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Abstract

In addition to being causally linked to the formation of multiple tumor types, tobacco use has been
associated with decreased efficacy of anticancer treatment and reduced survival time. A detailed
understanding of the cellular mechanisms that are affected by tobacco smoke should facilitate the
development of improved preventive and therapeutic strategies. We have investigated the effects
of a tobacco smoke (TS) extract on the transcriptome of MSK-Leuk cells, a cellular model of oral
leukoplakia. Using Affymetrix HGU133 Plus 2 arrays, 411 differentially expressed probesets were
identified. The observed transcriptome changes were grouped according to functional information,
and translated into molecular interaction network maps and signaling pathways. Pathways related
to cellular proliferation, inflammation, apoptosis and tissue injury appeared to be perturbed.
Analysis of networks connecting the affected genes identified specific modulated molecular
interactions, hubs and key transcription regulators. Thus, TS was found to induce several EGFR
ligands forming an EGFR-centered molecular interaction network, as well as several AhR-
dependent genes, including the xenobiotic metabolizing enzymes CYP1A1 and CYP1B1. Notably,
the latter findings /n vitro are consistent with our parallel finding that levels of CYP1A1 and
CYP1B1 were increased in oral mucosa of smokers. Collectively, these results offer insights into
the mechanisms underlying the procarcinogenic effects of TS and raise the possibility that
inhibitors of EGFR or AhR signaling will prevent or delay the development of tobacco smoke-
related tumors. Moreover, the inductive effects of TS on xenobiotic metabolizing enzymes may
help explain reduced efficacy of chemotherapy, and suggest targets for chemopreventive agents in
smokers.
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Introduction

Tobacco use is an important risk factor for multiple human malignancies and accounts for
approximately 30% of all cancer-related deaths in the United States (1). Exposure to tobacco
has been linked to a variety of malignancies including cancers of the lung, oral cavity and
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pharynx, esophagus, pancreas, liver, bladder, and cervix (2). More than 100 carcinogens,
mutagens and tumor promoters have been identified in tobacco smoke (3, 4). In addition to
being a major cause of cancer, smoking can alter the activity of chemopreventive agents (4,
5), stimulate the metabolic clearance of targeted anticancer therapies (6), and increase the
risk of second primary tumors (7). Although cessation of tobacco use is highly desirable, it
is not realistic for everyone. Hence, there is a significant interest in chemopreventive agents
that could protect against the carcinogenic effects of tobacco smoke. Moreover, a clearer
understanding of the mechanisms that are modulated by tobacco smoke should lead to more
effective treatments resulting in an improved outcome for cancer patients.

Given the significance of tobacco smoke as both a cause of cancer and potential modifier of
treatment outcome (1, 8-10), we have investigated the effects of a tobacco smoke (TS)
extract on the transcriptome in a cellular model of oral leukoplakia. This model was chosen
because the link between exposure to tobacco smoke and head and neck squamous cell
carcinoma is well established. Furthermore, smoking reduces the likelihood of treatment
response in head and neck cancer patients (11) and increases the risk of second primary
tumors in patients who have been successfully treated for their index head and neck
malignancy (7). The transcriptome analysis involved the identification of genes
differentially expressed due to TS exposure in this cell line, followed by a classification of
these genes into domains of putative physiological function. The classification involved the
mapping of interactions among differentially expressed genes based on information from
interaction databases. Several different databases and tools were employed in this analysis of
the observed global transcriptome changes in terms of biological functions and pathways,
with the results suggesting that pathways related to cell proliferation, inflammation,
apoptosis and tissue injury were affected by TS. Finally, network representations of these
data led to identification of proteins in the differentially expressed cohort that have multiple
interaction partners (interaction hubs), and transcription factors affected by TS. The analyses
identified an epidermal growth factor receptor (EGFR)-centered network comprised of
several ligands of the EGFR that were induced by TS. Notably, aryl hydrocarbon receptor
(AhR)-dependent genes induced by TS included the enzymes CYP1Al and CYP1B1, which
are of special interest because each may contribute to both carcinogenesis of the
aerodigestive tract and drug metabolism (12-14). Consequently, we extended our analysis of
TS related transcriptome changes to human volunteers. Consistent with the /n vitro findings
presented here, we found increased levels of both CYP1A1 and CYP1BL1 in the oral mucosa
of healthy human subjects who smoked cigarettes. Further comparison of our findings in the
MSK-Leuk1 cell model to /n vivo data on transcriptome differences in airway epithelial
cells of smokers (versus never smokers) (15), identified a canonical set of differentially
expressed genes and perturbed pathways. In addition to providing new insights into the
procarcinogenic effects of tobacco smoke, these findings highlight the potential of tobacco
smoke to alter the efficacy of pharmaceutical agents by inducing the expression of
xenobiotic metabolizing enzymes.

