offspring with a slow postnatal growth [16].
Such a considerable influence of early growth and nutrition
on long term blood pressure in rats has been observed in
other species, especially in sheep [78, 79]. Finally, adult
hypertension and salt sensitive hypertension (52-week-old
animals) could be prevented by placing IUGR rat offspring
on a low salt diet just 3 weeks after weaning [80].

Altogether, these findings show that early postnatal
nutrition (protein/caloric diet, sodium intakes. . .) and early
postnatal growth exert a considerable influence on adult
health. Early growth and nutrition can modulate the “fetal
programmed” adult chronic diseases.While a rapid postnatal
growth and/or overfeeding enhances the “vulnerability state”
acquired in utero and accelerates the development of adult
diseases (“mismatch hypothesis”), a slow postnatal growth
and breastfeeding in particular (possibly through reduced
protein and sodium intakes) tend to prevent such diseases.

3. Birth Weight, Nephron
Endowment and CKD

3.1. Nephron Number and CKD. It has been proposed, for a
long time, that the pathogenesis of hypertension and chronic
kidney disease involves a reduction of nephron number
[14, 81–84]. According to the scheme proposed by Brenner
et al. (based on clinical data and experimental studies),
a decrease in the filtration surface area due to reduced
nephron number is associated with an adaptive increase in
single nephron glomerular filtration rate (SNGFR).Nephrons
undergo structural changes with glomerular and tubular
enlargement responsible for renal hypertrophy. Glomeru-
lar capillaries enlargement affects podocyte physiology and
increases glomerular hypertension through exacerbating
the transmission of systemic blood pressure into enlarged
glomerulus. In parallel, other physiological changes occur
including salt retention, higher volume strokes and car-
diac output, resetting in pressure-natriuresis mechanisms
and elevated peripheral vascular resistance. They contribute
to elevate blood pressure levels [14]. Over a long time a
vicious circle takes place responsible for glomerular sclerosis,
impaired GFR, and systemic hypertension. The hemody-
namic adaptivemechanism is accompanied bymolecular and
biomolecular changes including inflammation, upregulation
of the renin angiotensin system (RAS), and the production of
nitric oxide and of reactive species which participate to renal
injury [85]. Such a renal mechanism has been proposed as a

pathophysiologicalmechanism linking low birth to long term
hypertension and chronic kidney disease [11–13].

However, reduced nephron number is not systematically
associated with hypertension and impaired GFR, especially
when it is moderate. In humans, Hughson et al. did not find
this relationship in a group of African-American adults [86].
Several experimental studies failed to demonstrate hyperten-
sion and glomerular sclerosis after renal mass resection or
congenitally reduced nephron endowment [15–21]. We have
recently shown that blood pressure and glomerular sclerosis
were unchanged in 22-month-old IUGR ageing males and
females rat offsprings with a significant reduction of nephron
number (by an average of 25% to 30%) [16]. All these findings
suggest that the relationship of reduced nephron number
with hypertension and chronic kidney disease is, in fact,more
complex and involves various factors. It depends, in part,
on the severity of nephron number deficit, the degree of the
single nephron glomerular hyperfiltration, or both.

3.2. Birth Weight and Nephron Endowment. The develop-
ment of the kidney is a complex process in mammalian.
The time at which nephrogenesis ends differ according to
species: in rodents, nephrogenesis continues after birth up to
postnatal days 7 to 10, whereas in sheep, the nephrogenesis
is achieved before birth at gestational days 125–130 (the
normal duration of gestation is 145–150 days). In human, the
nephrogenesis is completed by 34–36th weeks of gestation,
that is, before birth. About 60% of the nephrons develop
during the third trimester of gestation. The definitive kidney,
the metanephros, develops from the specific interaction
between the epithelial ureteric bud (UB) and the undiffer-
entiated metanephric mesenchyme (MM). An insignificant
event occurring during the early stage of nephrogenesis (the
branching morphogenesis) can have dramatic effects on the
final nephron number (nephron endowment).

