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Abstract
Background—The healthy worker survivor bias is well-recognized in occupational
epidemiology. Three component associations are necessary for this bias to occur: i) prior exposure
and employment status; ii) employment status and subsequent exposure; and iii) employment
status and mortality. Together, these associations result in time-varying confounding affected by
prior exposure. We illustrate how these associations can be assessed using standard regression
methods.

Method—We use data from 2975 asbestos textile factory workers hired between January 1940
and December 1965 and followed for lung cancer mortality through December 2001.

Results—At entry, median age was 24 years, with 42% female and 19% non-Caucasian. Over
follow-up, 21% and 17% of person-years were classified as at work and exposed to any asbestos,
respectively. For a 100 fiber-year/mL increase in cumulative asbestos, the covariate-adjusted
hazard of leaving work decreased by 52% (95% confidence interval [CI], 46–58). The association
between employment status and subsequent asbestos exposure was strong due to nonpositivity:
88.3% of person-years at work (95% CI, 87.0–89.5) were classified as exposed to any asbestos; no
person-years were classified as exposed to asbestos after leaving work. Finally, leaving active
employment was associated with a 48% (95% CI, 9–71) decrease in the covariate-adjusted hazard
of lung cancer mortality.

Conclusions—We found strong associations for the components of the healthy worker survivor
bias in these data. Standard methods, which fail to properly account for time-varying confounding
affected by prior exposure, may provide biased estimates of the effect of asbestos on lung cancer
mortality under these conditions.
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Introduction
The goal of an occupational epidemiologic study is often to estimate the effect of a work-
based exposure on a health-related outcome. The healthy worker survivor bias has long been
known to potentially threaten the validity of such effect estimates [1]. Causal diagrams [2]
have recently been used to define the healthy worker survivor bias as an example of time-
varying confounding affected by prior exposure (henceforth, time-varying confounding) [3].
With causal diagrams, three component associations of the healthy worker survivor bias can
be identified (Fig. 1). Component 1 is the association between prior exposure and
employment status. Component 2 is the association between employment status and
subsequent exposure. Component 3 is the association between employment status and
survival. The severity of the healthy worker survivor bias depends on the magnitude of these
three component associations [4].

If all three of these component associations are present, standard methods may yield biased
estimates of the exposure–outcome relationship: Adjusting for employment status may result
in an exposure–outcome effect estimate that is subject to collider stratification bias [5];
however, not adjusting for employment status may yield a confounded exposure–outcome
effect estimate. Moreover, individuals who leave work have no chance of incurring work-
based exposure at subsequent time points. Consequently, adjusting for employment status
may result in a violation of the positivity assumption (or nonpositivity) [3,4], which requires
exposed and unexposed individuals in all confounder strata at all time points [6–8]. When
positivity does not hold, an inference made regarding an exposure–outcome relation is (by
definition) not fully supported by the data [7]. Violations of the positivity assumption
(nonpositivity) are of two kinds: Random and systematic. Random nonpositivity occurs
when no individuals happen to be observed within one or more confounder strata. However,
the healthy worker survivor effect is an example of systematic nonpositivity, in which
individuals who have terminated active employment cannot be exposed. By definition,
nonpositivity guarantees that an association exists between two variables. In an occupational
cohort study, systematic nonpositivity between employment status and the exposure
jeopardizes the identifiability of the causal effect of the exposure on the outcome of interest
[9]. Although both types of nonpositivity can result in a nonidentifiable effect estimate, as a
structural feature of the scenario under study, systematic nonpositivity is of greater concern
[4].

