
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 636484, 11 pages
http://dx.doi.org/10.1155/2013/636484

Research Article
Discrete Particle Swarm Optimization with Scout
Particles for Library Materials Acquisition

Yi-Ling Wu,1 Tsu-Feng Ho,2 Shyong Jian Shyu,2 and Bertrand M. T. Lin1

1 Institute of Information Management, National Chiao Tung University, Hsinchu 30010, Taiwan
2Department of Computer Science and Information Engineering, Ming Chuan University, Taoyuan 33348, Taiwan

Correspondence should be addressed to Tsu-Feng Ho; tfho@mail.mcu.edu.tw

Received 3 June 2013; Accepted 10 July 2013

Academic Editors: S. Balochian, V. Bhatnagar, and Y. Zhang

Copyright © 2013 Yi-Ling Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Materials acquisition is one of the critical challenges faced by academic libraries. This paper presents an integer programming
model of the studied problem by considering how to select materials in order to maximize the average preference and the budget
execution rate under some practical restrictions including departmental budget, limitation of the number of materials in each
category and each language. To tackle the constrained problem, we propose a discrete particle swarm optimization (DPSO) with
scout particles, where each particle, represented as a binary matrix, corresponds to a candidate solution to the problem. An
initialization algorithm and a penalty function are designed to cope with the constraints, and the scout particles are employed
to enhance the exploration within the solution space. To demonstrate the effectiveness and efficiency of the proposed DPSO, a
series of computational experiments are designed and conducted. The results are statistically analyzed, and it is evinced that the
proposed DPSO is an effective approach for the studied problem.

1. Introduction

In recent years, the price inflation of library materials, the
shrinking of library budget, and the growth of electronic
resources continue to challenge the acquisition librarians [1].
Complicating the effects of these challenges is the growth of
scholarly and popular publications. With the great increase
in publications, the librarians have not only to acquire the
latest and the preferred materials within the limited budget
but also to take the collection policy into consideration.
Walters [2] reports that the annual inflation rate of academic
books and periodicals were 1.4 and 8.5 percent. The research
planning and review committee of the Association of College
and Research Libraries (ACRL) [3] develops the 2010 top ten
trends in academic libraries and finds that many libraries will
face the budget pressure in the near future. These reaffirm
the fact that the materials acquisition problem is exacerbated
by the difficulty of aligning the library offerings with patron
needs under the budget pressure.

Over the past few decades, researches on materials
acquisition have been conducted and implemented with a
number of operations research basedmodels and approaches.

Beilby and Mott Jr. [4] develop a linear goal programming
model for acquisition planning of academic libraries, and
incorporate with multiple collection development goals such
as acquiring an adequate number of titles (at least 7,500
but not more than 10,500 titles), not exceeding the total
acquisition budget ($200,000), and/or limiting periodical
expenditures to 60% of the total acquisition expenditures.
Wise and Perushek [5] introduce another model that takes
into account more goals, like reaching the minimum limit
for each subject fund, not surpassing the maximum limit for
each subject fund, and so forth. Later, Wise and Perushek
[6] not only address an important claim that the suggestions
of collection development librarians and faculties must be
taken into consideration but also elaborate another model to
reflect the opinion of librarians and faculties. Ho et al. [7]
present a model that maximizes the average preference of
patrons subject to both the acquisition cost and the number
of materials in each category.

In most of the cases, academic libraries are positioned
to acquire materials for multiple departments, for example,
Science, Business, Engineering, and so forth, within the
budget of each department. Goyal [8] proposes an operations

http://dx.doi.org/10.1155/2013/636484

2 The Scientific World Journal

research model of funds allocation to different departments
of a university. The objective of this model is to maximize
the total social benefits conveyed by the funds exercised for
the purchase of materials among all departments, and the
constraints of this model are the lower and upper limits
of fund for each department and the total funds available.
Arora and Klabjan [9] point out the critical concern about
fairness in materials acquisition of academic libraries. They
provide a model for maximizing the usage in the future time
period subject to the bounds on the number of materials
of each category and the lower and the upper bounds on
the budgets of the library units. Existing researches on
materials acquisition assume a single total budget or multiple
department budgets. This study will investigate the scenario
where each individual department has its own budget limit
for the preferredmaterials that are to be acquired.This type of
budget planwill introduce financial constraints that aremuch
more complicated.

From the viewpoint of acquisition staffs, it is question-
able if the patrons are satisfied with the decision outcome.
Niyonsenga andBizimana [10] indicate various factors related
to the patron satisfactions with academic libraries services,
such as a list of new acquisitions, lending services, serial
collection. In this paper, we adopt the patron preferences of
acquisitions to reflect the patron satisfactions. To allocate the
budget as fairly as possible, we assume that the preferences
are obtained from the patrons of all departments due to the
different interests of the departments. Besides, a low budget
execution rate may lead to a budget cut in the next fiscal year.
Librarians sometimes are on the horns of a dilemma whether
to purchase the less preferred materials or cause a low budget
execution rate. Therefore, we concentrate on how to select
materials to be acquired in order to maximize the average
preference as well as the budget execution rate under the
real-world restrictions including departmental budget and
limitation of the number of materials in each category.

In the view of computational complexity, the materials
acquisition problem is a generalized version of the knapsack
problem which is known to be computationally intractable
[11]. In other words, it is extremely time consuming and even
unlikely to find an optimal solution when the problem size
is large. By far, metaheuristics, such as genetic algorithm,
ant colony optimization, and particle swarm optimization
are successfully applied to cope with many hard optimiza-
tion problems with impressive performances in obtaining
solutions with in an effective and efficient way [12, 13]. This
paper is devoted to tackling the studied problem by particle
swarm optimization (PSO) that has earned a good reputation
by the trustworthy merits including simplicity, efficiency,
and effectiveness in producing quality solutions [14, 15].
Furthermore, to avoid premature convergence, we introduce
a discrete particle swarm optimization with scout particles,
introduced by Silva et al. [16], to enhance the exploration
capability of the adopted swarms.

The rest of this paper is organized as follows. In Section 2,
a mathematical model of the materials acquisition problem
with departmental demands is proposed and followed by a
greedy algorithm. Section 3 presents the fundamental con-
cept and structure of the discrete particle swarmoptimization

(DPSO). In Section 4, we depict how the proposed DPSO
with scout particles is tailored for the characteristics of
the studied problem. A computational study is carried out
to examine the performances of the proposed solution
approaches. Our experimental settings and results of DPSO
are presented in Section 5. We summarize the results of this
study and give some concluding remarks in Section 6.

2. Problem Statements and Greedy Algorithm

A formal specification of the materials acquisition problem
is presented in this section. Then, an integer programming
model is developed to formulate the problem considered in a
mathematical way.