Materials and Methods

Materials

Keratinocyte basal and growth media were supplied by Clonetics Corp. (San Diego, CA).
MuLV Reverse Transcriptase, Oligo d(T)16 and RNase inhibitor were from Roche Applied
Science (Indianapolis, IN), and Taq polymerase from Applied Biosystems (Foster City, CA).
HGU133 Plus 2 microarrays were from Affymetrix (Santa Clara, CA).
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Tissue culture

The MSK-Leukl cell line was established from a dysplastic leukoplakia lesion adjacent to a
squamous cell carcinoma of the tongue (16). Cells were routinely maintained in keratinocyte
growth medium supplemented with bovine pituitary extract. Cells were grown in basal
medium for 24 hr before treatment. Treatment with vehicle (PBS) or TS was carried out on
cells grown in growth factor free basal medium. Cellular cytotoxicity was assessed by
measurements of cell number, trypan blue exclusion, and release of lactate dehydrogenase.
There was no evidence of cytotoxicity in our experiments.

Preparation of tobacco smoke condensate

Cigarettes (2R4F, Kentucky Tobacco Research Institute) were smoked in a Borgwaldt
piston-controlled apparatus (model RG-1) using the Federal Trade Commission standard
protocol (17). The protocol variables attempt to mimic a standardized human smoking
pattern (duration, 2 s/puff; frequency, 1 puff/min; volume, 35 mL/puff). Cigarettes were
smoked one at a time in the apparatus and the smoke drawn under sterile conditions into
premeasured amounts of sterile PBS (pH 7.4). This smoke in PBS represents whole trapped
mainstream smoke abbreviated as TS. Quantitation of smoke content is expressed in puffs/
mL with one cigarette yielding about 8 puffs drawn into a 5 mL volume. The final TS
concentration in cell culture medium is expressed as puffs/mL medium.

Human tissue

Buccal mucosa specimens were obtained from 9 never smokers and 9 active smokers with a
history of at least 10 pack years. Subjects were excluded if they had gross evidence of oral
inflammation, a history of heavy alcohol consumption, or recent use of nonsteroidal anti-
inflammatory drugs or other anti-inflammatory medications. After topical anesthesia, 5-mm
punch biopsies were obtained from grossly normal appearing buccal mucosa. Tissue
samples were immediately snap frozen in liquid nitrogen and stored at —80°C until analysis.
Hematoxylin and eosin staining of representative formalin-fixed samples indicated that the
biopsies were primarily comprised of epithelium. This study was approved by the
Committee on Human Rights in Research at Weill Cornell Medical College.

Reverse transcription-PCR

Total cellular RNA was isolated from cells using the RNeasy Mini Kit according to the
manufacturer’s instructions. Reverse transcription was performed using 2 pg of RNA per 50
pL of reaction. The reaction mixture contained 1x PCR Buffer I1, 2.5 mmol/L MgCl,, 0.5
mmol/L dNTPs, 2.5 pmol/L oligo(dT)16 primer, 50 U RNase inhibitor, and 125 U MuLV.
Samples were amplified in a thermocycler for 10 min at 25°C, 42°C for 15 min and 99°C for
5 min, and 5°C for 5 min. The resulting cDNA was then used for amplification. The volume
of the PCR reaction was 25 L and contained 5 pL of cDNA, 1x PCR Buffer 11, 2 mmol/L
MgCl,, 0.4 mmol/L dNTPs, 400 nmol/L forward primer, 400 nmol/L reverse primer and 2.5
unitsTaq polymerase. Samples were denatured at 95°C for 2 min and then amplified for 30
cycles in a thermocycler under the following conditions: 95°C for 30 s, 62°C for 30 s, and
70°C for 45 s. Subsequently, the extension was carried out at 70°C for 10 min. Primers were
synthesized by Sigma Genosys, and the sequences are listed in Supplementary Table 1.

To determine levels of mMRNAs for CYP1A1 and CYP1BL1 in buccal mucosa, total RNA was
isolated from biopsy samples using the RNeasy Mini-Kits from Qiagen. Analysis was carried
out as described above. Thermal cycling conditions were: 95°C for 2 min, followed by 30 s
at 95°C, 30 s at 62°C and 45 s at 72°C for 30 cycles and then 72°C for 10 min. PCR
products were subjected to electrophoresis on a 1% agarose gel with 0.5 pg/mL ethidium
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bromide. The identity of each PCR product was confirmed by DNA sequencing. A computer
densitometer (ChemDoc, Bio-Rad) was used to quantify the density of the different bands.

Microarray Procedures

Biotinylated cRNA were prepared according to the standard Affymetrix protocol from 2.5
ug total RNA (http://www.affymetrix.com). Following fragmentation, 10 ug of cRNA were
hybridized for 16 hr at 45° C on GeneChip HG U133 Plus 2 arrays. GeneChips were washed
and stained in the Affymetrix Fluidics Station 450 and scanned using the Affymetrix
GeneChip Scanner 3000. At each of the 5 time points, 6 biological replicates were used for
each TS treatment and another 6 biological replicates for vehicle-treated samples. In total,
60 chips were used.