The parametric g-formula [10–12] and g-estimation of structural nested models [12–14] are
two analytic strategies that have been developed to account for time-varying confounding
affected by prior exposure. Unlike standard methods, g-methods yield consistent estimates
of the effect of exposure on the outcome when each of the three component associations is
present. However, specialized knowledge and tailored computer code is needed to
implement these methods. Thus, before undertaking an analysis using these methods,
researchers can assess the component associations of the healthy worker survivor bias as a
simple diagnostic to determine whether such methods are required. In this paper, we assess
the component associations of the healthy worker survivor bias in a cohort of 2975 asbestos
textile factory workers followed for lung cancer mortality between 1940 and 2001 in the
southern United States.

Methods
Study cohort

The South Carolina Chrysotile Asbestos study is an occupational cohort study of the
relationship between workplace asbestos exposure and lung cancer mortality over a 60-year
period. The cohort consisted of 3072 individuals who worked in an asbestos textile factory
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for 6 months or more with at least 1 month of employment between January 1, 1940 and
December 31, 1965 [15]. We excluded 97 individuals (3%) who left work before 18 years of
age to ensure adequately sized early age risk sets, leaving a final sample of 2975 individuals.
Follow-up started on January 1, 1940. Workers were followed for vital status and cause of
death until loss to follow-up or administrative censoring on December 31, 2001. Date of
birth, gender, and race (Caucasian versus non-Caucasian) were ascertained from company
personnel records. This study was conducted on de-identified existing records and therefore
deemed not human subjects research.

Mortality ascertainment
The primary outcome, here and in many studies of asbestos exposure, is lung cancer
mortality. Mortality dates were obtained by National Death Index (NDI), with lung cancer
defined by the appropriate International Classification of Diseases codes (see Appendix 1
for details).

Asbestos exposure assessment
Asbestos exposure levels were assigned using a job-exposure matrix. Following previous
research [16–21], annual exposure levels, in fiber-years per milliliter, were calculated as the
product of duration of exposure in that calendar year and the department, task, and calendar
period–specific average concentration of chrysotile fibers longer than 5 µm/mL air to which
an individual was exposed (see Appendix 2 for details).

Notation and causal structure
Causal diagrams [2] can be used to graphically represent and identify sources of bias in an
exposure-outcome effect estimate (see Glymour et al. [22] for a detailed introduction, and
Robins and Hernán [12] section 23.7 for a more advanced treatment). Figure 1 is a causal
diagram illustrating the healthy worker survivor bias [3].

The graph should be read from left to right, indicating the passage of time. For an
observation at age j, we let A(j) denote a chosen summary metric of asbestos exposure
history such as the cumulative exposure accrued up to age j. We let X(j) denote an estimate
of the asbestos exposure in fiber-years per milliliter accrued during age j [i.e., during the
interval [j,j + 1)]. We define an indicator of leaving active employment, denoted W(j), as a
binary variable equal to 1 if the in dividual was not actively employed at the asbestos textile
factory under study at all during age j. For example, for an individual who left employment
mid-year at age 32 and did not return, employment status will take on values W(31) = 0,
W(32) = 0, and W(33) = 1. We let T represent the survival time to lung cancer mortality,
and U represent an unmeasured common cause (or causes) of W(j) and T that can be a time-
varying or time-fixed scalar (or a vector of time-varying and/or time-fixed components). For
example, U can represent unmeasured smoking status and/or some latent measure of
individual prognosis.

Necessary conditions for the healthy worker survivor bias include the presence of
components 1 through 3. Component 1 is the association between prior exposure X(j−1) and
employment status. To account for exposures before j−1, we assess the association between
cumulative exposure history up to age j−1 and employment status during age j, W(j).
Component 2 is the association between employment status during age j, W(j), and
subsequent exposure during age j, X(j). We refer to this as an association with subsequent
exposure because in our discrete time setup, W(j) is determined by information over the
interval (j−1, j) while X(j) is determined by information over (j, j + 1). Component 3 is the
association between employment status during age j, W(j), and survival time T. Note that
Figure 1 is not the only causal structure that is consistent with the healthy worker survivor
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bias. To illustrate this point, we provide 3 additional causal diagrams in the online web
appendix (Supplemental Appendix A1) that are observationally equivalent to Figure 1, and
that would be amenable to the approach we propose here.

