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Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying

behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task

with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors.

Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the

onset of an auditory ‘stop-signal’ during the go response. The anticipated systematic changes in action cancellation were observed as

stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal

cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities.

The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal

reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments

in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete

effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive

impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control.

Neuropsychopharmacology (2013) 38, 2150–2159; doi:10.1038/npp.2013.112; published online 12 June 2013
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INTRODUCTION

Inhibition is a fundamental property of behavior and makes
an important contribution to adaptive responding in the
face of changing environmental circumstances. Without
the efficient operation of inhibitory mechanisms behavior
can become maladaptive, as seen in a number of disorders
where subjects exhibit ‘impulsive’ responding (broadly
defined as action without forethought), such as ADHD,
mania, chronic substance abuse, and schizophrenia (Grant
and Potenza, 2012; Robbins et al, 2012; Swann, 2010).
Behavioral inhibition is multi-faceted (see reviews by
Evenden, 1999; Robbins et al, 2012). Hence, at the psycho-
logical level it is possible to contrast the inhibition required
to inhibit a well-rehearsed correct motor response in order
to execute another that had been previously incorrect
(‘reversal learning’), to that required to choose a larger
reward in the future rather than a smaller one immediately

(‘delayed gratification’), to that needed to forestall a
response (‘action restraint’), to that needed to cease a
motor response already in motion (‘action cancellation’ or
‘stopping’). There is increasing evidence that these psycho-
logical distinctions may have partially discrete underlying
brain substrates. Work in humans has begun to map out a
functional circuitry that consistently implicates sub-terri-
tories of the frontal cortex (in particular prefrontal cortex)
and associated cortico-striatal loops in dissociable inhibi-
tory functions (Bonelli and Cummings, 2007; Robbins et al,
2012). The main emphasis in terms of neurochemical
mechanisms has been on the diffuse ascending monoami-
nergic systems, where modifications to dopaminergic,
noradrenergic and serotonergic transmission can have
powerful modulatory effects on behavioral inhibition
(Boulougouris and Tsaltas, 2008; Dalley and Roiser, 2012).
Consistent with these data, the therapeutic effects of current
drugs used clinically to treat ADHD, the amphetamine-
based psychostimulants methylphenidate and dextro-
amphetamine and the selective noradrenaline reuptake
inhibitor atomoxetine, are thought to occur mainly via
influencing the monoaminergic axis (Arnsten, 2011; Del
Campo et al, 2011).

Animal models are making an increasing contribution to
our understanding of behavioral inhibition and impulsivity.
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Inhibitory processes can be assayed effectively in rat
models and a variety of behavioral tasks have been used
successfully to examine dissociable aspects of behavior
(Humby and Wilkinson, 2011; Winstanley, 2011). In
general, the data from rat studies has pointed toward
similar fronto-striatal circuitries and transmitter systems to
those thought to be important in mediating inhibitory
functions in humans. Furthermore, the data add weight to
the existence of distinct components of behavioral inhibi-
tion and impulsivity, insofar as within-subject performance
across different tests of inhibition often shows little
correlation, and the effects of lesion and drug manipula-
tions can differ across different tasks (Broos et al, 2012).
Assays of behavioral inhibition in rats also show a high
degree of translational relevance. This has been particularly
marked in work developing a rat analog of the stop-signal
reaction time task (SSRTT). The SSRTT measures the ability
to stop or cancel a motor action once started in response to
a ‘stop-signal’ and detects inhibitory deficits in pathological
conditions such as ADHD (Alderson et al, 2007; Robbins,
2007). Rats can learn this task and show similar speeds of
reaction and sensitivity to task manipulations as people;
they also show a similar pattern of effects to drug
challenges, most notably recapitulating the inhibition-
enhancing properties of the clinically effective drugs
methylphenidate and atomoxetine (Bari et al, 2009, 2011;
Broos et al, 2012; Eagle et al, 2007).