2.1. Problem Specification. Consider a set of 𝑛materials to be
acquired and a set of𝑚 departments. Each material is associ-
ated with a cost 𝑐

𝑖
and a preference value 𝑝

𝑖𝑗
recommended

by each department 𝑗 for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚.
Each department owns an amount 𝐵

𝑗
of budget for 1 ≤ 𝑗 ≤

𝑚. Since one material may be recommended by more than
one department, the acquisition cost would be apportioned
by these recommending departments in proportion to their
preferences. For instance, if a material with cost 100 is
acquired to meet the recommendations from two depart-
ments 𝑗 and 𝑗 with preferences 0.9 and 0.6, then departments
𝑗 and 𝑗

 should pay 40 (= 100 × (0.9/(0.9 + 0.6))) and 60
(= 100 × (0.6/(0.9 + 0.6))), respectively, from their budgets
𝐵
𝑗
and 𝐵

𝑗
 . We denote the actual expense by department 𝑗

for material 𝑖 as 𝑒
𝑖𝑗
. To meet the acquisition requirements

from various departments, 𝑞 written languages (e.g., English,
Japanese, Chinese, etc.) and 𝑟 classified categories (e.g., Art,
Science, Design, etc.) are considered such that the amount of
materials belongs to a certain language and a specific category
may be restricted into a range. In addition, the authority
would expect the remainder of budget 𝐵

𝑗
, once granted, for

department 𝑗 to be the less the better after allocation. We
thus define the execution rate to be the actual expenses of all
departments divided by the budget of all departments.

The decision is to determine which materials should
be acquired and which departments should cover the cost
associated with these materials under the constraints of
departmental budgets and the limitation of the amounts in
each written language and each category. The objective is to
maximize the combination of the average preference and the
budget execution rate.

In Table 1, we summarize the notations that will be used
in the integer programming model throughout the paper.

2.2. Problem Formulation. Thematerials acquisition problem
is mathematically formulated as the following integer pro-
gramming model:

maximize 𝑂 (𝑥) = 𝜌 × (

∑
𝑚

𝑗=1
(∑
𝑛

𝑖=1
𝑥
𝑖𝑗
𝑝
𝑖𝑗
/∑
𝑛

𝑖=1
𝑥
𝑖𝑗
)

𝑚

)

+ (1 − 𝜌)(

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑥
𝑖𝑗
𝑒
𝑖𝑗

∑
𝑚

𝑗=1
𝐵
𝑗

)

(1)

The Scientific World Journal 3

Table 1: Notations.

Variable Description
𝑛 Number of materials
𝑚 Number of departments
𝑞 Number of categories
𝑟 Number of languages
𝑝
𝑖𝑗 Preference for material i recommended by department 𝑗, for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚

𝑐
𝑖 Cost of material i, for 1 ≤ 𝑖 ≤ 𝑛

𝐵
𝑗 Budget limit of department j, for 1 ≤ 𝑗 ≤ 𝑚

𝐿𝑈
𝑙 Upper bound on the number of materials in language l, for 1 ≤ 𝑙 ≤ 𝑟

𝐿𝐿
𝑙 Lower bound on the number of materials in language l, for 1 ≤ 𝑙 ≤ 𝑟

𝑎
𝑖𝑙 𝑎

𝑖𝑙
= 1 if material i is in language q; 𝑎

𝑖𝑙
= 0 otherwise, for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑙 ≤ 𝑟

𝐶𝑈
𝑘 Upper bound on the number of materials in category k, for 1 ≤ 𝑘 ≤ 𝑞

𝐶𝐿
𝑘 Lower bound on the number of materials in category k, for 1 ≤ 𝑘 ≤ 𝑞

𝑏
𝑖𝑘 𝑏

𝑖𝑘
= 1 if material i belongs to category k; 𝑏

𝑖𝑘
= 0 otherwise, for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑙 ≤ 𝑟

𝑥
𝑖𝑗

Decision variable: 𝑥
𝑖𝑗
= 1 if material i is acquired for department j from which the cost will be charged; 𝑥

𝑖𝑗
= 0 otherwise, for

1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚

𝑧
𝑖 Auxiliary variable: 𝑧

𝑖
= 1, if ∑𝑚

𝑗=1
𝑥
𝑖𝑗
> 0; otherwise 𝑧

𝑖
= 0, for 1 ≤ 𝑖 ≤ 𝑛 (𝑧

𝑖
reveals whether material i is acquired or not)

𝑒
𝑖𝑗 Actual expenses of material i by department j, for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚

subject to

𝑒
𝑖𝑗
≥ (

𝑥
𝑖𝑗
𝑝
𝑖𝑗

∑
𝑚

𝑗=1
𝑥
𝑖𝑗
𝑝
𝑖𝑗

) × 𝑐
𝑖

for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,

(2)
𝑛

∑

𝑖=1

𝑒
𝑖𝑗
≤ 𝐵
𝑗

for 1 ≤ 𝑗 ≤ 𝑚, (3)

𝑛

∑

𝑖=1

𝑥
𝑖𝑗
− 𝑧
𝑖
𝑀 ≤ 0 for 1 ≤ 𝑖 ≤ 𝑛, (4)

𝑛

∑

𝑖=1

𝑥
𝑖𝑗
+ (1 − 𝑧

𝑖
)𝑀 > 0 for 1 ≤ 𝑖 ≤ 𝑛, (5)

𝑛

∑

𝑖=1

𝑧
𝑖
𝑎
𝑖𝑙
≤ 𝐿𝑈
𝑙

for 1 ≤ 𝑙 ≤ 𝑟, (6)

𝑛

∑

𝑖=1

𝑧
𝑖
𝑎
𝑖𝑙
≥ 𝐿𝐿
𝑙

for 1 ≤ 𝑙 ≤ 𝑟, (7)

𝑛

∑

𝑖=1

𝑧
𝑖
𝑏
𝑖𝑘
≤ 𝐶𝑈
𝑘

for 1 ≤ 𝑘 ≤ 𝑞, (8)

𝑛

∑

𝑖=1

𝑧
𝑖
𝑏
𝑖𝑘
≥ 𝐶𝐿
𝑘

for 1 ≤ 𝑘 ≤ 𝑞. (9)

The objective function (1) is to maximize the weighted
sum of the average preference and the budget execution
rate, where 𝜌, 0 ≤ 𝜌 ≤ 1, is a parameter controlling the
degree of importance between these two terms. The actual
expense of material 𝑖 apportioned by department 𝑗 (𝑒

𝑖𝑗
)

is given in constraints (2), where all the cost of materials

will be apportioned according to the proportion of the
preference (𝑝

𝑖𝑗
). Constraints (3) confine that the expense of

any department 𝑗 do not exceed its budget (𝐵
𝑗
). To ease the

amount computation of the acquired materials, we introduce
an auxiliary variable 𝑧

𝑖
, which is 1 (0) if ∑

𝑚

𝑗=1
𝑥
𝑖𝑗

> 0

(otherwise), to show whether material 𝑖 is acquired or not.
Using a sufficiently large positive number𝑀, constraints (4)
and (5) are deliberately designed to obtain the proper value
of 𝑧
𝑖
. If ∑𝑚

𝑗=1
𝑥
𝑖𝑗

≤ 0, constraint (4) becomes irrelevant,
where 𝑧

𝑖
may be either 0 or 1, but constraints (5) pledge

𝑧
𝑖
= 0, which indicates that material 𝑖 is not acquired. On the

contrary (∑𝑚
𝑗=1

𝑥
𝑖𝑗
> 0), constraints (5) would be redundant,

yet constraint (4) promises 𝑧
𝑖
= 1, which means that material

𝑖 is acquired. If the material 𝑖 is acquired (𝑧
𝑖
= 1); then

constraints (6) and (7) will force the number of acquired
materials in each language 𝑙 to be larger than or equal to the
lower bounds and not to exceed the upper bounds. If material
𝑖 is not acquired (𝑧

𝑖
= 0), constraints (6) and (7) will assure

the number of acquired materials in each language 𝑙 included
no material 𝑖. Constraints (11) and (12) are similarly defined
to abide by the lower bound and upper bound specified on
the number of materials in each category 𝑘.

