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The performance of the physics-based protocol, whose main compo-
nent is the United Residue (UNRES) physics-based coarse-grained
force field, developed in our laboratory for the prediction of protein
structure from amino acid sequence, is illustrated. Candidate models
are selected, based on probabilities of the conformational families
determined by multiplexed replica-exchange simulations, from the
10th Community Wide Experiment on the Critical Assessment of
Techniques for Protein Structure Prediction (CASP10). For target
T0663, classified as a new fold, which consists of two α+ β domains
homologous to those of known proteins, UNRES predicted the correct
symmetry of packing, in which the domains are rotated with respect
to each other by 180° in the experimental structure. By contrast,
models obtained by knowledge-based methods, in which each do-
main is modeled very accurately but not rotated, resulted in incorrect
packing. Two UNRES models of this target were featured by the
assessors. Correct domain packing was also predicted by UNRES for
the homologous target T0644, which has a similar structure to that of
T0663, except that the two domains are not rotated. Predictions for
two other targets, T0668 and T0684_D2, are among the best ones by
global distance test score. These results suggest that our physics-
based method has substantial predictive power. In particular, it has
the ability to predict domain–domain orientations, which is a signifi-
cant advance in the state of the art.
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Prediction of protein structures from amino acid sequence still
remains an unsolved problem of computational biology. Al-

though, since the famous experiments by Anfinsen (1), it is
known that a protein adopts the structure which is the (kinet-
ically reachable) global minimum of the free energy of a sys-
tem, it is not straightforward to implement this physical
principle in practice because of the inaccuracy of existing force
fields and because of the enormous difficulty to search the
conformational space of the system. Therefore, the most ef-
fective methods for protein-structure prediction nowadays are
knowledge-based approaches, in which database information is
incorporated explicitly into the procedure (2). These methods
can be divided into three categories, namely, comparative (ho-
mology) modeling (3–5), in which the target sequence is com-
pared with the sequences for which experimental structures are
known and those structures are usually selected as candidate
models for which the greatest similarity is observed; threading (6–
8), in which the target sequence is superposed on structures
from a database, and those which give the highest score (lowest
pseudoenergy) are selected as candidate predictions; and, finally,
the fragment-assembly or minithreading method developed by
David Baker and colleagues (9, 10), in which the predicted
structure is assembled from nine-residue fragments extracted
from a protein-structure database, and knowledge- and physics-
based filters are applied at each assembly stage. The last method
has been used with outstanding success in predicting new protein
folds. In many prediction protocols, such as, e.g., MONSSTERR

(MOdeling of New Structures from Secondary and TErtiary
Restrains) (11), ROSETTA (10, 12), TOUCHSTONE (13),
TASSER (Threading ASSEmbly Refinement) (14), and I-
TASSER (Iterative Threading ASSEmbly Refinement) (5), some
or all of the methods are combined. Another variant of this
approach, known as Fragfold, was also developed by Jones (15).
Because the sequences of newly discovered natural proteins

are usually similar to those with known structures, comparative
modeling covers over 90% of the situations in which a structure
is needed and has not been determined (16). If two natural
sequences have >20% sequence similarity, they almost certainly
have similar structures (5). It should be noted, however, that
sequence similarity of natural proteins also indicates that they
are closely related evolutionarily and, consequently, their ancestors
performed similar functions, which implies a similar structure;
organisms, in which a mutation resulted in a major structural
change of a vital protein, did not survive. In fact, among artificially
mutated proteins, even high sequence similarity is weakly related
to structural similarity. A good example are bacterial Ig-binding
domains; even a single mutation in the loop regions of these
proteins changes the structure from a three-helix bundle into
a four-stranded β-sheet with an α-helix packed to it (17). Because
sequence-structure correspondence is also, albeit less directly, used
by the other two types of knowledge-based method, the above
caveat also remains true for the threading and fragment-
based approaches.
Even when natural proteins are considered and the structure

of a new protein does occur in the database used by knowledge-
based methods, situations are met in which these approaches

Significance

With the example of the coarse-grained United Residue model
of polypeptide chains, this paper demonstrates that the phys-
ics-based approach for protein-structure prediction can lead to
exceptionally good results when correct domain packing is an
issue, even for a highly homologous target. The reason for this
is probably that emphasis is placed on energetically favorable
residue–residue interactions, including those with residues in
relatively flexible linker regions; these regions are usually very
different in the target compared with those of proteins in the
databases used for template-based modeling. The results sug-
gest that a combination of bioinformatics and a physics-based
approach could result in a major increase in the prediction ca-
pacity of existing approaches.