Alongside the progress made with rat models we, and
others, have been active in developing mouse tasks able to
assay inhibitory functions. These efforts have been moti-
vated in large part by the current superior tractability of this
species in modeling genetic effects on impulsive responding
seen in people. Such genetic effects are considerable,
spanning monogenic, fully penetrant conditions, such as
the familial tauopathy FTDP-17 (frontotemporal dementia
and Parkinsonism linked to chromosome 17) to contribu-
tions to overall risk in more complex disorders such as
ADHD (Bruno et al, 2007; Helms et al, 2008; Lambourne
et al, 2007). Our main objective in this work was to develop,
for the first time, a mouse analog of the SSRTT and to use
the task to assess the effects of frontal brain lesions and
drugs on performance focusing on the clinically effective
drugs methylphenidate and atomoxetine and antagonism of
5-HT2C receptors. We report that SSRTT performance can
be successfully modeled in mice and that performance was
influenced by medial prefrontal cortex (mPFC) dysfunction
and systemic administrations of methylphenidate and
atomoxetine in a qualitatively similar manner to humans
and previous rat models. We also provide evidence for
novel and highly selective effects of 5-HT2C receptor
antagonism in enhancing response control, findings of
potential relevance to the increasing interest in 5-HT2C

receptors as drug targets in several disorders where
inhibitory deficits are present (Meltzer et al, 2012).

MATERIALS AND METHODS

Subjects, Husbandry and Surgical Procedures

In the present work we report on C57BL/6 mice due to their
common use as a background strain for genetically
modified lines. Male mice (N¼ 36) bred from stocks in

the Behavioural Neuroscience Laboratory in the Cardiff
School of Psychology and 4 months old at the beginning of
the studies were used in the experiments. Further descrip-
tions of general husbandry, handling, and restriction
schedules used to motivate performance in the behavioral
task are detailed in Supplementary Materials and Methods.
Mice (N¼ 22) were randomly assigned to sham-operated
(N¼ 11) or lesion groups (N¼ 11) before undergoing
surgery under isoflurane anesthesia. Excitotoxic lesions of
the medial wall of the prefrontal cortex were made using
sterotaxic placements of N-methyl-D-aspartate (NMDA)
according to coordinates taken from Franklin and Paxinos
(2008) described in detail in the Supplementary Materials
and Methods. Animals were left for at least 1 month to
recover from surgery before behavioral training. On
completion of the study, sham and lesioned mice were
perfused with 4% paraformaldehyde, their brains removed,
sectioned, and stained with cresyl violet for assessment of
lesion location and spread. All procedures were performed
in accordance with UK Home Office rules and regulations
under PPL(s) 80/1937 and 30/2267 and adhered to local
governance and ethical rules.

SSRTT: Training to Baseline

Before training, the animals were habituated to the
food reward (10% condensed milk) used in the task as
described previously (Humby et al, 1999, 2005). The SSRTT
was programmed using ARACHNID software controlling
custom-configured nine-hole box apparatus (see Supple-
mentary Materials and Methods for task configuration).
Training to baseline involved shaping the mice to respond
sequentially at two stimulus locations, using nose-pokes,
to give rise to a ‘go’ response, and then learn to withhold
responding to the second stimulus location when an
auditory stop-signal was presented, to give rise to a ‘stop’
response. At baseline, in any given session 100 trials (or
20 min) were available with 80% go trials and 20%
interpolated stop trials. Training to baseline was achieved
through four main stages, ‘single nose-poking’, ‘double
nose-poking’, ‘learning to stop’, and ‘training to baseline’,
with mice moving to the next training stage once they had
achieved stable performance criteria. Full details of training
are given in the Supplementary Materials and Methods.

SSRTT: Assessment of Task Manipulations, Medial
Prefrontal Lesions, and Administration of Drugs

At stable baseline performance, a number of manipulations
were assessed. A main task manipulation was to assess the
effects of making stopping more or less difficult by having
interpolated stop trials where the auditory stop-signal was
presented further away or closer to the execution of the
response. At baseline, in stop trials the stop-signal was
always presented coincident with the beginning of the
response (making stopping relatively easy) but in separate
probe sessions the position of the stop-signal was presented
at different positions relative to the individual correct go
reaction times of each mouse, ie at 0, 10, 50 and 90% into
the individualized go reaction time, where 90% is close to
the execution of the response and stopping therefore more
difficult, as described in Carter et al. (2003). Individualized
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reaction times were required to normalize the relative
position of the stop-signal across individuals, this was
important as animals can have differing go reaction times.
Individual correct go reaction times were monitored within-
session and updated, thereby ensuring consistent placement
of the stop-signal for each subject across all experimental
conditions. Correct go reaction times were determined
directly; however, the stop-signal reaction time (SSRT) had
to be derived from the distribution of correct go reaction
times and the proportion of correctly stopped trials (see
Supplementary Materials and Methods for full details).
SSRTs were derived from data obtained from sessions with
a 50% stop-signal position, when subjects showed B50%
correct stopping, in order to ensure balanced contributions
from underlying psychological and brain processes of going
and stopping according to the predominant ‘race’ model of
behavioral inhibition as assayed in the SSRTT (see Logan,
1994, Eagle and Robbins, 2003b and below).