2.3. GreedyAlgorithm. Agreedy solutionmethod, denoted by
AlgorithmGreedy as shown in theAlgorithm 1, is designed to
be the comparison counterpart for other approaches. First, to
decide if eachmaterial 𝑖will be acquired or not, all themateri-
als are sorted in nonincreasing order of the ratio (∑𝑚

𝑗=1
𝑝
𝑖𝑗
)/𝑐
𝑖
.

We thus assume the materials are reindexed in accordance
with this sequencing rule. The first material, the one that
attains the maximum (∑

𝑚

𝑗=1
𝑝
𝑖𝑗
)/𝑐
𝑖
ratio, will be considered

if the following two conditions are satisfied: (1) the upper
bound on the number of languages 𝐿𝑈

𝑙
is not exceeded, and

(2) the upper bound on the number of categories 𝐶𝑈
𝑘
is

4 The Scientific World Journal

Algorithm Greedy:
Sort all materials in nonincreasing order of the ratio (∑

𝑚

𝑗=1
𝑝
𝑖𝑗
)/𝑐
𝑖
;

for 𝑖 := 1 to 𝑛 do
while (the upper bound on the number of materials in language 𝐿𝑈

𝑙
is not exceeded, 1 ≤ 𝑙 ≤ 𝑟)

while (the upper bound on the number of materials in category 𝐶𝑈
𝑘
is not exceeded, 1 ≤ 𝑘 ≤ 𝑞)

Sort the departments that propose material 𝑖 in nonincreasing order of 𝑝
𝑖𝑗

Let (𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑚
) be the sorted sequence;

for 𝑗 := 1 to𝑚 do
if (budget 𝐵

𝑗
is not exhausted)

Set 𝑥
𝑖𝑗
= 1

endfor
Calculate the residual budget of all departments 𝑗 with 𝑥

𝑖𝑗
= 1 by

deducing the apportioned cost of material 𝑖.
endwhile

endwhile
endfor

Algorithm 1: Greedy solution method.

not exceeded. Next, to determine which departments will
apportion the cost of material 𝑖, all departments are sorted
in nonincreasing order of 𝑝

𝑖𝑗
, and let (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑚
) be the

sorted list. Material 𝑖 will be acquired by department 𝑗 (𝑥
𝑖𝑗
=

1), if the budget of this department is not exceeded.

3. Related Works of PSO

This section presents an overview on particle swarm opti-
mization and describes two widely used topologies. What
follows is a review on how to handle constraints and how to
avoid premature convergence.

3.1. PSO. Particle swarm optimization (PSO) [14], intro-
duced by Kennedy (a social psychologist) and Eberhart (an
electrical engineer) in 1995 as an optimization method, is
inspired by the observation on behavior of flocking birds and
schooling fish. With the simplicity and lessened computa-
tion loads, PSO has been widely applied to many research
areas, such as clustering and classification, communication
networks, and scheduling [15, 17–19].

In foraging, birds flock together and arrange themselves
in specific shapes or formations by sharing their information
about food sources. The movement of each particle will be
influenced by the experiences of itself and the peers. In the
process of optimization, each particle 𝑠 of flock 𝑆 is associated
with a position, a velocity, and a fitness value. A position,
which is a vector in a search space, represents a potential
solution to an optimization problem; a velocity, which is a
vector, represents a change in the position; a fitness value,
which is computed by the objective function, indicates how
well the particle solves the problem.

To find an approximate solution, each particle 𝑠 deter-
mines its movement iteratively by learning from its own
experience and communication with its neighbors. The
mechanism of coordination is encapsulated by the velocity
control over all particles at each iteration 𝑡 of the algorithm.

For each particle 𝑠, the velocity at iteration 𝑡 + 1 (𝑉𝑡+1
𝑠

) is
updated with (10), where 𝑃

𝑡

𝑠
denotes the solution found by

(position of) particle 𝑠 at iteration 𝑡, 𝑃𝑡
𝑠
denotes the best

solution found by particle 𝑠 until iteration 𝑡, and �̂�
𝑡

𝑠
denotes

the best solution found by the neighbors of particle 𝑠. The
cognition learning rate (𝑐

1
) and social learning rate (𝑐

2
) are

introduced to control the influence of individual experience
and their neighbors’ experience, respectively. At the next
iteration 𝑡 + 1, the position of each particle is updated by (11).
One has

𝑉
𝑡+1

𝑠
= 𝑉
𝑡

𝑠
+ 𝑐
1
𝑟
1
(𝑃

𝑡

𝑠
− 𝑃
𝑡

𝑠
) + 𝑐
2
𝑟
2
(�̂�
𝑡

𝑠
− 𝑃
𝑡

𝑠
) , (10)

𝑃
𝑡+1

𝑠
= 𝑃
𝑡

𝑠
+ 𝑉
𝑡+1

𝑠
. (11)

For discrete optimization problems, Kennedy and Eber-
hart [20] also introduce a binary particle swarm optimization
that changes the concept of velocity from adjustment of the
position to the probability that determines whether a bit of a
solution becomes one or zero.The velocity of each particle 𝑠 at
iteration 𝑡, 𝑉𝑡+1

𝑠
, is squashed in sigmoidal function as shown

in (12); the position updating function is replaced by (13),
where rand() is a random number drawn from the interval
[0, 1]. One has

𝑆 (𝑉
𝑡+1

𝑠
) =

1

1 + 𝑒
−(𝑉
𝑡+1

𝑠
)
, (12)

𝑃
𝑡+1

𝑠
= {

1 if rand () < 𝑆 (𝑉
𝑡+1

𝑠
) ,

0 otherwise,
(13)

To better balance the exploration and exploitation, sev-
eral variants of PSO algorithm have been proposed in the
literature. A widely used method, proposed by Eberhart and
Shi [21], is to introduce an inertia weight (𝑤) to the velocity
updating function shown in (14). The inertia weight is used

The Scientific World Journal 5

to adjust the influence of the current velocity on the new
velocity:

𝑉
𝑡+1

𝑠
= 𝑤𝑉

𝑡

𝑠
+ 𝑐
1
𝑟
1
(𝑃

𝑡

𝑠
− 𝑃
𝑡

𝑠
) + 𝑐
2
𝑟
2
(�̂�
𝑡

𝑠
− 𝑃
𝑡

𝑠
) . (14)

3.2. Communication Topology. In the literature, several com-
munication topologies have been extensively studied. Poli
et al. [22] classify the communication structures into two
categories: static topologies and dynamic topologies. Static
topologies are that the number of neighbors does not
change at all iterations of a run; dynamic topologies, on the
other hand, are that the size of neighborhoods dynamically
increases.

