
Original article
STAT1, NF-jB and ERKs play a role in the induction
of lipocalin-2 expression in adipocytes%
Peng Zhao 1,2, Jacqueline Marie Stephens 1,2,*
ABSTRACT
Lipocalin-2 (LCN2) is induced in conditions of obesity and Type 2 diabetes (T2DM). IFNγ and TNFα induce LCN2 expression in adipocytes in a
manner that is dependent on transcription. The effects of these cytokines are additive. IFNγ induced STAT1 and TNFα induced NF-κB play a role in
the induction of LCN2. In the LCN2 promoter, one NF-κB binding site and four STAT1 binding sites were identified by in silico and in vitro
approaches. MAPK (ERKs 1 and 2) activation was required for the IFNγ and TNFα induction of LCN2 expression, but did not affect the nuclear
translocation or DNA binding activity of STAT1 or NF-κB. The NF-κB binding site and the STAT1 binding sites we identified in vitro were confirmed by
in vivo studies. Transfection of a LCN2 promoter/luciferase reporter construct confirmed acute activation by IFNγ and TNFα. Our studies identify
mechanisms involved in the actions of cytokines secreted from immune cells in adipose tissue that induce LCN2 expression in conditions of obesity
and T2DM.
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1. INTRODUCTION

Adipose tissue is a major insulin sensitive tissue that plays key roles in
regulating energy metabolism and insulin sensitivity [1–3]. Chronic
inflammation and infiltration of immune cells in adipose tissues has
been demonstrated to modulate adipocyte function and result in
alterations of hormone secretion and insulin sensitivity [4,5]. TNFα
and IFNγ are important pro-inflammatory cytokines that are known to be
secreted from immune cells that infiltrate into adipose tissues [4,6,7].
These immune cells have the ability to induce insulin resistance in both
cultured adipocytes and experimental animal models [6,8–10]. IFNγ
signals via activating Janus kinase (JAK)-signal transducer and activator
of transcription 1 (STAT1) signaling pathway and extracellular signal-
regulated kinases (ERKs) mediated signaling pathway [10,11]. TNFα
utilizes various signaling pathway and can stimulate both nuclear factor
kappa B (NF-κB) signaling pathway and ERKs mediated signaling
pathway [12,13].
Lipocalins are a family of proteins that bind and transport small or
hydrophobic molecules with conserved ligand binding sites [14]. As a
member of the lipocalin family, lipocalin-2 (LCN2), also called neutrophil
gelatinase-associated lipocalin (NGAL), was initially discovered as a
matrix metalloproteinase 9 (MMP-9) binding protein that attenuated
MMP-9 degradation [15]. Studies have shown that LCN2 increases
during exposure to invading bacteria [16] and can be bound to bacterial
siderophores to limit bacterial growth by reducing iron uptake [17,18].
More recent research has revealed that LCN2 is secreted from mature
adipocytes [19]. Expression of LCN2 is significantly up-regulated in
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conditions of insulin resistance and type 2 diabetes (T2DM) [20]. Human
studies indicate that circulating LCN2 positively correlates with adiposity,
triglyceride, blood glucose level, insulin resistance, and is negatively
related to high-density lipoprotein cholesterol [21,22]. However, the
roles of LCN2 in the pathology of adipose tissue insulin resistance are
still unclear. There is evidence that LCN2 can induce the expression of
PPARγ and adiponectin [23] and that administration of LCN2 attenuates
the inhibitory effect of TNFα on insulin-stimulated glucose uptake [23].
However, other data indicates that knockdown of LCN2 improves insulin
action in adipocytes [20]. In order to clarify the functions of LCN2 in
whole body insulin sensitivity, LCN2 knockout mice have been generated
by several labs. However, the results of these studies have further
clouded our understanding of the functions of LCN2 and the topic is
even more controversial. In one study, global LCN2 deficiency caused
dyslipidemia, fatty liver and insulin resistance [24]. On the contrary, a
separate study indicated that LCN2 null mice had improved aging and
obesity-mediated insulin resistance [25], supporting the notion that the
lack of LCN2 is metabolically favorable. The most recent characterization
of LCN2 deficient mice indicates that LCN2 deficiency did not have a
significant effect on age or obesity-induced insulin resistance [26].
Collectively, these studies suggest that the roles of LCN2 in modulating
insulin sensitivity are still unclear. Nonetheless, there are numerous
studies and clear and convincing evidence to demonstrate that
modulation of LCN2 in mice and humans significantly affects insulin
sensitivity. Our studies have focused on understanding the regulation of
LCN2 expression by factors that contribute to the pathogenesis of insulin
resistance.
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To enhance our understanding of LCN2 in obesity and insulin resistance,
we performed mechanistic studies to examine how LCN2 expression is
induced in adipocytes. Our results demonstrate that the increase of
LCN2 expression is mediated by pro-inflammatory cytokines that are
present in adipose tissue in conditions of insulin resistance in mice and
man. We observed that LCN2 expression and secretion was induced by
IFNγ and TNFα in both murine 3T3-L1 adipocytes and human
subcutaneous adipocytes. STAT1 and ERKs 1 and 2 signaling pathways
mediated the effects induced by IFNγ and the effects of TNFα on LCN2
expression were mediated by both NF-κB and ERKs 1 and 2 signaling
pathways. Our studies of the murine LCN2 promoter identified five
STAT1 binding sites and one NF-κB binding site. Inhibition of ERKs
signaling pathway attenuated the stimulatory effects of both IFNγ and
TNFα on LCN2 expression. Inhibition of ERKs 1 and 2 reduced the
activity of STAT1 and NF-κB without having any significant effects on
the nuclear localization or DNA binding activity of these pro-
inflammatory transcription factors. These mechanistic studies provide
insight into the modulation of LCN2 that occurs during insulin resistance.
2. RESEARCH DESIGN AND METHODS