3.2.1. Nephron Number in Human. Nephron number varies
widely in the general population and ranges from 2 to more
than 10-fold [87–92]. In the Monash series, which included
420 kidneys obtained at autopsy from adults and children
from different populations (Aboriginal Australians and white
Australians, Senegalese, and white Americans and African
Americans), the mean nephron number per kidney was
around 900,000 ranging 13-fold from about 210,000 to more
than 2,000 000 [88, 90, 91]. Such variability may be explained
by genetic and environmental factors, or both. Aboriginal
Australians have lower nephron number. Alterations in spe-
cific DNA sequences are associated with renal agenesis and
hypoplasia [93, 94], and few genetic polymorphisms have
been associated to changes in renal volume (a surrogate of
nephron mass) [95–97].

The principal factor which determines nephron number
is birth weight [90], but it is not the only one. Nephron
number can vary 3-fold when birth weight is situated within
normal range, that is, 3000 g–3500 g [90]. Low birth weight
is associated with reduced nephron number. Intrauterine
growth restriction ((IUGR) birth weight <10th percentile for
gestational age) decreases the nephron number by an average
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Figure 1: Factors influencing nephron endowment.

of 30–35%, whereas the effects of preterm birth are still
unknown [87, 98, 99]. In preterm infant, the nephrogenesis
has to continue in a potentially unfavourable environment.
Reduced kidney size and volume have been reported in
children and young adults born preterm and in the ones
who had postnatal growth restriction [100–103]. Data from
autopsy studies which included kidneys from preterm infants
who died during the neonatal period at different gestational
and postnatal ages showed signs of accelerated maturation
of nephrogenesis with enlarged glomeruli [104, 105]. Similar
glomerular hypertrophy was observed in premature baboon
(E125/E185), with however a preserved nephron endowment
[106]. These findings suggest that postnatal nephrogenesis
is altered in sick, preterm infants. Babies included in these
studies were likely to be the sickest among the patients and
to have suffered a prolonged postnatal “stress” which might
compromise the postnatal nephrogenesis. The formation of
additional nephrons could be preserved in a part of preterm
infants who are less immature and have uncomplicated
neonatal care or optimal neonatal growth. More studies are
clearly needed to assess factors influencing the postnatal renal
development in preterm infants.

3.2.2. Lessons from Experimental Studies. Various factors can
alter nephrogenesis [12, 87, 99, 107] (Figure 1). Maternal
low protein diet, vitamin A deficiency and maternal iron
deficiency, uterine arteries ligation, maternal gestational
administration of glucocorticoids, or other drugs (antibi-
otics) lead in most cases to IUGR and to a reduced nephron
number by an average of 20%–50%. Maternal gestational
diabetes in rodents can alter fetal nephrogenesis as well [12,
99, 108, 109]. In sheep, chorioamnionitis induced by intra-
amniotic injection of lipopolysaccharides (LPS) at embryonic
days E121 reduced fetal nephron number by 20% [110]. We
showed previously in 20-day-old rat foetuses that maternal
low protein diet (MLP) reduced permanently the nephron
number by an average of 30% [16, 111].

The underlying pathophysiological mechanism is incom-
pletely known. Reduction of nephron number may result
from an imbalance between pro- and antiapoptotic fac-
tors towards apoptosis. Downregulation of the renal renin

angiotensin system, fetal overexposure to glucocorticoids,
or altered midkine expression has been reported in vari-
ous IUGR models [99, 112–118]. The expression of specific
genes involved in nephrogenesis is altered (Pax2, GDNF)
[113, 115]. We found that expression of around 20% of the
genome is altered in the fetal kidney of IUGR rat offspring
exposed in utero to maternal low protein diet [111, 119].
The expression of genes involved in cell maintenance and
signal transduction was decreased, and those belonging to
the vascular prothrombotic pathway and to the complement
components were considerably overexpressed [111, 119]. The
effects of fetal environment on nephron endowment may be
epigenetically mediated [119–121]. Hypomethylation of the
gene p53 has been associated with reduced nephron number
in a rat model of placental insufficiency [121]. In addition,
we showed in the kidneys of IUGR fetal offspring changes
in the expression of genes coding for specific enzymes
involved in epigeneticmachinery [119]. Changes in epigenetic
marks could be transmitted to the next generation and be
responsible for “transmitted” nephron deficit. In rat, offspring
(second generation, F2) from parents exposed prenatally to
maternal gestational lowprotein diet (first generation, F1) had
normal birth weight but 30% to 40% reduction in nephron
number [120]. Additional studies are however needed to
confirm and to eventually explain such a transgenerational
transmission of acquired phenotype.