Local topology, global topology, and von Neumann
topology are some well-known examples of static topology.
As for dynamic topologies, the neighborhood size can be
influenced by a dynamic hierarchy, a fitness distance ratio, or
a randomized connection, just to name a few. The canonical
PSO algorithm, proposed by Bratton and Kennedy [23], is
equipped with global and local topologies.

A PSO with a global topology (or gbest topology) allows
each particle to communicate with all other particles in the
swarm, while a PSO with a local topology (or lbest topology)
allows each particle to share information with only two other
particles in the swarm.Therefore, a gbest PSO could lead to a
faster convergence but might be trapped into a local optimal
solution. Conversely, an lbest PSO could result in a slower
rate of convergence but might be able to escape from a local
optimal.

3.3. Constraint Handling. As reported in the literature, there
are various different methods for handling constrained opti-
mization problems. Several commonly used methods are
based on penalty functions, rejection of infeasible solutions,
repair algorithm, specialized operators, and behavioral mem-
ory [24–26]. In this paper, we focus on the method based on
penalty function. Details concerning the penalty function for
the studied problem are given in the next section.

When implementing penalty functions, the fitness eval-
uation for a solution is not just dependent on the objective
function but incorporated the penalty function with the
objective function. This method can be implemented as
stationary or nonstationary. If there is an infeasible solu-
tion, the stationary penalty function simply adds a fixed
penalty. Contrary to the stationary one, the nonstationary
function adds a floating penalty which changes the penalty
value according to the violated constrains and the iterations
number. Parsopoulos and Vrahatis [25] note that the results
obtained by nonstationary penalty functions are superior to
the stationary one for the most of the time. A high penalty
leads to a feasible solution even it is not approximate to the
optimal solution, while a low penalty reduces the probability
to obtain a feasible solution.Therefore, Coath andHalgamuge
[24] point out that a fine-tuning of the parameters in the
penalty function is necessary when using this method. The
method based on the rejection of infeasible solution is to
discard an infeasible solution even if it is closer to the optimal
solution than some feasible ones. The repair algorithm, an

extensively employed method in genetic algorithms (GA), is
equipped to fix an infeasible solution, but the cost is more
computationally expensive than other methods.

3.4. Avoiding Premature Convergence. Most of the global
optimization methods suffer from premature convergence.
One of the most used approaches to tackle this problem is
to introduce diversity to the velocity or the position of a
particle. As mutation operators are to the genetic algorithm,
so is introduction of diversity to PSO algorithms. The focus
of this paper is to introduce the diversity by employing
scout particles. The details of how the proposed DPSO
algorithm circumvents premature convergence are described
in Section 4.

Garćıa-Villoria and Pastor [27] introduce the concept of
diversity into the velocity updating function. The proposed
dynamic diversity PSO (PSO-c3dyn) dynamically changes the
diversity coefficients of all particles through iterations. The
more heterogeneity of the populationwill be, the less diversity
will be introduced to the velocity updating function, and
vice versa. Blackwell and Bentley [28] incorporate diversity
into the population by preventing the homogeneous particles
from clustering tightly to each other in the search space.They
provide collision-avoiding swarms that reduce the attraction
of the swarm center and increase the coverage of a swarm in
the search space. Silva et al. [16] attempt to apply the diversity
to both the velocity and the population by a predator particle
and several scout particles. A predator particle is intended
to balance the exploitation and exploration of the swarm,
while scout particles are designed to implement different
exploration strategies.The closer the predator particle will be
to the best particle, the higher probability of perturbationwill
be.

4. DPSO with Scout Particles

This section details how to tackle the materials acquisition
problem by discrete particle swarm optimization with scout
particles. The representation of a particle and the initial-
ization method for the studied problem are described in
Section 4.1.Then, Section 4.2 elaborates on the details of pre-
venting premature convergence by deploying scout particles.
Section 4.3 redefines a constraints handling mechanism for
solving the constrained optimization problem.

4.1. Representation and Initialization. The solution of materi-
als acquisition problem with 𝑛 materials and 𝑚 departments
obtained by particle 𝑠 at iteration 𝑡 can be represented by an
𝑛 × 𝑚 binary matrix, proposed by Wu et al. [29], as shown
in (15). Each entry of the matrix (𝑃

𝑡

𝑠
)
𝑖𝑗
indicates whether

material 𝑖 is acquired by department 𝑗 or not. Note that each
entry of thematrix (𝑃𝑡

𝑠
)
𝑖𝑗
corresponds to the decision variable

(𝑥
𝑖𝑗
) that was mentioned in Section 2.1:

𝑃
𝑡

𝑠
=
[

[

[

𝑃
𝑡

𝑠(11)
⋅ ⋅ ⋅ 𝑃

𝑡

𝑠(1𝑚)

... d
...

𝑃
𝑡

𝑠(𝑛1)
⋅ ⋅ ⋅ 𝑃
𝑡

𝑠(𝑛𝑚)

]

]

]

. (15)

6 The Scientific World Journal

Step 1. Compute the sum of the lower bound on the number of materials in
language l (∑𝑟

𝑙=1
𝐿𝐿
𝑙
); the sum of the lower bound on the number of

materials in category k (∑𝑞
𝑘=1

𝐶𝐿
𝑘
).

Step 2. If (∑𝑟
𝑙=1

𝐿𝐿
𝑙
) < (∑𝑞

𝑘=1
𝐶𝐿
𝑘
)

then randomly select a material i that is in language l,
randomly select a department j, and set (𝑃𝑡

𝑠
)
𝑖𝑗
= 1,

until all the lower bounds on the number of materials in all languages are reached.
Step 3. If (∑𝑟

𝑙=1
𝐿𝐿
𝑙
) ≥ (∑𝑞

𝑘=1
𝐶𝐿
𝑘
)

then randomly select a material i that belongs to category k,
randomly select a department j, and set (𝑃𝑡

𝑠
)
𝑖𝑗
= 1,

until all the lower bounds on the number of materials belong to all categories are reached.

Algorithm 2: Initialization procedure of DPSO.

The initial population is generated by setting a void
velocity and randomly generated entries of matrix𝑃𝑡

𝑠
for each

particle 𝑠. To find feasible solutions for the initial popula-
tion, an initialization procedure is designed and depicted
in Algorithm 2. To determine which constraint should be
satisfied first, the sum of the lower bounds on the numbers
of materials in all languages ∑𝑟

𝑙=1
𝐿𝐿
𝑙
and in all categories

∑
𝑞

𝑘=1
𝐶𝐿
𝑘
are computed. The one with less sum will be

satisfied first by randomly selecting the material that belongs
to language 𝑙 or category 𝑘.