Microarray data analysis

The gene annotations used for each probeset were from the February 2008 NetAffx
HGU133 Plus 2 Annotation Files.

Preprocessing—Raw image data were background corrected, normalized and
summarized into probeset expression values using the Robust Multichip Average algorithm
(RMA). In our analysis, the largest variation in results arose from the method of
preprocessing. Both the development of preprocessing methods and the assessment of
results are active research areas and the choice of method affects the analysis outcome (18).
RMA (19) and a modification, GCRMA (20), have been shown to perform as well as, or
better than alternatives using Plasmode data sets. However, GC-RMA can be biased when
outliers are not eliminated. Further, both GCRMA, and another commonly used method,
Affymetrix Microarray Analysis Suite v5.0 (MAS5), may perform poorly with highly
variable human data (21). To check for the robustness of our results to different
preprocessing methods, raw image data were preprocessed using both the RMA algorithm
(19, 22) within GeneSpring 7.2 Software (Agilent Technologies), and MAS5, and then
analyzed statistically as described below. We found a 75% agreement between RMA-
preprocessed results and those from MAS5 (data not shown). This indicates a high level of
consistency, as the overlap between RMA and MAS cited in the literature ranges from 27%
(23) to 70% (18). In light of evaluation of the currently applicable methods in recent reviews
(24), we performed both the statistical and functional inference analysis from the RMA-
preprocessed data.

Normalization and Filtering—The data from each chip were normalized for inter-array
comparisons as follows: measurements of <0.01 were set to 0.01 and each chip was
normalized to 50% of the measurements taken from that chip (a procedure considered
appropriate for large arrays when most of the genes are unaffected by experimental
parameters). We further applied a filter to remove probesets that were not reliably detected.
From the complete set of ~54675 probesets on the HGU133 Plus 2 array, for every time
point, we filtered out probesets whose minimum raw expression level was not 50 in at least
2 out of 12 conditions. This cutoff was chosen from the scatter plot distribution of
expression values for TS vs. vehicle-treated controls (marked as C). We further filtered out
probesets with low confidence if their t-test p-value was not <0.05 in at least 2 out of 12
conditions, using the Benjamini and Hochberg false discovery rate criterion (25). Genes that
passed these tests were defined as expressed and were statistically analyzed. This set of
analyzed genes consists of the following numbers of probesets: 20,791 (at 0.5 hr), 20,443 (3
hr), 20,979 (6 hr), 19,584 (12 hr) and 20,034 (24 hr).

Statistical Analysis—Probesets were analyzed using both ANOVA and Significance
Analysis of Microarrays (SAM). Genes that passed both SAM and ANOVA tests and had
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normalized expression values altered by a factor of 1.5 fold were deemed significant.
ANOVA analysis was performed using GeneSpring 7.2 software. SAM analysis was
performed using SAM Microsoft Excel plug-in. The details of this analysis are as follows: A
1-way ANOVA was performed at every time point using parametric test, not assuming
variances equal (Welch’s t-test) with p-value <0.05. To address the problem of multiple
comparisons, Benjamini and Hochberg multiple testing correction was employed to maintain
False Discovery Rate (FDR) at 5% (25). The SAM method utilizes a set of gene-specific t-
tests, where each gene is assigned a score on the basis of its change in gene expression,
relative to the standard deviation of repeated measurements for that gene (26). Genes with
scores greater than threshold delta values at FDR ~4-5% were deemed significant (as the
FDR is dependent on delta value, an exact 5% FDR is not possible using the delta-slider
within the SAM Excel plug in). At this delta, the fold change parameter was set to 1.5. For
input to SAM, two-class unpaired response was chosen on normalized data with t-statistics,
200 permutations and default SAM options. In summary, the analysis steps described above
in comparing TS vs C at every time point are: Preprocessing (RMA) — Normalization —
Filtering for Expression — Statistical Analysis (SAM and ANOVA with multiple testing
correction) — Filtering for Fold Change.

Comparative Analysis

Raw data (Affymetrix HGU-133A chips) were downloaded from GEO repository (http://
www.ncbi.nlm.nih.gov/geo/). Smoking status related genes in airway epithelia that are
significantly differentially expressed were assessed using GeneSpring 7.2 as described
above and separated into upregulated and downregulated gene sets comprising 110 and 21
genes, respectively. Gene Set Enrichment Analysis (GSEA) (27) was used to compare the
MSK-Leuk1 and airway epithelia gene expression results. The up- and downregulated gene
sets in airway data were used to identify enrichment in the MSK-Leuk1 data. The MSK-
Leukl expression data inputs were the normalized ratio values of all probesets in HGU133
Plus 2 arrays and their collapsed HUGO symbols. Gene set enrichment analysis was
performed for every time point using default parameters, except the permutation type, which
was gene set instead of phenotype (as recommended by the GSEA manual when number of
replicates are <7). A reverse analysis was also performed by using all the probesets in
airway epithelial dataset as input, and searching for enrichment on the significantly up- or
downregulated gene sets at every time point of MSK-Leuk1 cells exposed to TS. Here, the
differentially expressed gene sets in MSK-Leuk1 data were collapsed to the HUGO symbols
of probesets available in HGU-133A microarrays.