2.1. Cell culture
Murine 3T3-L1 preadipocytes were grown to 2 days after confluence in
Dulbecco's Modified Eagle's Media (DMEM) with 10% bovine serum.
Media was changed every 48 h. 0.5 mmol/l 3-isobutyl-methylxanthine,
1 μmol/l dexamethasone, and 1.7 μmol/l insulin (MDI) cocktail were
used to induce preadipocytes differentiation in DMEM containing 10%
fetal bovine serum (FBS). After 48 h, the media was replaced by DMEM
with 10% FBS. For serum deprivation, media was change to DMEM
containing 0.3% BSA for 16–20 h before treatment. DMEM was
purchased from Sigma. Bovine and FBS were purchased from Hyclone.
Human subcutaneous adipocytes in 12-well plates were purchased from
Zen-Bio. Cells were serum-deprived for 16 h before treatment. Recom-
binant mouse and human IFNγ were purchased from R&D Systems.
Recombinant mouse and human TNFα were purchased from Gibco.
Actinomycin D was purchased from Sigma.

2.2. Preparation of whole cell extracts
Cell monolayers were harvested in a non-denaturing IP buffer that
contained 10 mmol/l Tris (pH 7.4), 150 mmol/l NaCl, 1 mmol/l EGTA,
1 mmol/l EDTA, 1% Triton X-100, 0.5% Nonidet P-40, with protease
inhibitors 1 μmol/l phenylmethylsulfonyl fluoride, 1 μmol/l pepstatin,
50 mU trypsin inhibitory aprotinin, 10 μmol/l leupeptin, and phosphatase
inhibitor 2 mmol/l sodium vanadate. The cells were scraped off the
plates and the extract was passed through a 20 g needle three
times. The extract was centrifuged at 9500g for 10 min at 4 1C.
Supernatants were collected and analyzed with BCA (Pierce) to quantify
protein content of whole cell extract.

2.3. RNA analysis
Total RNA was isolated from cell monolayers with RNeasy mini kit
(Qiagen). 10 μl of RNA extract was used for reverse transcription
PCR. cDNA was analyzed by delta delta ct real-time PCR with
SYBR supermix reagent (Takara) and Applied Biosystem 7900HT
system. Cyclophilin A was used as endogenous control. Follo-
wing primers were used for the real-time PCR: mLipocalin-2
forward TGCAAGTGGCCACCACGGAG and reverse GCATTGGTCGGTGGG-
GACAGAGA; mCyclophilin A forward CCACTGTCGCTTTTCGCCGC and
reverse TGCAAACAGCTCGAAGGAGACGC.
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2.4. 3T3-L1-adipocyte fractionation
Cell monolayers were harvested in nuclear homogenization buffer
containing 20 mmol/l Tris (pH 7.4), 10 mmol/l NaCl, 3 mmol/l MgCl2,
1 μmol/l dithiothreitol, with protease inhibitors listed above and 2 mmol/l
sodium vanadate. Nonidet P-40 was added to final concentration of
0.15%. Cells were homogenized with 18 strokes in a Dounce
homogenizer and centrifuged at 500g for 5 min. Supernatants were
transferred to another tube as cytosolic extract. The precipitated nuclear
pellets were resuspended in one-half volume of nuclear homogenization
buffer and were centrifuged as before. The supernatant was removed
and discarded. The majority of the pellet (intact nuclei) was resuspended
in nuclear extraction buffer containing 20 mmol/l HEPES (pH 7.9),
150 mmol/l NaCl or 420 mmol/l NaCl, 1.5 mmol/l MgCl2, 0.2 mmol/l
EDTA, 1 μmol/l dithiothreitol, 25% glycerol and the with protease
inhibitors listed above with 2 mmol/l sodium vanadate. Resuspended
nuclei were passed three times through a 20G needle every 10 min and
extracted for 30 min on ice. The samples were centrifuged at 9500g at
4 1C for 10 min. The resulting supernatant was a nuclear extract.