4.2. Constraints Handling. In the literature, repair operators
and penalty functions arewidely used approaches to handling
constrained optimization problems. However, due to the
computationally heavy load of repair operators, we focus on
solely penalty functions. For each particle, the fitness value is
evaluated by (16), where 𝑂(𝑥

𝑖𝑗
) is the objective value of the

studied problem given in (1), and 𝐻(𝑥
𝑖𝑗
) is a penalty factor

defined in (17). A feasible solution reflects its objective value
as the fitness value, while an infeasible solution receives an
objective value and a penalized value by (17). It can be seen
from (17) that each term is associated with constrains (3), (6),
(7), (8), and (9), as mentioned in Section 2.2. For instance,
if a solution reports that the expense of any department 𝑗
exceeds the budget 𝐵

𝑗
, addressed in constraints (3), then a

positive penalty value can be subtracted from the fitness value
to reflect the infeasibility. One has

𝐹 (𝑥
𝑖𝑗
) = 𝑂 (𝑥

𝑖𝑗
) − 𝐻(𝑥

𝑖𝑗
) , (16)

𝐻(𝑥
𝑖𝑗
) =

𝑚

∑

𝑗=1

max{0,
∑
𝑛

𝑖=1
𝑥
𝑖𝑗
𝑒
𝑖𝑗
− 𝐵
𝑗

𝐵
𝑗

}

+

𝑟

∑

𝑙=1

max{0,
∑
𝑛

𝑖=1
𝑦
𝑖
𝑎
𝑖𝑙
− 𝐿𝑈
𝑙

∑
𝑛

𝑖=1
𝑦
𝑖
𝑎
𝑖𝑙
− 𝐿𝐿
𝑙

}

+

𝑟

∑

𝑙=1

max{0,
𝐿𝐿
𝑙
− ∑
𝑛

𝑖=1
𝑦
𝑖
𝑎
𝑖𝑙

𝐿𝑈
𝑙
− ∑
𝑛

𝑖=1
𝑦
𝑖
𝑎
𝑖𝑙

}

+

𝑞

∑

𝑘=1

max{0,
∑
𝑛

𝑖=1
𝑦
𝑖
𝑏
𝑖𝑘
− 𝑈𝐶
𝑘

∑
𝑛

𝑖=1
𝑦
𝑖
𝑏
𝑖𝑘
− 𝐶𝐿
𝑘

}

+

𝑞

∑

𝑘=1

max{0,
𝐶𝐿
𝑘
− ∑
𝑛

𝑖=1
𝑦
𝑖
𝑏
𝑖𝑘

𝐶𝑈
𝑘
− ∑
𝑛

𝑖=1
𝑦
𝑖
𝑏
𝑖𝑘

} .

(17)

4.3. Scout Particles. Premature convergence is a challenging
problem faced by PSO algorithms throughout the optimiza-
tion process. To avoid premature convergence in the DPSO
algorithm for the studied problem, this paper employs scout
particles to enhance the exploration. The concept is to send
out scout particles to explore the search space and collect
more extensive information of optimal solutions for other
particles. If a scout particle finds a solution that is quite
different from the best solution and the expected fitness value
is better, the scout particle will share the information with
some particles by affecting their velocities.

The DPSO procedure with scout particles is depicted
in Figure 1. Firstly, in order to generate a feasible swarm,
the particles are generated by the initialization procedure
as mentioned in Section 4.1. Secondly, when the swarm has
not yet converged, the regular particle 𝑠 (𝑃𝑡

𝑠
) flies through

the search space by the following steps: fitness evaluation,
velocity calculation, and position updating. If the swarm
converges, on the other hand, scout particles �̃�

𝑡

𝑠
will be

generated for exploration by randomly selecting a material
to be acquired by all departments until the solution meets
the lower bound and the upper bound on the number of
languages and categories. In this paper, the convergence of
DPSO is specified by the fitness variance.

The scout particles will share the information with the
peer particles subject to a probability that depends on the
velocity of each particle 𝑠. The larger velocity of particle
𝑠, the higher probability of the scout particle affecting the
particle 𝑠 by (19), where the diversity coefficient (𝑐

3
) is a

prespecified parameter and 𝑟
3
is a random number drawn

from the interval [0, 1]. Also, if the expected fitness value
of the scout particle �̃�

𝑡

𝑠
is greater than the fitness of the

best solution bound by particle 𝑃

𝑡

𝑠
, the particles will share

The Scientific World Journal 7

Generate initial particles

Evaluate the fitness value

(16)

Converged?

for each particle by (14)

for each particle by (13)

Yes

No

Yes

No

Yes

No

Stopping
criterion met?

End

Start

Calculate the expected fitness value

by (18)

No

Share the information with particle s by
(19)

Yes

Output the best particle (P̂t
s)

(F(Pt
s)) for each particle by

Compute the velocity (Vt
s)

Update the position (Pt
s)

Generate scout particles (P̃t
s)

u(0, V
max

) > |V
t
s |?

(F
(P̃

t
s)) for the scout particle

F

(P̃

t
s) > F(P

t

s)?

Figure 1: DPSO with scout particles.

information with other particles by (19). The expected fitness
of the scout particle �̃�

𝑡

𝑠
is calculated by (18), where 𝜌 is a

nonnegative weight and 𝑝
𝑖
is the total preference of material

𝑖 cast by all departments, 𝑝
𝑖
= ∑
𝑚

𝑗=1
𝑝
𝑖𝑗
. One has

𝐹

(�̃�
𝑡

𝑠
) = 𝜌 ×

∑
𝑛

𝑖=1
(�̃�
𝑡

𝑠
) 𝑝
𝑖
/∑
𝑛

𝑖=1
(�̃�
𝑡

𝑠
)

𝑚

+ (1 − 𝜌) ×

∑
𝑛

𝑖=1
(�̃�
𝑡

𝑠
) 𝑐
𝑖

∑
𝑚

𝑗=1
𝐵
𝑗

,

(18)

𝑉
𝑡+1

𝑠
= 𝑤𝑉

𝑡

𝑠
+ 𝑐
3
𝑟
3
(�̃�
𝑡

𝑠
− 𝑃
𝑡

𝑠
) . (19)

5. Computational Experiments

To manifest the effectiveness and efficiency of the proposed
DPSO of materials acquisition, a series of computational
experiments were designed and conducted. The experiment
setting and test instances are described in Section 5.1 and the
computational results and analysis are given in Section 5.2.

5.1. Test Instances and Settings. Small-size test instances and
large-size test instances are exhibited in Tables 2 and 3,
respectively. The number of materials 𝑛, the number of
departments 𝑚, the budget limits 𝐵

𝑗
of department 𝑗, the

number of languages 𝑟, the lower bound on the number of
materials 𝐿𝐿

𝑙
in language 𝑙, the upper bound on the number

of materials 𝐿𝑈
𝑙
in language 𝑙, the number of categories 𝑞,

the lower bound on the number of materials 𝐶𝐿
𝑘
in category

𝑘, the upper bound on the number of materials 𝐶𝑈
𝑘
in

category 𝑘were tabulated.The small-size test instances (Case
I), determined by the combinations of 𝑛, 𝑚, 𝑟, and 𝑞, were
composed of 60 (= 3 × 5 × 2 × 2) instances. The large-size
test instances (Case II) were composed of 20 (= 5 × 2 × 2)
instances, where 𝑛 was 100,000.