Leading-Edge Subset—The leading-edge subset is defined as comprising those

members of the gene set that appear in the ranked list at, or before, the point where the
running sum reaches its maximum deviation from zero. The set is suggested to be the core of
a gene set that accounts for the enrichment score (27).

Functional Analysis

To relate the results to cell physiological mechanisms, the transcriptional data were
integrated with available experimental signaling data for TS. The complex biological
processes induced by TS were examined in the context of detailed protein-protein
interaction maps (28), and molecular networks (29). The interaction networks shown in Fig.
1C and 2A were generated with Ingenuity Pathways Analysis (IPA), a web-delivered
application used to discover, visualize and explore relevant networks (29). Affymetrix probe
identifiers were uploaded to IPA, each identifier was mapped to its corresponding gene
object in the Ingenuity Pathways Knowledgebase and only direct interactions were
considered. For the network in Fig. 2A, interactions were queried between these gene
objects and all other gene objects stored within IPA to generate a set of networks that were
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then merged. The only putative hubs considered in the merged network were transcription
regulators that are expressed in MSK-Leuk1 cells and have at least 6 direct interactions with
differentially expressed genes.

For functional categories, Ingenuity Knowledgebase (29) and Gene Ontology (GO) (http://
www.geneontology.org) databases were searched for categories statistically enriched in the
differentially expressed genes set, and the likelihood of perturbations in each category was
scored. In searching GO categories, the EASE software (30) was used to compare the
Affymetrix probe identifiers of differentially expressed genes with the list of all probes in
the HGU133 Plus 2 microarray.

We reasoned that a small but coherent difference in the expression of a group of genes in a
category or pathway can be more important than large differences in unrelated genes.
Therefore, we carried out categorization and pathway-enrichment analyses that enabled
identification and scoring of both significant and modest perturbations in corresponding
gene groups. For a functional analysis that can capture modest perturbations in functional
groups, we used all expressed genes (as defined above in the Microarray data analysis
section). Hence, we identified groups of genes that correspond to specific enzymatic,
metabolic or signaling pathways within pathway databases of KEGG (http://
www.genome.jp/kegg), and BioCarta (http://biocarta.com/genes/index.asp) using the
PLAGE tool (31) and the SAFE tool (32) within GO categories. Note that we did not
employ an FDR or FWER error estimate for functional groups. While this might result in an
increase in Type Il estimates, it is acceptable because we focused particularly on pathways
that appear to be consistently perturbed at multiple time points.

An unsupervised hierarchical clustering analysis across all samples of the microarray data
was performed for the probesets found to be differentially expressed between control and TS
treated cells at any of the 5 time points (using log-transformed normalized data). A Pearson
correlation (uncentered) similarity metric and average linkage clustering was performed
with CLUSTER and TREEVIEW software obtained at http://rana.lbl.gov/
EisenSoftware.htm (see Supplementary Figure 1). Our study was not designed to identify
dynamic effects of TS so that limitation to 5 time points results in a rather sparse matrix for
such analysis under the commonly utilized tools (CAGED (33) and SSCLUST (34)). Further
results from the use of a newly described clustering algorithm, EP_GOS_Clust (35) were
used to classify the time-dependent patterns of changes in gene expression, and will be
reported as a separate study.

Additional Information

Results

The complete list of differentially expressed genes and functional groups at every time
point, is made available through an interactive web site established as a resource of the
Institute for Computational Biomedicine at http://physiology.med.cornell.edu/go/smoke.
Also available at that site are the results from the functional analyses of the /nvivo data, for
comparative purposes. The microarray data have been deposited at the National Center for
Biotechnology Information Gene Expression Omnibus (GEO, http://www.nchi.nIm.nih.gov/
geo/) under the GEO Series accession no. GSE10063.

The effect of TS on gene expression was determined in MSK-Leuk1 cells. Based on
microarray analysis, exposure to TS led to at least a 1.5-fold change in the expression of 411
probesets. The complete list of genes, and the expression levels measured under the
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experimental conditions described here, are available at http://physiology.med.cornell.edu/
go/smoke. The number of differentially expressed genes was observed to increase with
duration of exposure to TS, amounting to 91, 104, 106, 166 and 274 probesets at 0.5 hr, 3 hr,
6 hr, 12 hr and 24 hr, respectively. The heatmap representation of the results from the
clustering of the differentially expressed genes (see Methods), are shown in Supplementary
Figure 1. The results show that replicate samples at each time point cluster together and that
TS-treated samples and controls are separated into distinct clusters. 27 probesets
corresponding to 20 unique genes were differentially expressed at every time point
signifying a persistent change in expression (Table 1). Subsequently, RT-PCR was used to
validate microarray findings for a subset of 10 differentially expressed genes. The observed
changes in expression were quantitatively consistent with the microarray results in showing
that exposure to TS led to increased levels of mMRNAs for CYP1A1, CYP1B1, PTHLH,
IL1B, EREG, ALDH1A3, IL6 and 1L24, and to reduced expression of TNFSF10 and CCL5
(data not shown). Thus, the RT-PCR results were entirely consistent with the microarray
predictions for all 10 genes evaluated, validating the experiment and statistical analyses.
Furthermore, our findings are consistent with published studies in which treatment of MSK-
Leukl cells with TS induced the following genes: cyclooygenase COX-2 (PTGS2) (17),
amphiregulin (AREG) (17, 36) and transforming growth factor alpha (TGFA) (17).