Birth weight is not the only predictive factor of the
nephron endowment. In animal, the nephron endowment
is also characterized by a certain rate of variability. In
rodent, despite strictly controlled conditions, the nephron
endowment can vary by an average of 10% to 15% for a birth
weight situated within normal range [122, 123]. Events that
occur during the early stage of nephrogenesis can induce
a nephron deficit without affecting birth weight [124–127].
Exposure to maternal low protein diet and administration
of a short course of glucocorticoids during the early stage of
nephrogenesis, in rodents (E14–17) and in sheep (E80), are
sufficient to reduce nephron endowment (−20% to −40%)
without inducing low birth weight [124–126]. Interestingly,
the nephron endowment can be preserved in IUGRoffspring,
especially when IUGR is spontaneous or when it occurs
late in gestation [123, 128]. In summary, the more the
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Figure 3: Developmental origin of hypertension and chronic kidney disease: an “integrative hypothesis”.

process of IUGR appears early in the gestation, the more
the nephrogenesis is affected, and the nephron endowment
severely reduced.The early stage of nephrogenesis constitutes
a “critical window” when an event can alter profoundly and
durably the nephrogenesis.

Postnatal environment can influence nephron endow-
ment in certain situations when the nephrogenesis continues
after birth. Recent studies in rodents showed that neonatal
undernutrition (−30% to −40%, through increasing litter
size) reduced nephron endowment (−20%), but early neona-
tal overfeeding (through reduction of litter size) enhanced
postnatal nephrogenesis (+25%) [70, 129]. However, this
last effect was not observed in IUGR offspring (induced by
maternal low protein diet). Indeed, while pups displayed a
rapid catch-up growth within the first 15 days after birth,
the nephron endowment failed to be restored. Interestingly,
Wlodek et al. found a relative restoration of nephron endow-
ment when IUGR pups were switch to normal lactating
dams [130]. In the last study, IUGR was induced by uterine
ligation at embryonic day 17. This discrepancy may result
from a marked deficit in nephron precursors observed in
fetus exposed to maternal low protein diet at the early stage
of fetal development [115, 116].

Such findings emphasize that birth weight is a predictive
factor of nephron endowment but is certainly not the only
one. Nephron endowmentmay result from a complex process
which integrates the interaction of the fetal environment

(or postnatal environment in preterm infants) and the genetic
background. Normal birth weight does not always signify a
sufficient nephron endowment and low birth weight a severe
nephron deficit. The relationship between birth weight and
nephron endowment is not so linear and it could be difficult
to predict nephron endowment for an individual based only
on birth weight.

4. Birth Weight and Chronic Kidney Disease:
An ‘‘Integrative’’ Hypothesis

Relationship of birth weight with chronic kidney disease is
complex and integrates various factors and pathophysiologi-
calmechanisms ofwhich nephronnumber plays a pivotal role
(Figures 2 and 3).

Predominant factor which determines nephron endow-
ment is birth weight. However, it is not the only one. Nephron
endowment, acquired at birth (or after birth for preterm
infants), may result from an interaction between genetic
background and environmental factors. Environment may
alter nephrogenesis through epigenetic pathway, and genetic
background may make the kidney less or more sensitive
to environmental factors. For example, some mice strains
are less sensitive to nephron deficit and glomerular sclerosis
induced by maternal gestational administration of amino-
glycosides [131]. When nephrogenesis is severely impaired,



6 International Journal of Nephrology

that is, when the nephron deficit is marked, the risk of early
impaired renal function and hypertension is elevated. It is
the case of infants born with congenital anomaly of kidney
and urinary tract. In most cases, alterations in nephrogenesis
are subtle and are probably not responsible by themselves to
chronic kidney disease. However, such changes constitute a
“factor of vulnerability.”