SSRTT performance was assessed in mice bearing mPFC
lesions and, in separate cohorts, following the systemic
administration of the drug compounds methylphenidate
(threo-methyla-phenyl-2-piperidineacetate), atomoxetine
((R)-N-methyl-g-(2-methylphenoxy)-benzenepropanamine),
and SB242084 (6-chloro-5-methyl-1-[2-(2-methylpyridyl-3-
oxy)-pyrid-5-yl carbomyl] indoline). As above, drug effects
were monitored in sessions where the stop-signal position
was at 50% and subjects showed B50% correct stopping.
Animals were given a single session with each dose of
drug, based on a Latin square design, with at least 4 days of
stable performance and baseline criteria between each drug
treatment. Methylphenidate HCl (0, 0.3, 1, 1.5, and 3 mg/kg,
Sigma, UK) was administered (i.p.) 30 min before testing,
atomoxetine HCl (0, 0.6, 1, 3, and 5 mg/kg, Sigma) was also
administered (i.p.) 30 min before testing. SB242084 dihy-
drochloride hydrate (0, 0.5, 1, and 2 mg/kg, Sigma) was
administered (s.c.) immediately before the mice were placed
into the test chambers. All concentrations were calculated as
free base and all drugs made up in physiological saline fresh
on the day of use.

Measures and Statistical Analyses

Key measures from the SSRTT were % correct stop trials,
SSRT, % correct go trials, and correct go reaction time.
Ancillary measures of general task performance included
overall number of trials initiated, the latency to initiate a
trial and the time taken to enter the food magazine
following a successful go or stop trial. For a full listing of
measures and definitions see Supplementary Materials and
Methods. SSRTs were calculated according to the methods
of Logan (1994) and Eagle and Robbins (2003b), thus in
sessions where the SSRT was derived, the correct go
reaction times were rank-ordered from smallest to largest
and the nth value found, where n is the rank-order position
based on the proportion of failing to stop correctly in stop
trials, corrected for the occurrence of omitted go trials (see
Eagle and Robbins, 2003a; Solanto et al, 2001; Tannock et al,
1989). To determine the SSRT, the time the stop-signal was
presented was subtracted from the nth correct go reaction
time value, where the time the stop-signal was presented
was determined as the mean correct go reaction time�%
stop-signal position (see Supplementary Materials and

Methods for full details). All data were analyzed using SPSS
(V.16, SPSS, USA) by ANOVA with within-subjects factor of
STOP-SIGNAL POSITION (0% (baseline), 10, 50, and 90%)
or DOSE (vehicle and dose of each drug). For the lesion
study, an additional factor of GROUP (sham and lesion) was
included in the analyses. To compare the latencies to collect
the reward for correct go and correct stop trials, a further
within-subjects factor of TRIAL TYPE (go or stop) was
used. Scores calculated as percentages were arcsine
transformed before analysis (see Hogg and Craig, 1995);
if any other parameters violated normality Greenhouse–
Geisser corrections were used. Criterion level of significance
was set at 0.05 level, and all data are shown as mean±SEM.

RESULTS

SSRTT Performance in Mice

An initial group of 14 mice were trained in the SSRTT.
Summary data for the four main stages of training to
baseline performance are detailed in Supplementary Table S1.
On average it took B44 sessions for the mice to achieve
stable baseline performance, defined as 470% of possible
trials initiated, 480% correct go responses, and 480%
correct stopping performance, the latter with the auditory
stop-signal coincident with the start of the go response. All
animals displayed an increasing degree of stimulus control
during task acquisition across the four main stages of
training, resulting at baseline in rapid (3.5±0.2 s) and high
levels (73.4±2.7%) of responding to the initiating stimulus,
go latencies comparable to those reported for rat and
human subjects (656±29 ms), high levels of successful
stopping during stop trials (84.2±2.4%), and efficient
patterns of behavior in relation to nose-poke responses/
trial initiation (1.3±0.03) and motivation as indexed by the
rapid collection of reward following a successful trial
(1.4±0.2 s; Supplementary Table S1).