Interpreting the global transcriptome changes in terms of biological functions and

pathways

Several databases and tools were used to classify the differentially expressed genes into
relevant molecular, physiological and disease categories. TS induced transcriptome changes
were related to cellular processes and pathways using molecular network maps, hubs,
functional classes and enrichment analysis. Details of this rigorous functional analysis are
represented in a flowsheet format in Figure 1A.

1. Network Analysis—The differentially expressed gene set was integrated with the set of
signaling proteins previously shown to be activated by TS: ADAM17 (37), AhR (36, 38),
cAMP responsive element binding protein 1 [CREB1] (36), mitogen activated protein kinase
(ERK1/2) (39), protein kinase A catalytic subunit [PRKACA] (36) and SRC (unpublished
data). Assuming that highly interconnected networks likely represent significant biological
function, we sought to identify the interrelations among these genes.

1.1. Protein-Protein Interactions: Direct physical relationships between proteins
associated with the gene set were identified utilizing the human protein-protein interaction
map, HIMAP (28), as shown in Fig 1B. The proteins found to have 4 or more possible
physical interactions are listed in Supplementary Table 2. Hubs with the most Human
Protein Reference Database (HPRD) (40) connections (blue edges in Fig. 1B) are MAPKS,
COL1A1 and EGFR. In fact, an EGFR-centered subnetwork was observed, where EGFR
and its ligands EREG, AREG, DTR (HB-EGF) and TGFA are all significantly induced.

1.2. Interactions based on mammalian biology data: The interactions within the set of
TS-modified genes were mapped in the context of the network of physical, transcriptional
and enzymatic interactions observed in mammals. The results (obtained using the Ingenuity
Pathway Analysis Tool, IPA (29)) are represented in Fig 1C. The interactions considered
were: proteolysis, inhibition, protein-protein interaction, expression, protein-DNA
interaction, activation and transcription (29). Among hub proteins (listed in Supplementary
Table 2), EGFR, PLAU, IL1R1 and related proteins are mainly induced (shown in red),
while STAT1 and related proteins are repressed (shown in green). Interestingly, cytokines
form a subnetwork composed of IL1R1, IL1R2, IL1A, IL1B and IL1RN, suggesting a TS-
induced inflammatory process. Another hub, formed around PLAU, involves genes that
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contribute to invasiveness (39). At the stringency level used for the initial analysis of TS-
affected gene expression, AhR expression was not considered significantly altered, but the
likely role of the AhR is evident from the effect of TS on genes known to be regulated by
this receptor. Specific examples include the observed increased levels of CYP1A1, CYP1B1
and AREG, which are known targets of ligand-activated AhR (36, 38). In a similar manner,
various transcription regulators connected to large numbers of differentially expressed genes
can have important roles in signaling pathways perturbed by TS. Mapping the direct
interaction network of differentially expressed genes and transcription regulators can reveal
such involvement. Shown in Fig. 2A are highly connected putative transcription regulators
in response to TS, including spl transcription factor [SP1], catenin beta 1 [CTNNB1],
interferon regulatory factor 5 [IRF5], histone deacetylase 1 [HDAC1], tumor protein p53
[TP53], tumor protein p73-like [TP73L], hypoxia inducible factor 1, alpha subunit [HIF1A],
nuclear factor (erythroid-derived 2)-like 2 [NFE2L 2], cellular oncogene c-fos [FOS], myc
proto-oncogene protein [MYC], early growth response [EGR1], and a number of well
studied transcription factors and cancer-related genes that included [BRCA1], [CEBPB],
[CEBPD], and the AhR nuclear translocator [ARNT]. We note that AhR and hypoxia
signaling pathways have been demonstrated to crosstalk via the involvement of HIF1a (41),
and while HIF1a does not appear to be significantly altered, our analysis suggests its
involvement in signaling pathways as a transcription regulator hub.