Author contributions: Y.H., M.A.M., P.K., A.K.S., T.K.W., and A.L. performed research;
M.A.M., P.K., A.K.S., T.K.W., and A.L. analyzed data; K.K., S.R., D.J., R.�S., C.R.C., and S.O.
contributed analytical tools; D.J., R.�S., C.R.C., and S.O. maintained the software pack-
age; H.A.S. supervised the work; and Y.H., M.A.M., P.K., A.K.S., T.K.W., A.L., K.K., S.R., D.J.,
R.�S., C.R.C., S.O., and H.A.S. wrote the paper.

The authors declare no conflict of interest.
1To whom correspondence should be addressed. E-mail: has5@cornell.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1313316110/-/DCSupplemental.

14936–14941 | PNAS | September 10, 2013 | vol. 110 | no. 37 www.pnas.org/cgi/doi/10.1073/pnas.1313316110

mailto:has5@cornell.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1313316110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1313316110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1313316110


point to a wrong fold. Examples are, e.g., targets T0063 and
T0215 of the 3rd Community Wide Experiment on the Critical
Assessment of Techniques for Protein Structure Prediction
(CASP3) and CASP6 experiments, respectively, whose cores are
simple three α-helix bundle folds, for which threading found
mirror-image folds. Conversely, correct folds were predicted
by our physics-based approach based on the physics-based
coarse-grained force field (United Residue, UNRES) (18, 19).
Physics-based methods for protein structure prediction, which

are based on the Anfinsen thermodynamic hypothesis (1), have
also had significant success. Enormous progress has been made
in all-atom calculations, due to extensive use of world-distributed
computing (20), implementation of all-atom molecular dynamics
software on graphical processor units (21), and, most notably,
the construction of dedicated machines (22). However, coarse-
grained approaches (23–25), in which several atoms are merged
into single interaction sites, are used very extensively, because

they enable us to treat protein systems at time and dimensional
scales, which are orders of magnitude larger (26) than those
possible in all-atom computations. During the past 20 y, we have
been developing (27–30) a simplified model for proteins termed
UNRES, in which two interaction sites per residue are defined,
namely, a united side chain and a united peptide group. The
effective energy function has been defined as the potential of
mean force of polypeptide chains in water. More details of the
model are given in the references cited, and a succinct de-
scription is given in Materials and Methods.
It should be noted that protein-structure prediction is only one

aspect of the application of physics-based methods; however, in
our opinion, this exercise, is a necessary step to test physics-based
approaches. As stated earlier in this section, these approaches will
be needed practically in a fraction of protein structure prediction
problems. Most likely, these methods will be needed to predict
the structures of the proteins with no sequence similarity to any

Fig. 1. (A) The experimental 4EXR structure of target T0663. (B) Our model 1. (C) Our model 4. (D) GDT_TS plots of all models of T0663 from all groups with
plots corresponding to the Cornell-Gda�nsk group models shown as black lines, and models from the other groups shown as orange lines. The N termini in A–C
are marked with “N”. The values of GDT_TS are 23.19, 31.98, and 42.80 for model 1 of the whole protein and its domains D1 and D2, respectively, and 22.04,
31.98, and 40.15 for model 4 of the whole protein and its domains D1 and D2, respectively. The respective GDT_TS values of the models with the highest
GDT_TS submitted to CASP are 42.93 (model 1 from group 27), 68.61 (model 3 from group 27), and 98.20 (model 4 from group 27). The GDT_TS plots have
been reproduced with permission from the CASP10 web site (www.predictioncenter.org/casp10/results.cgi). The drawings of the structures were produced
with PYMOL (www.pymol.org).
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protein from structural databases or if an artificial protein is
considered. Lastly, when there is confidence that the structure
is well predicted, and will be used for further procedures,
concurrent methods, including physics-based methods, are re-
quired. The main scope of implementation of physics-based
methods is protein dynamics and thermodynamics, especially with
regard to biological applications such as studying functionally
important motions and predicting ligand-binding modes.
Physics-based prediction of protein structure was, until re-