The effects of altering the position of the auditory stop-
signal during stop trials are illustrated in Figure 1. As
predicted, making stopping more difficult by presenting the
stop-signal progressively closer to the execution of the
response (10, 50, and 90% into the individualized go
reaction time) led to systematic reductions in the ability to
stop (Figure 1a, main effect of STOP-SIGNAL POSITION,
F3,39¼ 13.36, po0.001); confirmed by pairwise comparisons
showing that successful stopping at the 50% stop-signal
position was significantly different from baseline (0%), and
the 10 and 90% stop-signal positions (po0.01). SSRTs,
derived in sessions where the stop-signal was placed 50%
into the correct go reaction time (see Materials and
Methods), were in the order of 350 ms, and similar to those
reported in human and rat tasks (Figure 1b). Performance
in the interpolated go trials was in general indifferent to the
presence of stop trials in the session, with no effects on
correct go reaction times (Figure 1d, main effect of STOP-
SIGNAL POSITION, F3,39¼ 0.91, n.s.) and a slight reduction
in correct go responses limited to the sessions where
stopping was most difficult (Figure 1c, main effect of
STOP-SIGNAL POSITION, F3,39¼ 2.85, po0.05).

The specificity of the stop-signal manipulation to stop-
ping behavior was further confirmed by the general lack of
effects on other task parameters. There was a significant
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reduction on overall trials initiated when stopping was
most difficult (Figure 1e, main effect of STOP-SIGNAL
POSITION, F3,39¼ 7.53, po0.001) and an accompanying
nonsignificant tendency toward slower initiation latencies
(Figure 1f, main effect of STOP-SIGNAL POSITION,
F3,39¼ 2.06, n.s.). There were no significant differences in
the time taken to enter the food magazine following a
successful trial (Figure 1g, main effect of STOP-SIGNAL
POSITION, F3,39¼ 2.32, n.s.), but magazine latencies were
quicker in stop trials than go trials due to the mundane
reason of correct stop trials requiring only one nose-poke
(main effect of TRIAL TYPE, F1,13¼ 4.37, po0.05).

Lesions to mPFC Impair the Ability to Stop

A separate cohort of 22 mice, half of which bore excitotoxic
lesions of mPFC and half sham lesions (for details of
the location and extent of the lesions see Supplementary
Figure S1) were trained in the SSRTT. Data from two of the
mPFC-lesioned mice were removed from the analysis due to
incorrect lesion placement. There were no between-group
differences in learning the SSRTT to baseline criteria
(Supplementary Table S2). However, as illustrated in
Figure 2a, lesioned animals showed impairments in correct
stopping as stopping was made more difficult. Post-hoc
analysis of the significant GROUP� STOP-SIGNAL
POSITION interaction (F3,54¼ 3.68, po0.05) indicated that
the effects of the lesion were most prominent at the
50% stop-signal position; differences between lesion and
sham animals at the 90% stop-signal position were less
pronounced probably as a result of floor effects. The
lesioned animals were also slower to stop as indicated by
SSRTs derived in sessions where the stop-signal was placed

50% into the correct go reaction time (Figure 2b, t18¼ 3.21,
po0.01). The effects of the lesion were specific to stopping,
as there were no effects on correct go responses (Figure 2c,
main effect of GROUP, F1,18¼ 1.31, n.s.) or correct go reac-
tion times (Figure 2d, main effect of GROUP, F1,18¼ 1.49,
n.s.). Furthermore, in general, there were no lesion-
associated effects on other indices of task performance,
such as the overall number of trials initiated (Figure 2e,
main effect of GROUP, F1,18¼ 2.95, n.s.), the latency to
initiate a trial (Figure 2f, main effect of GROUP, F1,18¼ 1.15,
n.s.), or the time taken to collect the food reward following a
successful go or stop trial (Figure 2g, main effect of GROUP,
F1,18¼ 0.27, n.s.).