Provided Figure 1 (or its observationally equivalent variants) holds, an estimate of the effect
of cumulative asbestos exposure A(j) on lung cancer mortality T will be biased due to
classical confounding by work status W(j). This confounding is depicted in Figure 1 by the
presence of the open backdoor path.

Work status adjustment was proposed as a method to adjust for such confounding [23].
Doing so “blocks” this path (and thus resolves the confounding), but creates an additional
problem. Suppose, for example, individuals with higher exposure values are more likely to
leave work. Suppose further that individuals with poor prognosis (represented by U) are also
more likely to leave work. Then within the stratum of individuals who have left work,
cumulative exposure A(j) is associated with lung cancer mortality T, irrespective of its
causal effect on T. This situation is represented in Figure 1 by the presence of the open
backdoor path.

where the box around W(j) denotes some form of conditioning (e.g., stratification, matching,
or regression adjustment). Using the terminology of causal diagrams, W(j) is a “collider” on
the above path because of the two incoming arrows from X(j−1) and U.

If all three component associations are present, standard methods will fail to provide an
unbiased estimate of the effect of asbestos exposure on time to lung cancer mortality
[3,4,24]. If any of the component associations are absent, the above paths will not bias an
exposure effect estimate of interest, and standard methods may be used. Table 1 summarizes
all possible scenarios and methodological implications of the presence or absence of
component associations in Figure 1.

Although an estimate of the effect of occupational asbestos exposure on time to lung cancer
mortality obtained using standard methods may be biased, the presence and magnitude of
each component association can be assessed using standard techniques.

Statistical methods
Characteristics of individuals and person-years are presented using medians (quartiles) or
percentages, as appropriate. Here, we provide a general description of the methods used to
assess the three component associations outlined in Figure 1. Additional technical details are
provided in Appendix 3. We assessed each component using several methods. The
associations for components 1 and 3 were assessed with time-to-event analyses. First,
extended Kaplan–Meier curves [25,26] conditional on being at work beyond age 18 [[27] p.
125] were used to estimate the distribution of time to termination of employment at the
facility under study stratified by categories of time-varying cumulative asbestos exposure
accrued up to the prior year (component 1), and time to lung cancer mortality stratified by
employment status (component 3). Second, hazard ratios were obtained using Cox
proportional hazards regression [28], fit using Efron’s method for handling ties [29] for both
time to leaving employment (component 1), and time to lung cancer mortality (component
3). In the model for component 1, the exposure was a time-varying measure of cumulative
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exposure accrued up to the prior year. Dose–response curves for component 1 were modeled
using a restricted quadratic spline with knots at 50, 100, and 150 fiber-years/mL In the
model for component 3, the “exposure” was a time-varying indicator of having left active
employment at the facility under study. For both components, we present unadjusted and
adjusted hazard ratios as measures of association and 95% confidence intervals (CI) as
measures of precision. Adjustment was made for gender, race (Caucasian versus non-
Caucasian), and birth year, whereas age was accounted for as the time scale [30]. Birth year
was specified using a restricted quadratic spline with knots at the 5th, 23rd, 41st, 59th, 77th,
and 95th percentiles of the variable’s distribution [31]. To account for potential confounding
by exposure status in the prior year, we re-fit the adjusted model for component 3 to person-
years with no exposure. To isolate the path between employment status and lung cancer
mortality, we further adjusted for subsequent asbestos exposure.

Because of systematic nonpositivity, the association for component 2 exists a priori. First,
we demonstrate this nonpositivity using a contingency table of exposure status cross-
classified by employment status, and compute the proportion of exposed person-years
classified as actively employed using logistic regression (with 95% robust CI as a measure
of precision) as defined in Appendix 3. Second, to assess whether the association for
component 2 was sensitive to using a binary indicator of exposure, we modeled the log of
cumulative exposure as an outcome using a linear regression model fit with generalized
estimating equations [32] and an independent working covariance matrix [33].