The default values of the parameters in both DPSO and
DPSO with scout particles algorithms were set as particle
size 𝑆 = 30, number of iterations 𝑡 = 500, inertia weight
𝑤 = 0.9, cognition learning rate 𝑐

1
= 2.05, social learning

rate 𝑐
2
= 2.05, and diversity coefficient 𝑐

3
= 0.5. The number

of scout particles was set to one. All of the programs were
implemented in C#.net and run on a PCwith an Intel Core i5-
2400 3.1 GHz CPU and 4G RAM.The stopping criteria of all

8 The Scientific World Journal

Table 2: Small-size test instances, Case I.

𝑛 {𝑚, {𝐵
𝑗
}} {𝑟, {𝐿𝑈

𝑙
}, {𝐿𝐿

𝑙
}} {𝑞, {𝐶𝑈

𝑘
}, {𝐶𝐿

𝑘
}}

100

{1, {15000}},
{2, {6000, 9000}},

{3, {3000, 3000, 4000}},
{4, {3000, 3000, 4500, 4500}},

{5, {1500, 1500, 3000, 4500, 4500}}.

{2, {10, 20}, {5, 12}},
{3, {5, 10, 15}, {3, 3, 3}}.

{3, {6, 6, 12}, {3, 3, 6}},
{5, {3, 3, 6, 9, 9}, {3, 3, 3, 3, 3}}.

200

{1, {20000}},
{2, {8000, 12000}},

{3, {4000, 10000, 6000}},
{4, {3000, 3000, 3000, 4000, }},

{5, {2000, 2000, 2000, 8000, 4000, }}.

{2, {15, 25}, {5, 10, }},
{3, {10, 15, 15}, {5, 5, 5}}.

{3, {10, 10, 20}, {2, 4, 6}},
{5, {4, 4, 8, 12, 12}, {0, 0, 2, 3, 3}}.

300

{1, {30000}},
{2, {10000, 20000}},

{3, {6000, 6000, 18000, }},
{4, {6000, 6000, 9000, 9000}},

{5, {2000, 4000, 7000, 8000, 9000}}.

{2, {25, 35}, {10, 20}},
{3, {15, 15, 30}, {10, 10, 15}}.

{3, {10, 20, 30}, {5, 10, 10}},
{5, {10, 10, 10, 15, 15}, {5, 5, 5, 5, 5}}.

Table 3: Large-size test instances, Case II.

{𝑚, {𝐵
𝑗
}}

(unit of 𝐵
𝑗
: 10000) {r, {𝐿𝑈

𝑙
}, {𝐿𝐿

𝑙
}} {q, {𝐶𝑈

𝑘
}, {𝐶𝐿

𝑘
}}

{5, {80, 80, 100, 120, 120}},
{10, {40, 40, 40, 50, 50, 50, 50, 60, 60, 60}},
{15, {30, 30, 30, 30, 30, 33, 33, 33, 33, 33, 36, 36, 36,
36, 36}},
{20, {20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25, 25, 25,
25, 25, 30, 30, 30, 30}},
{25, {16, 16, 16, 16, 16, 18, 18, 18, 18, 18, 20, 20, 20,
20, 20, 22, 22, 22, 22, 22, 24, 24, 24, 24, 24}}.

{2, {4000, 6000}, {1000, 2000}},
{3, {3000, 3000, 4000}, {500, 500,

1000}}.

{5, {1000, 1000, 2000, 3000, 3000}, {200, 400, 800,
1000, 1200}},

{10, {600, 600, 800, 1000, 1000, 1000, 1200, 1400,
1400}, {100, 200, 300, 500, 500, 600, 700, 700, 800,

1000}}.

test cases were defined as no improvement on the incumbent
solution can be achieved within 50 consecutive iterations.

5.2. Results andAnalysis. Tounderstand the effectiveness and
efficiency of the proposed DPSO, we examine the four key
features, including initialization, swarm topology, constraints
handling, and scout particles. The following subsections
detail the results and analysis (Tables 4–7). The rows labeled
“Average” and “Stdev” in each table list the average and
standard deviations of improvement and execution time for
several observations.The next three rows in each table report
the number of observations on the results of different DPSO
algorithms for the test instances, the 𝑧-score of statistical
test where the null hypothesis is that the different features of
DPSO algorithm have the same improvement (or execution
time), and the 𝑃 value which is translated from 𝑧-score. Note
that the number of observations for case I (resp., II) is set
as 480 (resp., 160), the combinations 8 (= 2 × 2 × 2) of
features for 60 (resp., 20), for the purpose of evading the
influence of other features. The significance level 𝛼 is set at
0.05. Also, to facilitate a comparison of the effectiveness of
the proposed DPSO algorithm across different test instances,
the improvement in percentage over Algorithm Greedy,
calculated as in (20), is employed instead of an absolute
difference in objective value:

improvement = (

DPSO − greedy
greedy

)%. (20)

Table 4: Results of different initialization strategies on two test
cases.

Case Measure Improvement Execution time
Random Greedy Random Greedy

I

Average 52.46% 52.11% 1.6455 1.5956
Stdev 0.2805 0.2795 1.5258 1.3455

Observations 480 480 480 480
𝑧-score 0.1942 0.5362
𝑃 value 0.8460 0.5918

II

Average 71.32% 73.01% 779.9824 800.9922
Stdev 0.3675 0.3722 318.31 324.77

Observations 160 160 160 160
𝑧-score −0.4090 −0.5843
𝑃 value 0.6825 0.5590

5.2.1. Initialization. Results of different initialization strate-
gies on the 60 small-size test instances (Case I) and 20
large-size test instances (Case II) are summarized in Table 4.
The column labeled “Random” reports the results of DPSO
algorithm that generates the initial swarms by the proposed
initialization procedure in Section 4.1; the column labeled
“Greedy” reports the results ofDPSOalgorithm that generates
the initial swarms by both the abovementioned initialization
procedure and the Algorithm Greedy in Section 2.3.

The Scientific World Journal 9

Table 5: Results of different swarm topologies on two test cases.

Case Measure Improvement Execution time
Star Ring Star Ring

I

Average 62.47% 42.10% 1.3193 1.9219
Stdev 0.2244 0.2216 0.4285 1.9427

Observations 480 480 480 480
z-score 12.1029 −6.6364
𝑃 value 0.0000 0.0000

II

Average 80.98% 63.35% 772.2568 808.7178
Stdev 0.4147 0.2934 370.76 262.47

Observations 160 160 160 160
z-score 4.3889 −1.0202
𝑃 value 0.0000 0.3076

Table 6: Results of different constraints handlings on two test cases.

Case Measure Improvement Execution time
Accept Reject Accept Reject

I

Average 52.81% 51.76% 1.6610 1.5802
Stdev 0.2826 0.2773 1.4622 1.4135

Observations 480 480 480 480
z-score 0.5825 0.8703
P value 0.5603 0.3841

II

Average 72.85% 71.48% 803.15 777.82
Stdev 0.3693 0.3705 310.83 331.79

Observations 160 160 160 160
z-score 0.3304 0.7047
P value 0.7410 0.4810

Table 7: Results of DPSO with and without scout particles on two
test cases.