The Clinically Effective Drugs Methylphenidate and
Atomoxetine Improve Stopping Abilities

The effects of clinically effective drugs methylphenidate and
atomoxetine on SSRTT performance in a cohort of intact
animals are shown in Figures 3 and 4. To enable cross-
species comparisons, we used the same dose ranges used in
previous SSRTT studies in rats (Bari et al, 2009; Eagle et al,
2007). These doses ranges have been shown to be effective
in other behavioral tasks in mice (Davis and Gould, 2007;
Griffin et al, 2013) and lead to systematic changes in
monoamine release in mouse mPFC assessed using micro-
dialysis (Koda et al, 2010). Furthermore, the chosen dose
range of methylphenidate gives rise in the mouse to
approximate plasma levels obtained following therapeutic
dosing in patients (Balcioglu et al, 2009). Drug effects were
monitored in sessions where the stop-signal was placed 50%
into the correct go reaction time. As shown in Figure 1a,
this was where the mice showed an average B50%

Figure 1 Effects of altering the stop-signal position on SSRTT performance. Stopping was made more difficult by presenting an auditory ‘stop-signal’
progressively closer to the execution of the response (a). SSRT, the latency to stop, was determined in sessions where the stop-signal was presented half
way (50%) into the individualized go reaction time, generating values comparable to studies in other species (b). Stopping and going behaviors were
dissociable as the effects of moving the stop-signal onset were specific to stopping behavior with other task measures unaffected by this manipulation
including correct go trials (c), correct go reaction time (d), number of trials initiated (e), the latency to initiate a trial (f) and reward collection latencies (g).
Data are mean±SEM, n¼ 14. **po0.01 and *po0.05 for pairwise differences related to stop-signal position.
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successful stopping performance, and hence where there
were balanced contributions from underlying psychological
and brain processes of going and stopping (Logan, 1994).

Systemically administered methylphenidate had complex
dose-related effects on correct stopping (Figure 3a) with a
progressive enhancement in stopping performance, relative

Figure 2 Effects of bilateral mPFC lesions on SSRTT performance. Deficits in stopping emerged as stopping was made more difficult in animals bearing
excitotoxic lesions of medial prefrontal cortex; indexed by both correct stop trials (a) and SSRT (b). In contrast, the brain lesion had minimal effects on going
behaviors (c and d) or on ancillary task measures indexing general task performance (e and f) and motivation (g). Data are mean±SEM, mPFC group, n¼ 9
and sham operated group, n¼ 11. **po0.01 for pairwise differences between sham and lesioned groups. Note that two mPFC lesioned mice were
removed from the study due to poor lesion placement (see Supplementary Figure S1).

Figure 3 Effects of methylphenidate on SSRTT performance. Methylphenidate (threo-methyl a-phenyl-2-piperidineacetate, Sigma, UK) was administered
(i.p.) 30 min before testing in sessions where the stop-signal position was set at 50% of the go response. Animals were given a single session with each dose
of drug, based on a Latin square design, with at least 4 days of stable performance and baseline criteria between each treatment. All concentrations were
calculated as free base and made up in physiological saline fresh on the day of use. Increasing doses of methylphenidate up to 1 mg/kg improved stopping
behavior (a) and decreased SSRT (b), whereas higher doses were not as effective. There was little effect of methylphenidate on correct go trials, excepting a
small decrease at 1 mg/kg (c), or on correct go reaction time (d), the number of trials initiated (e), the latency to initiate a trial (f) or reward collection
latencies (g). Baseline data (BL—mean of the five sessions immediately preceding each drug treatment session) when the stop-signal presentation was
concurrent with the start of the go response (ie, at 0%) are shown for illustrative purposes and were not included in the statistical analysis. Data are
mean±SEM, n¼ 13. **po0.01 and *po0.05 for pairwise differences related to dose of drug.
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to vehicle, at the two lower doses of 0.3 and 1 mg/kg dose,
and a progressive reduction of effects back down to vehicle
levels at the two higher doses of 1.5 and 3 mg/kg (main
effect of DOSE, F4,48¼ 5.52, po0.001). Pairwise compa-
risons confirmed that stopping at the 1 mg/kg dose was
significantly different (po0.05) to vehicle, 0.3, and 3 mg/kg
and close to significance (p¼ 0.07) in comparison to
the 1.5 mg/kg dose of methylphenidate. These behavioral
effects were reflected, to an extent, in the SSRT (Figure 3b)
with the quickest stopping latencies associated with the
mid, 1 mg/kg, dose of methylphenidate (main effect of
DOSE, F4,48¼ 3.08, po0.025). Again, pairwise comparisons
confirmed that SSRT at the 1 mg/kg dose was signifi-
cantly different (po0.01) to vehicle, 0.3, and 3 mg/kg. The
effects of methylphenidate were specific to stopping; there
was a small reduction in correct go responding following
administration of 1 mg/kg methylphenidate (Figure 3c,
main effect of DOSE, F4,48¼ 3.07, po0.05) but correct go
reaction times were not affected at any dose of the drug
(Figure 3d, main effect of DOSE, F4,48¼ 1.54, n.s.). General
indices of task performance were also unaffected by any
dose of methylphenidate used, including overall trials
initiated (Figure 3e, main effect of DOSE, F4,48¼ 1.53,
n.s.), latency to initiate a trial (Figure 3f, main effect of
DOSE, F4,48¼ 0.30, n.s.), and time taken to enter the food
magazine following a successful stop or go trial (Figure 3g,
main effect of DOSE, F4,48¼ 1.08, n.s.).