Exposure lagging has been suggested as a potential method to control the healthy worker
survivor bias by reducing the opportunity for greater accrual of exposure in healthy
survivors [34]. In the setting in which exposure assignment is lagged, nonpositivity may not
occur. However, lagging the exposure will control the healthy worker survivor bias only if
one or more of the component associations are rendered null. For example, if lagging the
exposure by 10 years removes the association between prior exposure and employment
status (but other component associations remain present), adjusting for employment status
should provide an estimate of the association between asbestos exposure and lung cancer
mortality that is not subject to the healthy worker survivor bias (Table 1, row 4).

To gain insight on how exposure lagging might affect the association between prior asbestos
exposure and employment status (component 1), and between employment status and
subsequent asbestos exposure (component 2), we fit the adjusted models for components 1
and 2 with the metric of asbestos exposure lagged by 10 years (Appendix 3; Models C2b
and C2c). SAS version 9.2 (SAS Institute, Cary, NC) was used for the analyses.

Results
Table 2 presents study characteristics for 2975 individuals at the start of follow-up and over
115,643 person-years of follow-up. Among exposed person-years, median (quartiles)
asbestos exposure over follow-up was 3.5 (1.6–5.1) fiber-years/mL Over the course of
follow-up, median (quartiles) cumulative exposure was 5.4 (1.7–21.1) fiber-years/mL Race-
and gender-specific median (quartiles) cumulative asbestos exposure over follow-up was
13.6 (5.1–38.7), 4.2 (1.5–18.6), 7.3 (5.5–57.7), and 4.6 (1.4–16.3) fiber-years/mL for Non-
Caucasian males, Caucasian males, non-Caucasian females, and Caucasian females,
respectively. Furthermore, 88% of individuals (2611/2975) left active employment alive,
with the remaining 12% either lost to follow up (n = 245), or having died of lung cancer (n =
16) or a competing cause of death (n = 103) while classified as actively employed. Finally, a
total of 261 (as mentioned, n = 245 during active employment, and n = 16 while classified as
having left active employment) individuals (9% of 2975) were lost to follow-up.
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Component 1 is the association between prior asbestos exposure and time to leaving active
employment. Figure 2 depicts the complement of the crude Kaplan–Meier curves for leaving
active employment stratified by person-time below and above the median value of
cumulative asbestos exposure (log-rank P < 0.001).

As can be seen in Figure 2, the median age at leaving active employment was 21 and 23
years for person-years exposed to below and above the median cumulative exposure value
(5.4 fiber-years/mL), respectively. Table 3 shows number of individuals who left active
employment, person-years at work, and unadjusted and adjusted hazard ratios for the
association between cumulative exposure and employment status.

Relative to person-years exposed to below the median exposure value cumulated up to the
prior year, the adjusted hazard ratio for leaving active employment (referent: actively
employed, throughout) was 0.50 (95% CI, 0.46–0.55). This hazard ratio was not constant
over age (P for heterogeneity < 0.001), whereby the hazard ratio became weaker with age
(Fig. 2). For a continuous 100 fiber-year/mL increase in asbestos exposure cumulated up to
the prior year, the adjusted hazard ratio for leaving active employment was 0.48 (95% CI,
0.42–0.54). Incorporating a 10-year exposure lag yielded a hazard ratio for leaving active
employment of 0.71 (95% CI, 0.61–0.83) for a 100 fiber-year/mL increase in asbestos
exposure cumulated up to the prior year. Finally, Figure A1 in the online Appendix shows
the dose–response trend and 95% point-wise CIs for the relationship between asbestos
exposure cumulated up to the prior year, and employment status. This figure demonstrates
that the relative hazard of leaving work is below the null across the range of exposure
values.