2. Gene Classification

2.1. Classification of Statistically Significant Genesinto Biological Categories: The
genes affected by TS were also classified into related diseases and molecular, cellular and
physiological functions based on the information from the largest literature curated
information database, IPA (Figure 2B) (29). Cancer is the most relevant disease and the
most relevant functions are cell-to-cell signaling and interaction, cellular growth and
proliferation, drug and lipid metabolism, immune response and connective tissue
development and function. We further categorized genes in terms of relevant functional
categories using public databases of controlled vocabulary including Gene Ontology (Figure
2C, Supplementary Table 3). The information from these databases also confirms that genes
related to cell proliferation and immune responses are overrepresented. As the examples
above suggest, the classification of differentially expressed genes is inherently sensitive to
the statistical analysis results and filtering criteria. We therefore identified an additional
category of statistically significant modestly perturbed functional groups of genes among all
expressed genes in the MSK-Leukl cells, and defined their functional categories using the
GO, KEGG, and BioCarta databases. Pathways consistently perturbed at multiple time
points are given in Table 2.

Increased levels of CYP1A1 and CYP1B1 were detected in the oral mucosa of human
cigarette smokers

Because the analysis suggested that CYP1A1 and CYP1B1, AhR-dependent genes, were the
two genes most induced by TS treatment of MSK-Leuk1 cells (Table 1), we next
investigated whether the 7 vitro results were predictive of increased levels of CYP1A1 and
CYP1B1 mRNAs in the oral mucosa of human smokers. To this end, we carried out a
comparative analysis in the oral mucosa of healthy cigarette smokers versus never smoking
human volunteers. Consistent with the findings in MSK-Leuk1 cells (Table 1), amounts of
CYP1A1l and CYP1B1 mRNAs were both increased in the oral mucosa of smokers (Fig. 3).

Comparison to airway epithelial transcriptome of smokers and nonsmokers

The acute effects of TS on the transcriptome of MSK-Leuk1 cells were compared to
published chronic transcriptome differences measured in airway epithelial cells of 34 current

Cancer Prev Res (Phila). Author manuscript; available in PMC 2013 September 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Gimus et al.

Page 9

smokers and 23 never smokers (15). To minimize preprocessing and statistical
methodology-based differences, these human data were reanalyzed using the same statistical
tools employed here. The comparison revealed that the genes strongly overexpressed due to
TS in MSK-Leuk1 cells, namely CYP1A1, CYP1B1, ALDH1A3, GCLM, TXNRD1,
NQOL, PIR and AKR1C1 were also induced in the bronchial airways of smokers compared
to non-smokers, whereas MMP10 is repressed in both (Table 3). Pathways and functional
categories consistently altered in both groups are given in Supplementary Tables 4 and 5.

We further explored the similarity between the gene expression datasets from airway
epithelia and the MSK-Leuk1 cells, by comparing for relative enrichment using the GSEA
method (27) as described in the Methods section. At every time point, the TS-treated MSK-
Leukl gene set was found to be significantly enriched in genes upregulated in airway
epithelial cells (FDR <0.001); a significant negative correlation was observed in this
analysis with the downregulated genes (FDR = 0.019, 0.001, 0.037, 0.004, 0.01 for 0.5 hr, 3
hr, 6 hr, 12 hr and 24 hr, respectively). In the reverse analysis, the airway data set was found
to be significantly enriched in genes induced in MSK-Leuk1 cells at every time point (FDR
=0.043, 0.009, 0.011, 0.009, 0.048 for 0.5 hr, 3hr, 6 hr, 12 hr and 24 hr, respectively). Thus,
the results from this Gene Set Enrichment analysis identify significant correlations between
the sets of data from the two experiments, and further support the use of the MSK-Leuk1
cell line as a model for detailed mechanistic studies on tobacco smoke effects.

The leading-edge subsets of the significant gene sets in airway epithelia include 50
upregulated and 16 downregulated genes. Of these, ALDH1A3, CYP1A1, CYP1B1, GCLM,
GPX2, NQO1, PIR, SERPINB13, SLC7A11, TXNDR1 and UGT1A10 /// UGT1A8 are
members of a consistently induced subset (in at least 4 time points). At the same time,
KAL1, MMP10, NFKBIA, TMEMA45A are members of a consistently repressed subset (in at
least 4 time points) in both sets of experiments. Interestingly, the highest number of leading
edge subset genes in the airway epithelial data are for the 0.5 hr time point, which is
interesting because this time point does not have the largest number of differentially
expressed genes. The reverse analysis, for the leading edge subsets of the significantly
upregulated genes in MSK-Leuk1 data, results in a total of 20 genes enriched in airway
epithelial cells. The complete set of results is given in Supplementary Table 6. Details of this
analysis and the related html files are available at http://physiology.med.cornell.edu/go/
smoke.