Case Measure Improvement Execution time
Standard Scout Standard Scout

I

Average 47.36% 57.21% 2.0065 1.2346
Stdev 0.2443 0.3037 1.8070 0.7588

Observations 480 480 480 480
z-score −5.5393 8.6285
P value 0.0000 0.0000

II

Average 62.99% 81.34% 839.9745 741.0001
Stdev 0.3015 0.4073 295.65 338.65

Observations 160 160 160 160
z-score −4.5795 2.7849
P value 0.0000 0.0054

It can be seen from Table 4 that the improvements
achieved by two different initialization strategies are appeal-
ing. For case I, the improvement on the random strategy is
slightly better than that on the greedy strategy (52.46% versus
52.11%); for case II, the greedy strategy performs slightly
better (73.01% versus 71.32%). However, the difference in
improvement between the “Random” and “Greedy” initial-
izations for case I and case II yielded 𝑃 values of 0.8460 and
0.6825 using 𝑧-test at 𝛼 of 0.05. Therefore, the difference in

improvement of two initialization strategies is not statistically
significant. We could thus reason that the DPSO equipped
with these different initialization strategies will lead to the
same significant improvement rate.

Regarding the execution time, both initialization strate-
gies can produce solution for small test instances (Case I) in
a very short time. The difference in execution time between
the “Random” and “Greedy” initialization on case I and II
yielded a 𝑃 value of 0.5918 and 0.5590 by 𝑧-test at 𝛼 = 0.05.
It reveals that the difference is not statistically significant
on both cases. This phenomenon is reasonable because both
of the initialization strategies enable the diversity of initial
swarms before they satisfy the stopping criterion. These
results suggest that DPSO can obtain good solutions with
these initialization strategies.

5.2.2. Swarm Topology. Results of different swarm topologies
on the 60 small-size test instances (Case I) and 20 large-
size test instances (Case II) are summarized in Table 5. The
columns labeled “Star” and “Ring” list the results of DPSO
algorithm with star topology and ring topology.

From Table 5, the improvements of both star and ring
topologies on two test cases reached a high percentage (on
average 62.25%), being quite attractive. For cases I and II, the
difference in execution time yielded a 𝑃 value less than 0.05
(𝑃 value = 0.0000), indicating that a statistically significant
difference in improvement existed. Accordingly, we would
suggest that star topology (gbest) is an effective swarm
topology to deliver solutions with satisfactory qualities.

In Table 5, the results of execution time needed by
different topologies reaffirm the fact that star topology (gbest)
seem to have a faster convergence rate than the ring topology
(lbest). For small-size test instances (Case I), the 𝑧-test of the
difference in execution time between star topology (1.31 sec-
onds) and ring topology (1.92 seconds) yielded a 𝑃 value less
than 0.05, indicating that a statistically significant difference
in execution time exists; for large-size test instances (Case II),
even though the star topology spent less computation time,
the difference in execution time between the star topology
(772.26 seconds) and ring topology (808.72 seconds) yielded
a 𝑃 value of 0.3076 by 𝑧-test at 𝛼 = 0.05, specifying
that no statistically significant difference in execution time
was found. This is reasonable because of the large standard
deviation in the results of case II. The result suggests that
the star topology spent less computational time to obtain
attractive solutions to the studied problem.

5.2.3. Constraints Handling. Results of different constraints
handling mechanisms on Cases I and II are shown in Table 6.
The column labeled “Accept” reveals the results of DPSO
algorithm that accept infeasible solutions as the best solution
found by particle 𝑠 at iteration 𝑡 (𝑃𝑡

𝑠
); on the other hand,

the column labeled “Reject” reveals those reject infeasible
solutions.

As can be seen from Table 6, the improvements of two
different constraint handling approaches do produce good
solutions. For the small-size test instances (Case I), the
average improvements of the “Accept” mechanism and the

10 The Scientific World Journal

“Reject” mechanism are 52.81% and 51.76%; for the large-
size test instances (Case II), the average improvements are
72.85% and 71.48%. The results show that the “Accept”
mechanism reaches slightly higher improvement than the
“Reject” mechanism in both cases within a longer execution
time. This is reasonable because the “Accept” mechanism
has more chance to explore the infeasible solution space
and takes more iteration to converge. However, to have a
concise comparison of “Reject” mechanism and the “Accept”
mechanism, the 𝑧-test yields 𝑃 values of 0.5603 and 0.7410,
which indicate that there is no statistical difference. The
computational results and analysis shown in Table 6 suggest
that DPSO with both constraints handling mechanisms can
produce quality solutions.

5.2.4. Scout Particles. Results of DPSO and DPSO with scout
particles on two test instances (small size and large size) are
exhibited in Table 7. The column labeled “Scout” displays
the results of DPSO algorithm with scout particles, while
the column labeled “Standard” displays the results of DPSO
algorithm without scouts.

For the improvement, the DPSO with scouts does pro-
duce better solutions than the standard DPSO on all test
instances. It can be seen from Table 7 that the DPSO with
scout particles reported 57.21% improvement rate on small-
size test instances and 81.34% improvement rate on large-
size test instances, while the standard DPSO showed 47.36%
and 62.99%. The 𝑧-test of the difference in improvement
yielded a 𝑃 value less than 0.05 which indicates that a
statistically significant difference in execution time existed.
The effectiveness of the proposed DPSO can be attributed to
the scout particles that decrease the chance to be trapped in
local optimal by exploring the search space. This reveals that
the proposed DPSO is an effective approach to the problem.

As for the execution time, the DPSO with scouts took
less computation time than the standard DPSO on all test
instances as well. In Table 7, the DPSO with scout particles
took 1.23 seconds for solving the small-size test instances
and 741 seconds 741 for large-size test instances. On the
other hand, the elapsed times of the standard DPSO are 2.01
seconds and 839.97 seconds. For each case, the 𝑧-test yields a
𝑃 value below 0.05, indicating that the difference in execution
times is significant. This result evinces the efficiency of the
DPSOwith scouts by showing that the time elapsed is smaller
than the standardDPSO.This phenomenonmay be due to the
fact that scout particles were evaluated by the expected fitness
instead of the objective function.

6. Conclusions

In this paper, we have proposed an integer programming
model for thematerials acquisition problem, which is tomax-
imize both the average preference and the budget execution
rate being subject to some constraints of the budget, the
required number of materials in each category and language.
To solve the constrained problem, we have developed aDPSO
algorithm and designed an initialization strategy to generate
feasible particles. We have also conducted computational

experiments of two sets test instances to demonstrate the
effectiveness and efficiency of the proposed DPSO algorithm.