cently, understood as finding the global minimum of a potential-
energy function, which does not fully result from Anfinsen’s
thermodynamic hypothesis because it ignores conformational
entropy. The native structure of a protein is not a single rigid
structure such as that of, e.g., a polycyclic hydrocarbon molecule
but constitutes a statistical ensemble of a very large number of
similar but nonidentical conformations. Therefore, the native
structure should be sought as the most probable ensemble or the
basin in the potential-energy surface that has the lowest free
energy. Consequently, we recently (28) developed a procedure
based on extensive conformational search of the protein con-
sidered in the UNRES representation with the use of the rep-
lica-exchange molecular dynamics (REMD) method (20, 31)
implemented in the UNRES force field (32, 33), followed by
determination of families of structures by the weighted-histogram
analysis method (WHAM) (34) and minimum-variance clustering
(35). This approach is outlined in Materials and Methods. Re-
cently (36), we parallelized the energy and force calculations in
UNRES, which enables us, given access to massively parallel
resources, to run MREMD simulations of proteins with sizes up
to 1,200 residues in real time.
Our physics-based procedure resulted in some good pre-

dictions in the CASP7–CASP9 exercises (37). In particular, in
CASP9, UNRES predictions of three targets were outstanding by
global distance test total score (GDT_TS), albeit at only >5 Å root-
mean-square deviation (rmsd) over α-carbon atoms. In this pa-
per, we present the performance of our physics-based protein
structure prediction method in the CASP10 exercise under the
Cornell-Gda�nsk group name. We demonstrate that use of a
physics-based methodology can make a difference in predicting
the correct global fold. It should be noted that, in this CASP
exercise, UNRES was also used with success in connection with
knowledge-based approaches, as in the WEFOLD experiment.

Results and Discussion
As the Cornell-Gda�nsk group, we submitted predictions for 21 of
53 targets available to human predictor groups. As in previous
CASP exercises (18, 19, 37–39), to use supercomputer resources

available to us effectively, we considered primarily the targets that
had below 20% sequence similarity with proteins from the Protein
Data Bank (PDB), as assessed by the PSIBLAST server (40). The
best predictions made with UNRES are described below.

Target T0663. This protein (PDB ID code 4EXR) consists of two
domains, each of which contains a four-stranded antiparallel
β-sheet with an N-terminal α-helix packed across the strands. A
distorted α-helical segment links the two domains (Fig. 1A). The
N-terminal domain is rotated about the axis perpendicular to the
β-sheet plane by 180° so that its N-terminal strand is loosely
packed against the N-terminal strand of the C-terminal domain.
It can be seen that our models 1 and 4 (Fig. 1 B and C) have the
same packing topology, although the helices are packed along and
not across the β-strands, as opposed to the experimental structure,
and the β-sheets are not as curved and are more tightly packed to
each other (Fig. 1 B and C). These two predictions were two of only
three models submitted to CASP10 with correct domain-arrange-
ment topology. This situation is quite unusual, because the se-
quence of this protein has high similarity to those of proteins with
known structures and clearly falls into the category of comparative-
modeling methods with high confidence; still, the structure pre-
dicted by comparative-modeling methods is grossly wrong. On the
other hand, judging by GDT_TS, comparative-modeling methods
seem to have given better results compared with UNRES (Fig. 1D).
The reason for this is that the individual domains of this protein are
predicted with excellent accuracy by comparative modeling, which
accounts for most of the distances in the protein. Only a small
fraction of distances correspond to domain packing and, therefore,
GDT_TS does not select any model of T0663 predicted by UNRES
as outstanding, even though the domains are correctly packed in
the UNRES models. Only a combination of GDT_TS with the
chirality score (defined as the fraction of tetrahedra of vertices in
the Cα atoms of the structure under consideration, which have
the same chirality as the corresponding tetrahedra of the ref-
erence structure) (41) enabled the assessors to distinguish the
UNRES models. The chirality scores for our models 1 and 4 are
0.71 and 0.63, compared with 0.58 (model 5 of group 27), 0.52
(model 1 of group 190), and 0.52 (model 1 of group 388) of the
three groups that scored best by means of the GDT_TS measure
(see www.predictioncenter.org/casp10/results.cgi for the struc-
ture of the models and group information).
The correctness of the domain-packing topology also persists in