Discussion

We characterized here the effects of TS on gene expression and cellular pathways in MSK-
Leukl cells. As these were shown to relate to xenobiotic metabolism, cell proliferation,
apoptosis, and cell movement, the results can potentially bring a new level of understanding
to the complex biological effects of tobacco smoke, and in particular to the manner cellular
mechanisms are perturbed leading to carcinogenesis. Cancer patients who continue to smoke
have a worse prognosis than individuals who quit smoking, but the underlying mechanisms
are poorly understood. The specific pathways shown here to be affected, as well as the
identified hubs in the networks composed of the differentially expressed genes should
provide not only insights into putative mechanisms by which tobacco smoke impacts on
carcinogenesis, but also the manner in which it might affect cancer treatment outcome. Of
special note in this context is that tobacco smoke induced CYP1A1 and CYP1B1 both in
vitro and in vivo. More specifically, increased levels of CYP1A1 and CYP1B1 were found
in MSK-Leukl cells exposed to TS and in the oral mucosa of humans who smoked
cigarettes heavily, results that confirm and amplify a previous report of elevated levels of
CYP1BL1 in exfoliated buccal mucosal cells from smokers (42). Because both CYP1A1 and
CYP1B1 convert a broad array of carcinogens to active metabolites that can form DNA
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adducts, it becomes important to consider the potential implications of TS-mediated
induction of these enzymes. Thus, several classes of carcinogens, e.g. polycyclic aromatic
hydrocarbons (PAHS), nitroaromatics, and arylamines are activated to mutagenic derivatives
by these enzymes (43, 44). It is possible that TS-mediated induction of CYP1A1 and
CYP1B1 will increase the mutagenic effects of these carcinogens. The potential significance
of such an effect is underscored by the finding that B[a]P diol epoxide, a mutagen formed by
CYP1A1 or CYP1B1, causes adducts along exons of the 7P53 gene that correspond to p53
hotspots in human tumors (45). Based on these results, one potential chemopreventive
strategy would be to identify agents that suppress tobacco smoke mediated induction of
CYP1Al and CYP1BL1.

In addition to being able to activate carcinogens, CYP1A1 and CYP1B1 play a role in the
metabolism of several anticancer drugs including docetaxel, tamoxifen and erlotinib (6, 46).
Recently, erlotinib, a small molecule inhibitor of EGFR tyrosine kinase, was found to be
more effective in the treatment of patients with non-small cell lung cancer who were never
smokers compared to smokers (10). Reduced levels of erlotinib were found in the plasma of
smokers compared with never smokers suggesting increased metabolic clearance (6). Our
finding that levels of CYP1A1 and CYP1B1 are increased in the oral mucosa of smokers
raises the distinct possibility that local in addition to systemic clearance of erlotinib will be
enhanced in smokers leading to decreased clinical benefit. Collectively, these findings
underscore the need for both more careful monitoring of smoking status in clinical trials and
increased smoking cessation efforts in cancer patients. Studies are underway or being
planned to evaluate the efficacy of erlotinib in the prevention and treatment of head and
neck squamous cell carcinoma.

The induction of CYP1A1 and CYP1B1 by TS is consistent with evidence that the AhR
plays a central role in regulating these genes. The AhR had been linked to carcinogenesis
(47, 48), and the PAHSs in tobacco smoke bind to and activate the AhR resulting in the
induction of CYP1Al and CYP1B1 (13, 38, 41). Following ligand-induced activation by
PAHSs, the AhR releases its chaperoning heat shock protein 90, translocates into the nucleus
and dimerizes with AhR nuclear translocator (ARNT) (49). The heterodimer binds to
xenobiotic response elements present in the 5° flanking region of target genes and thereby
modulates transcription. In addition to CYP1AL and CYP1B1, PAHSs induce the phase Il
xenobiotic metabolizing enzyme NQO1 [NAD(P)H: quinone oxidoreductase] and the AhR
repressor (AhRR). The AhR and AhRR are believed to constitute a negative feedback loop
of xenobiotic signal transduction. The liganded AhR induces AhRR transcription, whereas
expressed AhRR, in turn, inhibits the function of AhR (49). Both NQO1 and AhRR were
induced in the TS treated MSK-Leuk cells although the magnitude of this induction was
less than for CYP1A1 and CYP1BL1. Clearly, these results suggest that it will be worthwhile
to determine if increased levels of NQO1 and AhRR also occur in the buccal mucosa of
smokers. Easily accessible buccal mucosa may serve as a surrogate tissue for understanding
the effects of tobacco smoke on the biology of difficult to obtain bronchial mucosa. In
support of this notion, we found that TS induced changes in the transcriptome of MSK-
Leukl cells that were mimicked by differences in bronchial mucosa of smokers vs. non-
smokers. AhR-driven gene induction observed in the MSK-Leukl model matches the /in
vivoresults in airway epithelial cells of smokers (Table 3). In this regard, the fact that a
small subset (CYP1A1 and CYP1B1) of highly inducible genes was also overexpressed in
the buccal mucosa of smokers is of interest. Future studies of the transcriptome of buccal
mucosa of smokers vs. never smokers will be needed to draw more definitive conclusions
about how closely the biology of the buccal mucosa reflects changes in the lower respiratory
tract.
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Our pathway analysis showed that treatment of MSK-Leuk1 cells altered the expression of
genes involved in cellular proliferation, raising the possibility that tobacco smoke amplifies
its own mutagenicity by stimulating the proliferation of cells, because conversion of tobacco
smoke induced DNA adducts to mutations can only occur in proliferating cells (50).
Enhanced cell proliferation has been observed in the aerodigestive tracts of active smokers
(51). Interestingly, intracellular levels of glutathione, an antioxidant, have been shown to
modulate the effects of tobacco smoke condensate on cell proliferation (52). Notably, we
find that glutathione metabolism pathway is induced both in MSK-Leuk1 cells and in the
airway epithelial cells of smokers.