Various postnatal factors can induce a single nephron
glomerular hyperfiltration or glomerular hypertension and
together with a reduced filtration surface area may accelerate
the occurrence of CKD. Nutrition or growth early in life
is one of them. We and others have shown that a rapid
postnatal growth and overfeeding (high caloric and protein
intakes) early in life induced in young adult IUGR rat
offspring a renal hypertrophy and proteinuria (a surrogate
of a glomerular hyperfiltration or glomerular endothelium
barrier injury) [12, 16, 70, 117, 132]. Protein diet may play
an important role since it is known for a long time that
high protein intakes in adult animals induce glomerular
hyperfiltration, renal hypertrophy, and long term glomerular
sclerosis [74]. In another study, twelve-week-old IUGR rat
offspring exposed postnatally to a high protein diet (+30%)
displayed glomerular hypertrophy, podocyte damage, and
early signs of interstitial fibrosis [133]. On the other hand,
a slow postnatal growth prevents the development of renal
disease in IUGR and normal birth weight offspring. The
renal effects of a high protein diet are more marked when
the kidney is immature due to its higher capacity than the
adults’ to adapt renal hemodynamic (with higher sensitivity
to the RAS) [134]. This adaptative mechanism is associated
with various changes including upregulation of the renal
RAS of the VEGF system and overactivity of the sympathetic
nervous system. Inflammation and oxidative stress have been
demonstrated in these kidneys as well (Figure 2) [135–139].
These changes may initiate a “renal stress,” an infraclinical
renal injury. Indeed, kidney of IUGR overfed offspring which
displayed a rapid postnatal catch-up growth expressed stress-
induced senescence protein markers (p16, p21) and telom-
ere shortening [135–140]. Telomere shortening, related with
“oxidative stress,” favours premature cell death (Figure 2).
However, it is unknown whether such changes persist on the
long term and whether it can be reversed.

Some of these experimental findings have been reported
in human. Early high protein diet and rapid growth rate
tend to induce a renal hypertrophy. Two recent studies have
prospectively evaluated the effects of different diets on renal
structure (using ultrasound) in infants born at term with
birth weight adapted for gestational age [141, 142]. In the first
study, when a group of formula-fed infants was compared
to breastfed infants, the authors showed a 25% increase in
renal volume at 3 months of age.This effect was transient and
was no longer observed at 18 months when all infants were
on mixed diet [141]. The second study aimed to investigate
the renal effects of two low (1.25 g/dL, average breastfeeding)
and high protein (2.05 g/dL, +60%) formula diets in healthy
infants [142]. At 6 months of age, while no differences
were found between breastfed and low protein formula-
fed infants, the kidney volume (and the relative volume of
the kidney/body surface area ratio) was 10% higher in high

protein formula-fed infants.This renal effect may result from
a single nephron glomerular hyperfiltration induced by high
protein intakes as demonstrated in experimental studies.