UNRES models 2, 3, and 5 (Fig. S1). Even though the β-sheet is
distorted in models 2, 3, and 5, the β-sheet fragments of the
N-terminal domain still tend to pack against the N-terminal frag-
ment of the C-terminal domain. However, the chirality scores of
these models are low because the α-helices are arranged on the
wrong sides of the β-sheet.

Fig. 2. (A) The experimental 4FR9 structure of target T0644. (B) Our model
3 of this target. The GDT_TS value of this model is 17.38, compared with
85.28 for the best model submitted to CASP (model 3 from group 130). The
drawings of the structures were produced with PYMOL (www.pymol.org).

Fig. 3. (A) Model 1 of target T0663 from group 27. (B) Results of UNRES/
MREMD simulations starting from this model, with restraints imposed on
intradomain Cα. . .Cα distances. The drawings of the structures were produced
with PYMOL (www.pymol.org).
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Another target, T0644, which is highly homologous to T0663
with a very similar structure, except that the C-terminal part of
the N-terminal domain is packed against the N-terminal part of
the C-terminal domain, has also been released in CASP10. Our
predictions for this target were not very good according to the
GDT_TS measure (Fig. 2). It should be noted, however, that the
domains are packed as in the experimental structure, i.e., the C
terminus of the C-terminal domain is packed to the N terminus
of the C-terminal domain (Fig. 2B). The overall handedness
score is also remarkable (0.55 for model 2), even though the
prediction quality is worse compared with that for T0663 because
of swapped strands in the domains (Fig. 2B). For our other
model of that target, the domain packing is also correct. It can
therefore be concluded that predicting the correct packing to-
pology of T0644 and T0663 is a feature of our UNRES-based
approach. Our method did not pick out correctly and incorrectly
packed structures with equal probability. It produced structures
only with correct domain packing.
To find out if our approach can rectify the incorrect packing

topology, we took three top models according to the GDT_TS
measure (model 1 of group 27, model 1 of group 190, and model
1 of group 388) and subjected them to restrained multiplexed
REMD (MREMD) simulations with UNRES. In these simu-
lations, restraints were imposed on the Cα . . . Cα distances within
each domain, with reference distance values from the original
models, whereas the interdomain distances and linker geometry

were unrestricted. The restraints were harmonic, each with a force
constant of 0.05 kcal/(mol × Å2). These simulations resulted in
repacking the β-sheets to correct symmetry for all starting models.
For model 1 of group 27, the chirality score increased from 0.56 to
0.64. For the models from groups 190 and 388, the chirality score
did not improve because the helices were packed on the wrong
side of the β-sheets. As an illustration, the initial and final struc-
tures of model 1 of group 27 are shown in Fig. 3.
Because the packing of the two domains (the C terminus of the

N-terminal domain to the N terminus of the C-terminal domain or
the N terminus of the N-terminal domain to the N terminus of the
C-terminal domain) is the only feature that distinguishes the
structures of T0644 and T0663, and bioinformatics approaches
have unambiguously selected the models in which the C terminus
of the N-terminal domain is packed to the N terminus of the C-
terminal domain for both targets (42) (incorrectly for T0663), as
opposed to our physics-based approach, we used the example of
T0663 to determine what makes the difference between the two
approaches. An analysis of the interactions in the experimental
4EXR structure indicates that the linker interacts with the bottom
of the N-terminal β-sheet, which makes the β-sheet of the C-ter-
minal domain pack to the N-terminal part of the β-sheet of the N-
terminal domain. This pattern of interactions is preserved in the
UNRES model 4; in model 1, which also has correct chirality, the
N-terminal β-strand is unwound to join the linker and the ex-
tended linker is packed across the two domains (Fig. 1B). In the