2.5. Gel electrophoresis and immunoblotting
Proteins were separated in 7.5% or 10% polyacrylamide gels containing
SDS, and transferred to nitrocellulose membrane (Bio-Rad) in 25 mmol/l
Tris, 192 mmol/l glycine, and 20% methanol. After transfer, the
membrane was blocked in 4% milk for 1 h at room temperature, and
incubated with primary antibody overnight at 4 1C. Results were
visualized with horseradish peroxidase-conjugated secondary antibodies
(Jackson ImmunoResearch Laboratory) and enhanced chemilumines-
cence (Pierce). STAT1 antibody was purchased from Cell Signaling
Technology. Lipocalin-2 antibody was from R&D System. STAT5A, p65,
ERK1/2 antibodies were from Santa Cruz technology. Adiponectin
antibody was from Thermo-Pierce. STAT1pY antibody was from
Millipore. Active ERK1/2 antibody was from Promega.

2.6. Electrophoretic mobility shift analysis
Double-stranded oligonucleotides were annealed by heating single-
stranded oligonucleotides in 95 1C water bath and gradually cooling to
room temperature. 4 μg double-stranded oligonucleotides were labeled
with 20 μCi [α-P32]dCTP (PerkinElmer) and 1 μl of each 5 mM dATP,
dTTP, dGTP using Klenow fragment. The mix was incubated for 15 min
at 30 1C. The reaction was stopped by adding 1 μl of 0.5 M EDTA.
Labeled double-stranded oligonucleotides were purified with illustra
MicroSpin G-25 Columns (GE Healthcare) according to manufacturer's
instructions. Radioactivity of labeled oligonucleotides was determined by
scintillation counting. Nuclear extracts were incubated with the labeled
oligonucleotides for 30 min on ice. The samples were separated in a
pre-run (30 min, 200 V at 4 1C) 6% acrylamide/bisacrylamide TBE gel.
Nuclear extracts were pre-incubated with 1 μg antibody (STAT1, STAT3,
STAT5A, STAT5B or p65 from Santa Cruz Technology) for 1 h at room
temperature for supershift assay. The gels were run at 200 V for
�3.5 h, dried at 80 1C for 45 min with vacuum, and then exposed to
Eastman Kodak Co. BioMax MS film with a Kodak BioMax high energy
intensifying screen.

2.7. Chromatin immunoprecipitation
ChIP assay was performed with SimpleChIPs Enzymatic Chromatin IP
Kit (Cell Signaling Technology) according to the protocol supplied by
company. Cells were serum deprived overnight in DMEM containing
0.3% bovine serum. Cells were treated with IFNγ or TNFα for 30 min in
the presence or absence of UO129, an ERK inhibitor (Promega).
Adipocytes were cross-linked with formaldehyde and glycine. Chromatin
ISM 2 (2013) 161–170 & 2013 Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



extracts were prepared after sonication of harvested cells. Immunopre-
cipitation was performed with specific STAT1 (Cell Signaling Technology)
or p65 (Cell Signaling Technology) antibodies. Rabbit normal IgG was
used as a negative control. Purified DNA was quantified by real-time
PCR with following primers: -266 forward GTGGACAGGCAGTCCAGATCT-
GAG and reverse AAGATTTCTGTCCCTCTCTCCCCC; -619 forward
CTGTTCCTGTAAATGGCAGTGGGG and reverse GGGTGAGCAAGCTGA-
GAGTGAATG; -676 forward TAAGGACTACGTGGCACAGGAGAG and
reverse GAAGTGTCCAATACCTTGAGCCCC; -1014 forward GCTTCTGC-
CCAAAGTAACTGGAGT and reverse TAAGGACTGCAACCTCGGTGTCAT;
-1822 forward CTGCCCTGAGTGTTGGGTTCAAAG and reverse CTGGGGA-
TGTAGCTCTCTGGTGTT; -3171 forward TAGTCCTGCATTCAGTTTGCAGGC
and reverse ACCCAGGTCCAATCCACATGAAGA. 500 nM of each primer
and 2 μl ChIP product were used with SYBR green supermix and ROX
buffer (Takara) in 20 μl PCR reaction. Percentage of input was
calculated by the formula: Percentage of input¼2%� 2(C[T] 2% input

sample−C[T] IP sample).