Component 2 is the association between employment status and subsequent exposure. Table
4 summarizes the number of person-years cross-classified by employment status and any
asbestos exposure. Specifically, 88.3% of actively employed person-years (95% robust CI,
87.0–89.5) were classified as exposed to any asbestos. Lagging the indicator of any asbestos
exposure (versus none) by 10 years yielded an unadjusted odds ratio for the association
between employment status (referent = employed) and the lagged exposure (see Appendix
3) of 0.18 (95% robust CI, 0.17–0.20) based on the following person-years: exposed, left
work, 9111; exposed, at work, 8093; unexposed, left work, 84,627; and unexposed, at work,
13,812. The adjusted odds ratio for the association between employment status and a 10-
year lagged indicator of any asbestos exposure (Appendix 3; Model C2b) was 0.13 (95%
robust CI, 0.12–0.15). Finally, using a linear regression model (Appendix 3, Model C2c),
the adjusted mean difference in the log cumulative exposure between person-years not
classified as actively employed (relative to person-years classified as actively employed)
was −1.81 (95% robust CI, −1.89, −1.72).

Component 3 is the association between time-varying employment status and time to lung
cancer mortality. Figure 3 depicts the complement of the crude Kaplan–Meier curves of lung
cancer mortality stratified by time-varying employment status (logrank P < 0.0001).

As can be seen in Figure 3, the cumulative proportion of lung cancer mortality was 5% by
age 60 years while actively employed, and 5% by age 68 years after leaving active
employment. Table 5 shows the number of lung cancer deaths, person-years at risk, and
unadjusted and adjusted hazard ratios for the association between employment status and
lung cancer mortality.

The adjusted hazard ratio was 0.52 (95% CI, 0.29–0.94) comparing time after leaving active
employment to actively employed person-time. This hazard ratio was relatively constant
over age (P for heterogeneity = 0.791. Restricting the analysis to person-years with no
asbestos exposure in the prior year yielded a (less precise) hazard ratio of 0.42 (95% CI,
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0.06–3.11). Further adjusting for subsequent exposure [to block W(j) → A(j) → T] resulted
in a similar hazard ratio of 0.29 (95% CI, 0.04–2.16).

Discussion
Our findings indicate the presence of strong component associations of the healthy worker
survivor bias in a cohort of textile factory workers from the southern United States. First,
after accounting for age and other measured demographics, the hazard of leaving active
employment among those exposed to greater than or equal to the median asbestos cumulated
up to the prior year was half that among those exposed to less than the median. Second, we
noted a large proportion of person-years classified as exposed to any asbestos while
employed, but no person-years classified as exposed after termination of employment.
Finally, after accounting for age and other measured demographics, the hazard of lung
cancer mortality after termination of employment was about half that during years at work.

The association between prior asbestos exposure and employment status is the first
component of the healthy worker survivor bias. The presence of this association precludes
the use of employment status adjustment as a resolution for the confounding of exposure by
employment status because of the bias induced by conditioning on a collider (Table 1) [5].
In this study, we found a strong inverse association between asbestos exposure cumulated up
to the prior year and employment status. This strong inverse association existed across the
range of exposure values (Fig. A1), and remained when we lagged the metric of cumulative
exposure by 10 years.

The association between employment status and subsequent exposure is the source of
nonpositivity in the healthy worker survivor bias [4]. We observed that 88% of individuals
at work were classified as exposed to any asbestos, whereas none of the individuals were
classified as exposed to any asbestos after having left work. This reflects a systematic or
structural violation of the positivity assumption [8,35] because individuals cannot incur
subsequent work-based exposure after having left work. Thus (in addition to the bias
induced by conditioning on a collider), adjusting for a set of covariates that includes an
indicator of employment status using standard methods would result in an “off-support”
[9,36] estimate of the effect of occupational asbestos exposure on lung cancer mortality
because of the model’s extrapolation of the association over regions where there are no data.
Lagging the exposure variable may eliminate structural nonpositivity; however, standard
analytic methods still require at least one of the three component associations to be rendered
null. In these data, we observed a strong association between employment status and
subsequent exposure, even after lagging the indicator of any exposure by 10 years, and when
using a cumulative exposure metric.