Fig. 4. (A) The GDT_TS plots of T0668; the blue line on the right corresponds to our model 2 (GDT_TS = 35.90 compared with the highest value of 44.23
obtained by group 190). (B) The GDT_TS plots of T0684_D2; the rightmost blue line corresponds to our model 5 (GDT_TS = 21.58 compared with the highest
value of 24.85 obtained by group 45). (C) The experimental structure of T0684_D2 (PDB code: 4FMT). (D) Our model 5 of this protein. The GDT_TS plots have
been reproduced with permission from the CASP10 web site (www.predictioncenter.org/casp10/results.cgi). The drawings of the structures were produced
with PYMOL (www.pymol.org).
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best models of T0663 according to the GDT_TS measure (Fig.
3A), the linker is not packed to the N-terminal domain, which
enables the two domains to assume the more natural C-to-N
terminus packing, which results in a lower contact order and,
therefore, smaller loss of entropy. This is probably because the
linker in the templates is shorter than that in T0663, which does
not enable the N-terminal domain to turn around. Because of
high sequence homology of T0663 to proteins similar in
structure to T0644, the domain packing characteristic of T0644
was selected instead of the correct packing.

Other Predictions. Our approach has also been featured for the
free-modeling target T0740 (an α-helical protein). However, for
this target, we obtained the best predictions by making use of extra
information, as part of the wfCPUNK group within the WEFOLD
initiative directed by Silvia Crivelli (National Institutes of Health).
As the Cornell-Gda�nsk group, we also obtained very good

results, in terms of the GDT_TS measure, for T0668 and
T0684_D2 (the second domain of target T0684). The GDT_TS
plots of these targets are shown in Fig. 4 A and B, whereas the
experimental structure and the best model of T0684_D2 are
shown in Fig. 4 C and D, respectively. The experimental structure
of target T0668 has not yet been published in the PDB and,
therefore, only the GDT_TS plots are shown for this target (Fig.
4A). T0668 was classified as a hard template-based modeling target,
whereas T0684_D2 has been classified as a free-modeling target.
It can be seen from the GDT_TS plots (Fig. 4 A and B) that

the UNRES predictions attain high GDT_TS values only when
the rmsd cutoff is greater than 5 Å. This suggests that our coarse-
grained physics-based approach has only medium resolution. As
a result of this medium resolution, our model 5 of T0684_D2 is
ranked only 28th, even though it corresponds to the rightmost
line in the GDT_TS plot (Fig. 4B), whereas our model 2 of
T0668 is ranked only 83rd, even though the corresponding lines
are quite shifted to the right (Fig. 4A).

Conclusions
Using our physics-based protocol with the coarse-grained
UNRES force field as the main component, we obtained fea-
tured predictions of target T0663 in the CASP10 exercise. This
success resulted from the fact that UNRES predicted correct
domain packing which, in turn, resulted from packing of the
interdomain linker to the N-terminal domain (Fig. 1C). It is re-
markable that T0663 is largely homologous to known proteins.
However, wrong local structure of the linker between the two large
domains adopted from largely homologous proteins (in which the
linker is shorter than in T0663) resulted in wrong domain packing.
UNRES does not have this bias and, therefore, it predicted the
correct overall topology, even though knowledge-based methods
outperformed it as far as the accuracy of the prediction of each
individual domain was concerned. That the result obtained for
T0663 was not a fortuitous incident is demonstrated by other good
results obtained during the CASP10 exercise (Fig. 4) and in
previous CASP exercises (18, 19, 37). It can, therefore, be
concluded that our physics-based coarse-grained approach has
substantial power to predict protein structures. In particular, it
has the ability to predict domain–domain orientations, which is
a significant advance in the state of the art. Its main advantage
is that it is free of the bias from structural databases.
On the other hand, at present, UNRES provides a resolution