2.8. Plasmid constructs
A 3470 bp-fragment of lipocalin-2 promoter (−3358 to 112) was cloned
from genomic DNA of mouse liver. The fragment was amplified with
following primers: forward: GATCGGTACCAAAGGGCTCTCCAGGTTCTC;
reverse: GATCGATATCGGCAGGGATCAAGTTCTGAG. Nucleotides were
added to the 5′ ends of each primer so that the forward primer could
be digested by KpnI and the reverse primer by EcoRV for ligation into the
pGL4.27 vector to create pGL4.27-LCN2pro. Plasmids were sequenced
for verification of nucleotide sequence.

2.9. Plasmid transfection and luciferase reporter assays
Mature 3T3-L1 adipocytes in six-well plates were transfected with 2 μg
pGL4.27-LCN2pro by using Dharmacon turboFect reagent (ThermoScien-
tific). 2 μg pRL-TK/renilla vector was co-transfected to control transfection
efficiency. After 24 h, the adipocytes were pretreated with UO126 for
30 min and that was followed by IFNγ or TNFα treatment for 24 h.
Cell lysis was prepared with passive lysis buffer. Luciferase activity was
measured with the Dual Luciferase Reporter System (Promega). Relative
luciferase units were calculated by dividing firefly luciferase activity values
by renilla luciferase activity. Each condition was performed in triplicate
and on three independent batches of adipocytes.
3. RESULTS

3.1. Lipocalin-2 expression and secretion is up-regulated by pro-
inflammatory cytokines
Previous studies showed that lipocalin-2 is expressed in adipocytes and
increased in obese and diabetic subjects [20]. However, the mechan-
isms involved in the induction of LCN2 expression are unknown. In our
studies, we observed that both IFNγ and TNFα induced the expression
and secretion of LCN2. Whole cell extracts and media samples were
prepared from 3T3-L1 adipocytes that were untreated or treated for 24,
48, or 72 h. As shown in Figure 1A and B, LCN2 expression and
secretion were induced by IFNγ and TNFα treatment within 24 h. After
24 h IFNγ treatment, the cellular levels of LCN2 were induced and
remained high. However, the effect of TNFα on LCN2 levels increased
over time. Since adiponectin expression and secretion is attenuated by
both IFNγ and TNFα [27,28], we used it as control to assess the
effectiveness of cytokine treatment. STAT5A was used as a loading
control. As expected, cytokine treatment decreased adiponectin levels,
but did not affect STAT5A expression. To determine if the observed
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effects were dependent on new transcription, we pretreated 3T3-L1
adipocytes with Actinomycin D for 30 min, followed by a IFNγ or TNFα
treatment. As shown in Figure 1C, TNFα is a more potent inducer of
LCN2 mRNA than IFNγ. In addition, the presence of Actinomycin D
inhibited the ability of both inflammatory mediators to induce LCN2
mRNA expression.

3.2. The effects of IFNγ and TNFα on LCN2 expression are additive
Next, we evaluated whether IFNγ and TNFα induced LCN2 expression by
activating the same or different signaling pathways in adipocytes.
Mature 3T3-L1 adipocytes were treated for 16 h and total RNA was
isolated and analyzed by quantitative real-time PCR. As shown in
Figure 2A, TNFα is a more potent inducer of LCN2 mRNA than IFNγ.
However, the presence of both IFNγ and TNFα always resulted in at
least an additive effect on LCN2 expression. This additive effect is also
observed with LCN2 protein expression and secretion (Figure 2B).
Collectively, these data indicate that IFNγ and TNFα affected LCN2
expression via stimulating different signaling pathways.