We and others found that TS-mediated activation of EGFR signaling led to increased cell
proliferation (36, 37). In the current study, treatment with TS led to increased levels of both
EGFR and its ligands including AREG, TGFA, HB-EGF and EREG, forming an EGFR-
centered hub within the interactome maps. Collectively, these findings strengthen the
rationale for evaluating whether an inhibitor of EGFR tyrosine kinase can prevent or delay
the onset of tobacco smoke-related malignancies of the aerodigestive tract.

Our pathway analysis suggests that TS modulates cell movement, apoptosis, immune
function and coagulation. Both inflammation and immune suppression have been suggested
to contribute to tobacco smoke induced carcinogenesis (53). Consistently, we identified the
differential expression of several interleukins and their receptors, including IL1A, IL1B,
ILIRN, IL1R1, IL1R2, IL6, IL7R, IL8, IL11, IL17RC, I1L20 and IL24, in addition to TNFA,
where IL1B, IL1R1, IL1IRN and IL8 are connected within a network. Our pathway-level
analysis also links TS exposure to the induction of specific inflammatory pathways (Table
2).

Taken together, our results provide new insights into the potential mechanisms underlying
procarcinogenic effects of tobacco smoke and may help to explain the worse outcome of
cancer patients who continue to smoke. Furthermore, our results suggest important targets
for future studies designed to identify agents that could reduce or eliminate the detrimental
effects of TS exposure indicated by the findings presented here.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A, Flowsheet describing the systematic analysis of TS induced changes in the transcriptome

of MSK-Leuk1 cells, including hypothesis generation steps.

B, Protein-protein interaction network of differentially expressed genes
(www.physiology.med.cornell.edu/go/smoke) and signaling proteins known to be activated
by TS (AhR, ADAM17, CREB1, MAPK3 (ERK1), MAPK1 (ERK2), PRKACA and SRC)
within HIMAP database, which includes interactions that are literature-confirmed from the
Human Protein Reference Database (40) (blue), yeast two-hybrid-defined (gray), or

predicted based on function (gray).

Hubs with 4 or more connections (red) are CCL5, COL1A1, CXCL10, EGFR, HMOX1,
IL1A, IL1B, ILIRN, IL1R1, IL6, IL8, MAPK1, MAPK3, PTGS2, PLAU, PLSCR1, STAT1
are VEGF. C, Direct interaction network of differentially expressed genes and known TS-
activated signaling proteins generated using IPA (29). At each edge, the interaction type is
shown and the number of publications is indicated in parentheses. Hubs are listed in

Supplementary Table 2.
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A, Direct interaction network of differentially expressed genes in TS-treated MSK-Leuk1
cells, integrated with genes related to signaling proteins known to be activated by TS. The
white nodes are genes with no significant expression change due to TS in our analysis, but
which are expressed in MSK-Leukl cells (filtered as in methods, statistical analysis 2a,b)
and interact with at least 6 differentially expressed genes, suggesting potential roles for these
in TS perturbed signaling processes. These include ARNT, BRCA1, CEBPB, CEBPD,
CREB1, CTNNBL, EGR1, FOS, HDAC1, HIF1A, IRF5, MYC, NFE2L2, SMAD3,
SMARCA4, SP1, TP53, TP73L. IPA tool (29) was used to generate the panel A. B,
Statistically significant diseases and physiological, cellular or molecular functions of the
differentially expressed genes. The bars are sized according to the calculated -log
(significance) score. C, Statistically overrepresented groups in GO Biological Process (GO
BP), GO Molecular Function (GO MF), GO Cellular Components (GO CC) and organismal
role, among the differentially expressed genes as compared to the set of genes in the
microarray, generated with EASE software, based on overrepresented chromosomes,
organismal roles, GO categories, and pathway categories within KEGG, GenMAPP (http://
www.genmapp.org), and BBID (http://bbid.grc.nia.nih.gov) databases. Categories with
Bonferroni p-value<0.05 were assumed significant, and Affymetrix identifiers are used.
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Figure 3.

Levels of CYP1A1 and CYP1BL1 are increased in the oral mucosa of cigarette smokers. A,
oral mucosal biopsies were obtained from both never smoking (never smokers, n=9) and
smoking (smoker, n=9) human volunteers. Total cellular RNA was extracted from the oral
mucosal biopsy samples and reverse transcribed. The expression of CYP1A1 and CYP1B1
MRNAs was assessed by RT-PCR. No bands were observed when cDNA was omitted from
the PCR reaction or when the reverse transcriptase enzyme was not included in the reverse
transcriptase reaction. B, Results of the data shown in panel A expressed in arbitrary units.
Means and S.D. are shown; *P <0.05, **P<0.01 vs. never smokers.
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