The association between employment status and lung cancer mortality is the third
component of the healthy worker survivor bias. Without this association, employment status
will not confound the estimate of the effect of occupational asbestos exposure on time to
lung cancer mortality. In this study, we found that the hazard of lung cancer mortality in
those who left work was approximately half of that in those who remained on work (Table
3). This association was strongly confounded by age, but relatively constant over age. This
inverse association between employment status and lung cancer mortality coincides with at
least one previous study suggesting occupational mobility as a driver of the healthy worker
survivor bias [37]. Individuals in more occupationally mobile categories would ostensibly be
in a better position to find alternative employment earlier in life, as well as be more likely to
avoid exposures (e.g., smoking) that increase the risk of death owing to lung cancer [38,39].
A positive association between occupational mobility and employment status, and an inverse
association between occupational mobility and lung cancer mortality would induce an
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inverse association between employment status and lung cancer mortality [40], as found in
the present study.

Two strategies commonly employed to minimize the healthy worker survivor bias are
employment status adjustment [23] and exposure lagging [34]. The logic of causal diagrams
can suggest whether use of such methods is justified by the data. For example, either before
or after lagging, a lack of association between employment status and subsequent exposure
or between employment status and mortality suggests no healthy worker survivor bias. If
both of these associations are present, but there is no association between prior exposure and
employment status, then adjusting for employment status should resolve the bias. When all
three component associations are present, alternative methods are required (Table 1).

In this study, we found that lagging the exposure by 10 years did not eliminate the
association between prior exposure and employment status, or between employment status
and subsequent exposure. Researchers should be cautious, however, about using an exposure
lag to minimize the healthy worker survivor bias. To avoid exposure misclassification, the
lag used to account for the healthy worker survivor bias must coincide with the empirical
induction period for the exposure [41].

The “presence” of a component association can be gauged by at least two criteria: Statistical
significance and magnitude of association. The limitations of significance testing in
observational research are well known [42,43]. Furthermore, prior simulation research has
suggested that the performance of standard methods is inversely related to the magnitude of
the component associations [4]. As such, although both statistical significance and
magnitude of association are likely to be important, we believe the latter criterion to be of
more relevance in an occupational setting with no random assignment mechanism. In our
study, all three component associations were both statistically significant and relatively
strong in magnitude. Moreover, this was true whether we assessed the component
associations using extended Kaplan–Meier curves, or using continuous or binary exposure
variables with a number of different regression models. Finally, it would be tempting to
predict the overall direction of the healthy worker survivor bias using the estimated
magnitudes of each component association, and the method of signed directed acyclic
graphs [40,44]. However, this method is not justified in the presence of a collider, such as
our indicator of employment status [40].

As is common in occupational epidemiology, we were lacking information on individual
smoking history and intermittent time off work, and used a regression model to estimate
exposure values from a job/task exposure matrix. Following standard practice, we assume
independent censoring conditional on measured covariates for all survival analyses.
Furthermore, our aim was to present a simple heuristic to suggest whether standard methods
are justified when the healthy worker survivor bias is suspected. We did not assess whether
the observed component associations were modified by relevant characteristics. Given the
complex social context in which exposure, employment status, and mortality are related
[45], a nuanced substantive analysis of each component association is warranted. Finally,
although our analysis was restricted to mortality as an outcome, we note that the proposed
method could be applied to other outcomes as well when the healthy worker survivor bias is
suspected.