Systemic administration of atomoxetine gave rise to a
similar qualitative pattern of effects on stopping behavior to
those seen following methylphenidate, with dose-related,
biphasic effects on correct stopping (Figure 4a, main effect

of DOSE, F4,48¼ 4.11, po0.01); pairwise comparisons
confirmed that stopping at the 1 mg/kg dose was signifi-
cantly different (po0.01) to vehicle and 5 mg/kg and that
the 0.6-mg/kg dose was significantly different to vehicle
(po0.05). In contrast to methylphenidate, however, bipha-
sic effects on SSRT were not as prominent (Figure 4b, main
effect of DOSE, F4,48¼ 2.62, po0.05), with pairwise compa-
risons showing a significant effect limited to the difference
between 1 mg/kg atomoxetine and vehicle (po0.05). There
were small reductions in correct go responses at higher
doses of atomoxetine (Figure 4c, main effect of DOSE,
F4,48¼ 2.97, po0.05) but correct go reaction times were
unaffected at any dose of drug (Figure 4d, main effect of
DOSE, F4,48¼ 1.55, n.s.). Atomoxetine also led to effects on
general aspects of task performance, including reductions in
the overall number of trials initiated at all doses (Figure 4e,
main effect of DOSE, F4,48¼ 12.45, po0.0001) and an
increase in initiation latency that was specific to the highest
dose of drug used (Figure 4f, main effect of DOSE,
F4,48¼ 5.15, po0.01). Motivation, as indexed by the
latencies to collect the reward after a successful go or stop
trial, was not influenced by atomoxetine in any systematic
manner (Figure 4g, main effect of DOSE, F4,48¼ 2.49, n.s.).

5-HT2C Receptor Antagonism Improves Stopping
Abilities

The effects of the specific 5-HT2C antagonist SB242084 on
stopping and going behaviors are illustrated in Figure 5. We
attempted to choose drug doses on the basis of previous
work in rat models; however, at the time of writing there