of 5 Å on average for a 60- to 80-residue protein or protein
fragments with such a size, provided that its topology is predicted
correctly (Fig. 4). Therefore, the predictions made with UNRES
rise to the top mostly when other methods fail to predict correct
topology, as for T0663 in CASP10. This feature of UNRES is
also clearly seen in the GDT_TS plots in Fig. 4; the UNRES
predictions are distinguished in the GDT_TS plots only at higher
rmsd values. One way to correct this deficiency is to improve the
force field; the main targets are local interactions, which are
recently being enhanced by introducing the terms responsible for
the coupling between the backbone-local and side-chain–local

conformational states. The other improvement is the replacement
of the side-chain–interaction potentials which, at present, are
Gay-Berne potentials with spheroidal symmetry. Such a potential
function ignores, e.g., the specificity of interactions involving the
charged and polar side chains with physics-based potentials that
are also being introduced (43, 44).
Finally, the results of the exercise in which the models from

knowledge-based predictions were used as starting points for
UNRES simulations open another avenue for using UNRES in
protein-structure prediction: Segments of a protein with high
homology could be predicted in such a manner and then re-
strained to the resulting conformation, whereas UNRES could
work on correct packing of these segments. This route is also
being explored in our laboratory.

Materials and Methods
The UNRES force field has been described in detail in refs. 27–30. Briefly,
a polypeptide chain is represented by a sequence of α-carbon atoms with
united side chains attached to them and peptide groups positioned halfway
between two consecutive α-carbons. The effective energy function is defined
as the free energy of the chain corresponding to a given coarse-grained
conformation plus the surrounding solvent (this free energy is termed a re-
stricted free energy or a potential of mean force) (27, 29). The molecular
dynamics equations have been derived by means of the Lagrange formalism
(45), with the virtual Cα. . .Cα and Cα. . .SC vectors as generalized variables.

The prediction protocol used in this work consisted of the following four
steps. In the first step, MREMD (20, 31) simulations were carried out with the
use of our coarse-grained UNRES force field (27–30), with which a molecular
dynamics method (26, 45) and its multiplexed replica exchange extension
(33) were implemented earlier. In the second step, the conformational
ensembles obtained by coarse-grained MREMD simulations were analyzed
by means of WHAM (34) to determine the heat-capacity profiles and con-
formational ensembles at any desired temperature, following the procedure
described in our earlier work (28). For each system, the heat-capacity profile
was analyzed and a temperature of T ≈ Tm − 10  K was selected to analyze
conformational ensembles, where Tm is the temperature of the main heat-
capacity peak (the “melting temperature”). In the third step, cluster analysis
was carried out at the selected temperatures, by means of Ward’s minimum
variance method (35). The Cα rmsd was used as a measure of the distance
between conformations. For each protein, the rmsd cutoff was selected as
a compromise between a small number of families (ideally five, which is the
number of models that could be submitted for each target) and grouping
similar conformations in a given family. The clusters are ranked according to
decreasing probabilities, which are computed from the probabilities of their
component conformations calculated by WHAM (28). For each cluster, the
conformation closest to the average over the cluster is considered a repre-
sentative of the whole cluster. The representatives of the five top clusters
were selected as prediction candidates and ranked according to decreasing
probabilities of the clusters. In step 4, these conformations were converted
to all-atom structures by our physics-based method (46, 47). After conversion
to the CASP format, the models were submitted.

For each target, 64 trajectories were run for each MREMD simulation,
with two trajectories per temperature. The integration time step was
4.89 fs and 20 million to 40 million steps per trajectory were run for each
system. This corresponded to about 0.1–0.2 μs simulation time; however,
because the fast degrees of freedom are averaged out in the coarse-
grained treatment, this corresponds to 0.1–0.2 ms of real time (26). The
Berendsen thermostat was used (48) with the coupling constant τ= 48:9  fs.
The adaptive multiple time step algorithm (49) was used to integrate
the equations of motion. The simulations were run with the parallelized
UNRES code (36) available at www.unres.pl. To speed up the search, restraints
from secondary structure prediction by PSIPRED (50) were imposed on the
virtual-bond geometry.
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