Using causal diagrams, we isolated the component associations that are collectively
responsible for the time-varying confounding and nonpositivity underlying the healthy
worker survivor bias. Despite limitations, the example demonstrated that these three
component associations were present. Indeed, our exploration of these component relations
is strengthened by the use of a large cohort with well-characterized mortality and only 9%
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loss to follow-up over a 60-year period. Our findings imply that, for these data, commonly
used methods such as exposure lagging or employment status adjustment will not reduce the
healthy worker survivor bias. In future research, we intend to assess the association between
asbestos exposure and lung cancer mortality using methods that can account for time-
varying confounding, including g-estimation of a structural nested model [13] and the
parametric g-formula [10].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix 1. Mortality ascertainment
Vital status through 1978 was determined using information from the Social Security
Administration, Internal Revenue Service, the U.S. Postal Mail Correction Service, state
driver’s license files, and state vital statistics offices [19,20]. Between 1979 and 2001, the
U.S. NDI was used to obtain vital status. Workers that were confirmed alive on January 1,
1979, and not shown to be deceased by the NDI between 1979 and 2001 were considered to
be alive as of 2001. Workers lost to follow-up before January 1, 1979, were censored at the
date they were last known to be alive. Before 1979, death certificates were obtained from the
state vital records offices and the underlying cause of death was coded by a qualified
nosologist. After 1979, the NDI provided underlying causes of death. All deaths were coded
according to the revision of the International Classification of Diseases (ICD) in effect at the
time of death. Lung cancer mortality was defined as ICD-8 and ICD-9 codes 162–163, and
ICD-10 codes C33-C34.

Appendix 2. Exposure assessment
Ambient asbestos concentrations were estimated using 5952 sampling measurements taken
between 1930 and 1975 analyzed using phase contrast microscopy [18]. To create a job/task
exposure matrix, the factory was divided into 16 exposure zones corresponding to physically
well-defined areas. Jobs within each exposure zone were assigned to one of four uniform job
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categories based on the tasks associated with that job. Job/task-specific average asbestos
concentrations in the ambient air surrounding 16 exposure zones were estimated using a
department, task, and calendar time-specific exposure matrix [18]. These estimates were
linked to individuals using detailed job histories based on personnel records collected by the
company beginning in 1930, compiled and microfilmed by the U.S. Public Health Service in
1968, and updated, digitized, and quality controlled in 1978 [15]. Each day during the years
in which the person was not employed was assigned a zero asbestos exposure.

During the years in which the person was employed, each day was assigned a department,
task, and calendar period specific average asbestos exposure in units of chrysotile fibers
longer than 5 µm/mLair. Following previous research [16–21], annual exposure levels, in
fiber-years per milliliter, were calculated as the product of duration of exposure in that
calendar year and the department, task, and calendar period specific average concentration
of chrysotile fibers longer than 5 µm/mL air to which an individual was exposed.

Appendix 3. Statistical methods
To assess the component associations of the healthy worker survivor bias, we arranged our
data into person-year format with i = 1 to 2975 subjects, each with mi∈[1, 62] observations
representing a year on study at age j (the range for j was 13–101 years), for a total of
115,643 observations. Component 1 is the association between prior asbestos exposure and
employment status. Because no individuals who left active employment returned to work,
we modeled this association with Cox proportional hazards regression [28] using the
counting process format [46,47] to account for time-varying prior exposures by defining the
hazard of leaving active employment for individual i at age j as

Model

C1a

where λ0(j) is the baseline hazard function, and where parameters in exp{·} were estimated
by maximizing the partial likelihood [48]. Here, and throughout, I(·) represents the indicator
function that takes a value of one when the argument (·) is true (zero otherwise), g(·) returns
a 1 × 4 vector containing restricted quadratic spline basis functions for argument (·) with
knots as defined in the text, and β represents a 4 × 1 vector of parameters for each basis

function. Furthermore,  is a measure of cumulative exposure in fiber-years per
milliliter for individual i accrued up to age j. To assess the association between time to
leaving work and a 100 fiber-year/mL increase in cumulative asbestos exposure, we
replaced I[Ai(j − 1) ≥ 5.4] in model C1a with a continuous measure of cumulative asbestos
exposure accrued up to the prior year, Ai(j − 1).