To better solve the studied problem, four different features
of the proposed DPSO, including initialization strategies,
swarm topology, constraints handling mechanism, and scout
particles, are discussed. Firstly, we compare the results of
employing the proposed initialization procedure, and the
results of employing both the proposed Algorithm Greedy
and initialization procedure.The computational results show
that DPSO algorithm can obtain quality solutions with both
the initialization strategies in a reasonable time. Secondly,
we compare the results of performing star topology and ring
topology. The results evince that star topology significantly
outperforms ring topology in all test instances. Next, we
compare the performances resulted from different constraint
handling mechanisms. One mechanism is to accept the
infeasible solutions as the best solution foundby each particle,
while the other is to reject the infeasible solutions as the
best solution found by each particle. The computational
results demonstrate that these two mechanisms reach the
same performance. Lastly, we compare the results of standard
DPSO and DPSO with the proposed scout particles. The
results reveal that DPSOwith scouts reaches higher improve-
ment rates and takes shorter execution time. Accordingly, we
would suggest that DPSO with the proposed initialization
procedure, star topology, and scout particles is an effective
approach to delivering attractive solutions in a reasonable
time.

References

[1] J. Harrell, “Literature of acquisitions in review, 2008–9,” Library
Resources and Technical Services, vol. 56, no. 1, pp. 4–13, 2012.

[2] W. H. Walters, “Journal prices, book acquisitions, and sustain-
able college library collections,” College and Research Libraries,
vol. 69, no. 6, pp. 576–586, 2008.

[3] L. S. Connaway, K. Downing, Y. Du et al., “2010 top ten trends
in academic libraries,” College and Research Libraries News, vol.
71, no. 6, pp. 286–292, 2010.

[4] M. H. Beilby and T. H. Mott Jr., “Academic library acquisitions
allocation based on multiple collection development goals,”
Computers and Operations Research, vol. 10, no. 4, pp. 335–343,
1983.

[5] K. Wise and D. E. Perushek, “Linear goal programming for
academic library acquisitions allocations,” Library Acquisitions:
Practice andTheory, vol. 20, no. 3, pp. 311–327, 1996.

[6] K. Wise and D. E. Perushek, “Goal programming as a solution
technique for the acquisitions allocation problem,” Library and
Information Science Research, vol. 22, no. 2, pp. 165–183, 2000.

[7] T.-F. Ho, S. J. Shyu, B. M. T. Lin, and Y.-L. Wu, “An evolutionary
approach to library materials acquisition problems,” in Proceed-
ings of the IEEE International Conference on Intelligent Systems
(IS ’10), pp. 450–455, London, UK, July 2010.

[8] S. K.Goyal, “Allocation of library funds to different departments
of a university—an operational research approach,” College and
Research Libraries, vol. 34, pp. 219–222, 1973.

[9] A. Arora and D. Klabjan, “A model for budget allocation
in multi-unit libraries,” Library Collections, Acquisition and
Technical Services, vol. 26, no. 4, pp. 423–438, 2002.

The Scientific World Journal 11

[10] T. Niyonsenga and B. Bizimana, “Measures of library use and
user satisfaction with academic library services,” Library and
Information Science Research, vol. 18, no. 3, pp. 225–240, 1996.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freemaan and
Company, New York, NY, USA, 1979.

[12] C.-J. Liao, C.-T. Tseng, and P. Luarn, “A discrete version of par-
ticle swarm optimization for flowshop scheduling problems,”
Computers and Operations Research, vol. 34, no. 10, pp. 3099–
3111, 2007.

[13] T. J. Ai and V. Kachitvichyanukul, “A particle swarm optimiza-
tion for the vehicle routing problem with simultaneous pickup
and delivery,” Computers and Operations Research, vol. 36, no.
5, pp. 1693–1702, 2009.

[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, Perth, Australia, December 1995.

[15] R. Poli, “Analysis of the publications on the applications of
particle swarm optimisation,” Journal of Artificial Evolution and
Applications, vol. 2008, Article ID 685175, 10 pages, 2008.

[16] A. Silva, A. Neves, and T. Goncalves, “An heterogeneous
particle swarm optimizer with predator and scout particles,” in
Autonomous and Intelligent Systems, LectureNotes inComputer
Science, pp. 200–208, 2012.

[17] A. Hatamlou, “Black hole: a new heuristic optimization
approach for data clustering,” Information Science, vol. 222, pp.
175–184, 2013.

[18] C.-C. Chiu, M.-H. Ho, and S.-H. Liao, “PSO and APSO for
optimizing coverage in indoor UWB communication system,”
International Journal of RF and Microwave Computer-Aided
Engineering, vol. 23, no. 3, pp. 300–308, 2013.

[19] Y. Tian, D. Liu, D. Yuan, and K. Wang, “A discrete PSO for
two-stage assembly scheduling problem,” International Journal
of AdvancedManufacturing Technology, vol. 66, no. 1-4, pp. 481–
499, 2013.

[20] J. Kennedy and R. C. Eberhart, “Discrete binary version of
the particle swarm algorithm,” in Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics, pp.
4104–4108, Piscataway, NJ, USA, October 1997.

[21] R. C. Eberhart and Y. Shi, “Comparing inertia weights and con-
striction factors in particle swarm optimization,” in Proceedings
of the Congress on Evolutionary Computation (CEC ’00), pp. 84–
88, La Jolla, Calif, USA, July 2000.

[22] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimiza-
tion: an overview,” Swarm Intelligence, vol. 1, pp. 33–57, 2007.

[23] D. Bratton and J. Kennedy, “Defining a standard for particle
swarm optimization,” in Proceedings of the IEEE Swarm Intelli-
gence Symposium (SIS ’07), pp. 120–127, Honolulu, Hawaii, USA,
April 2007.

[24] G. Coath and S. K. Halgamuge, “A comparison of constraint-
handling methods for the application of particle swarm opti-
mization to constrained nonlinear optimization problems,” in
Proceedings of the Congress on Evolutionary Computation, pp.
2419–2425, Canberra, Australia, December 2003.

[25] K. E. Parsopoulos and M. N. Vrahatis, “Particle swarm opti-
mization method for constrained optimization problems,” in
Intelligent Technologies—Theory and Applications: New Trends
in Intelligent Technologies, vol. 76, pp. 214–220, 2002.

[26] G. T. Pulido and C. A. Coello Coello, “A constraint-handling
mechanism for particle swarm optimization,” in Proceedings of
the Congress on Evolutionary Computation (CEC ’04), pp. 1396–
1403, Portland, Ore, USA, June 2004.

[27] A.Garćıa-Villoria andR. Pastor, “Introducing dynamic diversity
into a discrete particle swarm optimization,” Computers and
Operations Research, vol. 36, no. 3, pp. 951–966, 2009.

[28] T. M. Blackwell and P. Bentley, “Don’t push me! Collision-
avoiding swarms,” inProceedings of theCongress on Evolutionary
Computation, pp. 1691–1696,Honolulu,Hawaii, USA,May 2002.

[29] Y.-L. Wu, T.-F. Ho, S. J. Shyu, and B. M. T. Lin, “Discrete
particle swarm optimization for materials acquisition in multi-
unit libraries,” in Proceedings of the Congress on Evolutionary
Computation, pp. 1–7, Brisbane, Australia, June 2012.