Figure 4 Effects of atomoxetine on SSRTT performance. Atomoxetine ((R)-N-methyl-g-(2-methylphenoxy)-benzenepropanamine, Sigma, UK) was
administered (i.p.) 30 min before testing in sessions where the stop-signal position was at 50% of the go response. Animals were given a single session with
each dose of drug, based on a Latin square design, with at least 4 days of stable performance and baseline criteria between each treatment. All
concentrations were calculated as free base and made up in physiological saline fresh on the day of use. Increasing doses of atomoxetine up to 1 mg/kg
improved stopping behavior (a) and decreased SSRT (b) whereas higher doses were not as effective. Atomoxetine also led to a small attenuation in correct
go trials at higher doses (c), decreased the number of trials initiated (e) and increased the latency to initiate a trial at the highest dose of 5 mg/kg (f). There
were no effects of atomoxetine on the correct go reaction time (d) or reward collection latencies (g). Baseline data (BL—mean of the five sessions
immediately preceding each drug treatment session) when the stop-signal presentation was concurrent with the start of the go response (ie, at 0%) are
shown for illustrative purposes and were not included in the statistical analysis. Data are mean±SEM, n¼ 13. **po0.01 and *po0.05 for pairwise
differences related to dose of drug
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were no published accounts of the effects of SB242084 in rat
SSRTT, so the drug doses administered were those shown to
be effective in manipulating response control in the rat and
mouse versions of the five-choice serial reaction time and
delayed reinforcement assays (Fletcher et al, 2007; Paterson
et al, 2012; Talpos et al, 2006; Winstanley et al, 2004).
Within the dose range used, in sessions where the stop-
signal was placed 50% into the correct go reaction time,
again chosen because it was where the mice showed an
average B50% successful stopping performance, SB242084
was effective in enhancing stopping abilities, producing
progressive, dose-related increases in successful stopping
(Figure 5a, main effect of DOSE, F3,36¼ 11.52, po0.001)
paralleled by progressive reductions in SSRT (Figure 5b,
main effect of DOSE, F3,36¼ 7.40, po0.001). In both cases,
the highest 2-mg/kg dose of drug was no longer effective in
altering stopping performance compared with vehicle.
Pairwise comparisons confirmed that treatment with the
0.5- and 1-mg/kg doses of SB242084 significantly increased
stopping (po0.05) and reduced the SSRT (po0.05) in
comparison to administration of vehicle, and that there was
no difference between the 2-mg/kg dose and vehicle. The
impact of SB242084 on stopping was highly discrete with no
effects, at any dose, on correct go responses (Figure 5c,
main effect of DOSE, F3,36¼ 2.33, n.s.), go reaction times
(Figure 5d, main effect of DOSE, F3,36¼ 0.41, n.s.), or on
general features of task performance, such as the amount of
trials initiated (Figure 5e, main effect of DOSE, F3,36¼ 0.34,
n.s.), and latencies to start a trial (Figure 5f, main effect of
DOSE, F3,36¼ 0.38, n.s.) or collect the reward (Figure 5g,
main effect of DOSE, F3,36¼ 2.41, n.s.).

DISCUSSION

We report a novel assay of SSRTT performance in mice.
Several aspects of task performance indicate the cross-
species, translational utility of the assay. Importantly,
the task was dissociable in terms of going and stopping
behaviors, and as seen in people and other animal models
(Aron et al, 2003; Broos et al, 2012; Chamberlain et al,
2006; Eagle and Robbins, 2003b) conformed to the prevailing
‘race’ model of behavioral inhibition where the ability
to cancel an ongoing motor action is dependent on
competition between separate, parallel brain processes of
going and stopping. Hence, as predicted, altering the
position of the stop signal in the mouse model made
stopping more or less difficult depending on whether it
favored going or stopping processes prevailing in the race
(Logan, 1994). Furthermore, consistent with the existence
of discrete going and stopping processes, the effects of
prefrontal damage and drugs in altering stopping behavior
were highly specific with little or no impact on going
behaviors.

Much evidence suggests frontal regions of brain form a
key part of the circuitry controlling response inhibition
(Bonelli and Cummings, 2007; Robbins et al, 2012) and the
construct validity of theassay in mice was further empha-
sized by the effects of excitotoxic-induced damage to the
mPFC. Consistent with clinical findings of dysfunction in
prefrontal areas, in conditions such as ADHD (Arnsten and
Rubia, 2012; Depue et al, 2010; Pliszka et al, 2006; Robbins,
2007), where the SSRTT reliably predicts inhibitory deficits,
and experimental approaches in rat models (Bari et al, 2011;

Figure 5 Effects of SB242084 on SSRTT performance. SB242084 (6-chloro-5-methyl-1-[2-(2-methylpyridyl-3-oxy)-pyrid-5-yl carbomyl] indoline, Sigma,
UK) was administered (s.c.) immediately prior to testing in sessions where the stop-signal position was at 50% of the go response. Animals were given a
single session with each dose of drug, based on a Latin square design, with at least 4 days of stable performance and baseline criteria between each
treatment. All concentrations were calculated as free base and made up in physiological saline fresh on the day of use. Increasing doses of SB242084 up to
1 mg/kg improved stopping behavior (a) and decreased SSRT (b), whereas the highest 2 mg/kg dose was ineffective. There was no effect of SB242084 on
correct go trials (c), correct go reaction time (d), the number of trials initiated (e), the latency to initiate a trial (f) or reward collection latencies (g). Baseline
data (BL—mean of the five sessions immediately preceding each drug treatment session) when the stop-signal presentation was concurrent with the start of
the go response (ie, at 0%) are shown for illustrative purposes and were not included in the statistical analysis. Data are mean±SEM, n¼ 13. *po0.05 for
pairwise differences related to dose of drug.
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Eagle et al, 2008; Mar et al, 2011), lesioned animals were
impaired at stopping. These effects, which may have also
involved disruptions to function that were up and down-
stream of the lesion site, were highly selective in that they
emerged when stopping was made more difficult and did
not extend to learning the task, going behaviors or ancillary
task measures indexing general task performance and
motivation.