Early nutrition and growth can alter renal function and
structure through other pathways. In animal, early postnatal
overfeeding is associated with hypertension, obesity, and
type 2 diabetes, known as risk factor for CKD. A rapid
postnatal catch-up growth and/or overfeeding is associ-
ated with hyperleptinemia, hyperinsulinism and insulin-
resistance, upregulation of the RAS and HPA-axis, and over-
activity of the nervous sympathetic activity (see above). Such
effects are responsible for impaired endothelium-dependent
vasodilatation, systemic vasoconstriction, oxidative stress,
and systemic inflammationwhich alter in turn vascular struc-
ture and arterial stiffness and lead to hypertension. Obesity
and hyperglycaemia induce a single nephron glomerular
hyperfiltration [143, 144], but it is still unknown if such
changes are sufficient by themselves to affect renal structure.
Experimentally, hyperglycaemia (administration of strep-
tozocin ± insulin therapy, equivalent of type 1 diabetes)
in young adult IUGR offspring induces single nephron
glomerular hyperfiltration and proteinuria but does not affect
the glomerular structure on the long term (10mo) [145, 146].
These findings may be explained by the unchanged blood
pressure and the associated weight loss which have limited
the adverse renal effects of hyperglycaemia. Indeed, blood
pressure plays an important role. Comparing two models of
obesity-induced renal injury, do Carmo et al. demonstrated
the detrimental role of hypertension on renal structure [147].
Finally, in rodents, early overgrowth/overfeeding alters the
central control of appetite with sustained hyperphagia. This
last effect can have detrimental effects on the kidney. In
industrialized countries, a large part of the population is
exposed to hypercaloric diet named “western diet.” This
diet, characterized by high carbohydrates, salt, protein, and
saturated fat contents, is known to increase the risk of
atherosclerosis and cardiovascular disease and to promote the
development of glomerular sclerosis [148–150]. These effects
are mediated by the overactivity of the sympathetic nervous
system, inflammation, and oxidative stress (exacerbated in
part by angiotensin II) [149]. In human, high protein diet
accelerates the deterioration of GFR in adults with low GFR
[151]. Other nutrient and are of importance. High salt intakes
are known to increase blood pressure levels and the risk of
CKD, especially in overweight patients [80, 152, 153]. Such a
salt sensitivity may be enhanced in IUGR offspring. In IUGR
rat offspring, reduced nephron number is associated with
tubular changes including increased expression of the renal
tubular Na+ : K+ : 2Cl− cotransporter (NKCC2) and altered
the Na+ : K+ ATPase activity responsible for a tendency to
sodium retention and a higher sensitivity to high salt intake
[80, 154–160]. One can easily understand that this nutritional
factor may amplify the vascular and systemic effects of pre-
existing type 2 diabetes, obesity, and hypertension and favour
the development of CKD.

Altogether these additional factors in combination with
“vulnerable” kidneys accelerate the onset of CKD through the
increase in the SNGFR, the reinforcing of the exacerbation of
the pre-existing “renal stress”, and through the transmission
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of elevated systemic blood pressure to enlarged glomerular
capillaries. Hence, the kidney appears both as the underlying
pathophysiological mechanism and as the target organ of
developmental programming of CKD.

5. Implications for Followup, Nutrition, and
Prevention in Patients at Risk

Early life conditions are of particular importance in the
comprehension of chronic kidney disease (CKD). Their
importance equals or may exceed that of other later environ-
mental risk factors. Various systems, including the kidney, are
permanently altered. Reduced nephron number, with renal
tubular changes, constitutes a “factor of vulnerability” when
additional factors as the early postnatal growth/nutrition
promote early onset of hypertension and CKD through vari-
ous pathways. Despite this clear pathophysiologic rationale,
a number of points still need to be addressed to allow
the design of effective preventive strategies. The criteria for
a subject being considered at particular risk need to be
defined.This is the less easy since a number of epidemiologic
and clinical studies show that the long term programming
of hypertension and of renal disease does not occur only
in well-defined, pathological conditions such as low birth
weight, preterm birth, and exposure to maternal diabetes in
pregnancy. Even in apparently healthy children, estimated
glomerular function has been shown to be correlated with
size at birth [161]. Questions such as the optimal nutrition of
low birth weight infants, whether due to intrauterine growth
restriction, preterm birth or both, the optimal followup
of vascular, metabolic, and renal functions, and possible
nutritional and pharmacological interventions remain unan-
swered. Postnatal undergrowth/undernutrition is associated
with impaired neurological function and potentially death in
certain regions of the world [162]. Future research may aim
to clarify early biomarkers and markers of nephron endow-
ment and early renal injury in order to determine optimal
perinatal nutrition and the eventual prophylactic measures
to be applied to infants at increased risk of developmentally
programmed adult diseases. However, simple preventive
measures such as promoting breastfeeding (at least 6mo)
and physical activity early in childhood and establishing
early program of nutritional education and public nutritional
policies (reduced sodium, carbohydrates and saturated fat in
ready meals, e.g.) are now feasible and can have significant
impact on public health (as suggested by experimental
studies).
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