Exposure lagging has been suggested as potential method to control the healthy worker
survivor bias [34]. Following standard practice [[49], p. 170], we explored the association
for Component 1 using a 10-year lag by replacing Ai(j) with Ai(j − 10). If individual i was
not in the study at age j−10, the continuous exposure value used to calculate Ai(j) was set to
zero. Finally, to assess dose response trends between cumulative exposure and the hazard of
leaving work, we used a Cox proportional hazards model defined as

Model C1b

where λ0(j) is the baseline hazard function, and where parameters in exp(·) were estimated
by maximizing the partial likelihood. This model was used to plot the relative hazard over
all j across values of A(j) (Fig. A1).
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Component 2 is the association between having left active employment and an indicator of
any asbestos exposure. Because individuals who left active employment can no longer be
classified as exposed, this component is the source of nonpositivity. To avoid estimation
problems owing to quasi-complete separation of data points [50,51] resulting from
nonpositivity, we estimated the proportion of person-years exposed while at work using an
intercept only logistic regression model defined as

Model C2a

where β0 was estimated using generalized estimating equations [32] with an independent
working covariance matrix [33]. Lagging the exposure variable by 10 years resulted in a
non-zero proportion of exposed person-years within both strata of employment status,
allowing us to estimate adjusted odds ratios with a logistic regression model defined as

Model

C2b

with parameters for this model estimated using generalized estimating equations with an
independent working covariance matrix. Finally, we assessed the adjusted association
between a continuous metric for cumulative exposure and employment status by defining a
linear regression model as

Model

C2c

where εij~N(0, σ2) and with parameters estimated using generalized estimating equations
with an independent working covariance matrix.

Component 3 is the association between leaving active employment and lung cancer
mortality. We modeled this association using Cox proportional hazards regression by
defining the hazard of lung cancer mortality at age j as

Model

C3

where γ0(j) is the baseline hazard function, and where parameters in exp{·} were estimated
by maximizing the partial likelihood.
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Fig. 1.
Causal diagram representing the healthy worker survivor bias. Let j be index age, A
represent continuous asbestos exposure cumulated over follow-up, X represent continuous
asbestos exposure, W index employment status, U a common cause of W and T, and T index
survival time. C1 = component 1; C2 = component 2; C3 = component 3.
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Fig. 2.
Unadjusted Kaplan–Meier curves for the association between asbestos exposure cumulated
up to the prior year and employment status for 2975 individuals followed during 24,516
person-years at work between 1940 and 2001with age as the time scale.
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Fig. 3.
Unadjusted Kaplan–Meier curves for the association between employment status and lung
cancer mortality for 2975 individuals followed during 115,643 person-years between 1940
and 2001 with age as the time scale.
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Table 2

Characteristics of 2975 individuals in the South Carolina chrysotile asbestos cohort in the first year and over
the course of 115,643 person-years of follow-up, 1940–2001

Characteristic* First year of follow-up
(n = 2975)

Complete course
of follow-up
(n = 115,643)

Age 24 (20,31) 48 (36, 60)

Calendar year 1943 (1941–1946) 1967 (1955–1981)

Female gender, n (%) 1247 (42) 49,832 (43)

Non-Caucasian race, n (%) 565 (19) 19,977 (17)

At work, n (%) 2975 (100) 21,905 (19)

Asbestos exposure

  Any, n (%) 2975 (100) 19,341 (17)

  Fiber-years/mL† 2.0 (1.0–4.3) 3.5 (1.6–5.1)

  Cumulative fiber-years/mL 2.0 (1.0–4.3) 5.4 (1.7–21.1)

*
Data are presented as median (quartiles) unless otherwise stated.

†
Among those with any exposure.
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