Another important test of the translational potential of
the mouse model was to assess the effects of methylpheni-
date and atomoxetine, drugs used clinically in the treatment
of ADHD. Our data were consistent with findings in people
and previous rat models (Aron et al, 2003; Bari et al, 2009;
Bari et al, 2011; Broos et al, 2012; Chamberlain et al, 2006;
Eagle et al, 2007; Tannock et al, 1989) and showed that the
general ability of these drugs to enhance stopping in the
SSRTT extended to mice. The effects of both drugs were
dose dependent with the inhibition-promoting effects being
lost at higher doses, presumably as a result of a relative
reduction in pharmacological selectivity. It is noteworthy
that in some previous SSRTT studies the effects of
methylphenidate and atomoxetine have been shown to be
dependent on the speed of stopping, with the effects being
confined mainly to slower stoppers (Eagle et al, 2007; Feola
et al, 2000; Robinson et al, 2008a). However, we observed no
statistically reliable interactions between the effects of the
drugs at any dose and speed of stopping that warranted sub-
analysis of group data (eg, by median split; data not shown).

Manipulations of the serotonergic system can have major
effects on behavioral inhibition and our data using the
mouse SSRTT provided evidence for novel and highly
discrete effects of 5-HT2C receptor antagonism. To our
knowledge, the finding that the specific 5-HT2C antagonist
SB242084 enhances response control in the SSRTT is the
first published report of such an effect. Given the behavioral
selectivity and potency of SB242084, comparable to
methylphenidate and atomoxetine, these data add to current
debate about the therapeutic potential of 5-HT2C receptors
in psychopathology (Meltzer et al, 2012; Reynolds et al,
2005), and suggest, in principle, that blockade of 5-HT2C

receptors may be useful in the treatment of disorders such
as ADHD, where failures of behavioral inhibition are overt;
but also other disorders, such as schizophrenia, where
inhibitory deficits are present but comorbid with a complex
mix of other symptoms (Bonelli and Cummings, 2007;
Grant and Potenza, 2012; Robbins et al, 2012).

The data with SB242084 provide further evidence for
qualitatively distinct contributions of serotonergic trans-
mission to response control, exemplified by the dissociable
effects of systemic SB242084 on inhibitory processes
mediating stopping in the SSRTT (this work), premature
responding in the five-choice serial reaction time task
(Fletcher et al, 2007; Robinson et al, 2008a; Winstanley et al,
2004) or choosing in the delayed reinforcement task
(Paterson et al, 2012; Robinson et al, 2008a). The precise
neurobiological substrates of 5-HT2C receptor antagonism
in the SSRTT warrant further investigation, in the first
instance using localized infusions of drug agents directly
into brain. Of relevance here are recent data showing that
5-HT2C receptor function in nucleus accumbens and orbital
frontal cortex has important and dissociable roles in other
aspects of response inhibition as manifest in the five-choice

serial reaction time task (Robinson et al, 2008b) and
reversal learning (Boulougouris and Robbins, 2010), hence
it will be a priority to establish the extent to which these
brain regions are involved in mediating the enhanced
response control following systemic SB242084 administra-
tion in the SSRTT. The involvement of 5-HT2C receptors in
this and other forms of behavioral inhibition also brings
into play a number of molecular mechanisms able to modify
the efficacy of 5-HT2C receptor signaling in the brain. For
example, the role of genes such as Snord115, which can
modify 5-HT2C receptor function via effects on posttran-
scriptional modifications of 5-HT2C receptor pre-RNA
(Kishore and Stamm, 2006), and which we have shown
using mouse models in previous work, can influence aspects
of response control (Doe et al, 2009). We anticipate that, in
allowing exploitation of the advanced genomic and genetic
tractability of mice, the development of the mouse SSRTT
will be of significant utility in furthering the generation of
viable translational models, and new therapeutic targets, for
disorders where failures of behavioral inhibition are
prominent.
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