3.3. Identification of NF-κB and STAT1 binding sites in lipocalin-2
promoter
Since the induction of LCN2 expression by IFNγ or TNFα appeared to be
mediated by different signaling pathways, we examined several
signaling pathways known to mediate the effects of IFNγ and TNFα.
We examined the role of STAT1, NF-κB and ERK1/2 signaling pathways
in the ability of IFNγ and TNFα to induce LCN2 expression. First, we
performed an analysis to search for potential STAT1 and NF-κB sites in
the promoter of the murine LCN2 gene. Three potential NF-κB binding
sites (Table 1) and nine potential STAT1 binding sites (Table 2) were
identified by sequence analysis and experimentally examined by
performing both electrophoretic mobility shift assays (EMSA) and
chromatin immunoprecipitation (ChIP). Only one of the potential NF-κB
binding sites was confirmed to interact with nuclear extracts from TNFα
treated adipocytes and binding specificity was assessed by performing
cold competition and generating a mutated binding site (Figure 3A and
Tables 3 and 4). An increase of cold competitor reduced the interaction
between radioactively labeled probe and nuclear protein. A mutated
probe (Table 2) did not associate with nuclear protein. A specific p65
antibody was used to perform supershift analysis to determine whether
NF-κB comprised the DNA binding complex. As indicated in Figure 3B,
pre-incubation with a p65 antibody resulted in a supershift of the TNFα
induced binding, which suggests that the p65 component of NF-κB is
present in the DNA-protein complex. Chromatin immunoprecipitation
(ChIP) was also performed to examine the association of p65 with the
murine LCN2 promoter. As shown in Figure 3B, p65 bound to the murine
LCN2 promoter in vivo.
Nine potential STAT1 binding sites were experimentally examined by
performing both EMSA and ChIP. EMSA analysis revealed that four of
these sites interacted with nuclear protein from IFNγ treated adipocytes
(Figure 4A). Specificity was assessed by performing cold competition
and generating mutated binding sites (data not shown). Supershift assay
was performed with specific STATs antibodies to demonstrate whether
these proteins were involved in the DNA binding complex. STAT1 was
shown to bind to all four binding sites. To our surprise, STAT5A and
STAT5B also interacted with -619, -1822 and -3171 binding sites
(Figure 4B). Since growth hormone (GH) is a physiological activator of
STAT5A and STAT5B [29], we examined the ability of GH to regulate
binding to these STAT sites. However, there was no association detected
between labeled oligonucleotides and nuclear protein from GH treated
adipocytes (data not shown). When we performed ChIP analysis to test
lecularmetabolism.com 163



Figure 1: IFNg and TNFa induce LCN2 expression and secretion in 3T3-L1 adipocytes. A: Mature 3T3-L1 adipocytes were chronically treated with 100 ng/ml IFNg . Media was collected and
whole cell extract was harvested at indicated time. Time 0 indicates no treatment. 250 mg protein from media samples and 150 mg of whole cell extracts were subjected to western blot analysis. B:
Mature 3T3-L1 adipocytes were chronically treated with 0.5 nM TNFa and samples were analyzed as indicated above. C: Adipocytes were pretreated with 5 mg/ml Actinomycin D for 30 min, and
then treated with IFNg or TNFa for 16 h. Total RNA was isolated and analyzed with reverse transcription and qPCR. Cyclophilin A was used as an endogenous control. These are representative
experiments independently performed three times.

Original article
these STAT binding sites, we confirmed the four binding sites that were
validated by EMSA and observed STAT1 binding at one additional site
(Table 2). Of note, this binding site at �1014 was not positive with
nuclear protein in vitro, but was verified by ChIP using a STAT1 antibody
(Figure 4C). For all the five STAT1 binding sites, we did not observe any
IFNγ induced interaction with STAT5 in vivo (data not shown).

3.4. ERK signaling modulates the ability of TNFα and IFNγ to induce
LCN2 expression without having significant effects on STAT1 and NF-κB
nuclear translocation or DNA binding activity
Besides activating transcription factors like STAT1 and NF-κB, both IFNγ
and TNFα acutely activate ERKs 1 and 2 (Figure 5A). Mature adipocytes
were pretreated with UO126, a specific ERK inhibitor for 30 min and
then nuclear translocation and tyrosine phosphorylation of STAT1 was
examined after an IFNγ or TNFα treatment for 20 min. As shown in
Figure 5A, the IFNγ induced nuclear translocation and tyrosine
phosphorylation of STAT1 was unaffected by ERK inhibition. TNFα
induced the nuclear translocation of p65 that was also unaffected by
164 MOLECULAR METABOL
ERK inhibition. The efficacy of ERK inhibition is shown by using a
phospho-specific antibody to assess ERK activation. Also, note that IFNγ
induced a modest increase in the nuclear content of STAT5A, but did not
affect the content of the nuclear protein DBC1. Although, ERK inhibition
did not affect the ability of these pro-inflammatory cytokine to induce
nuclear translocation of STAT1 and p65, it did have substantial effects
on the ability of these cytokines to induce LCN2 expression. As shown in
Figure 5B, the induction of LCN2 mRNA levels by IFNγ and TNFα was
repressed by ERK inhibition. However, EMSA analysis revealed no
alterations in binding to the NF-κB site in the LCN2 promoter in vitro and
ChIP analysis suggested that NF-κB binding to this site was not
significantly alerted in vivo (P¼0.0538). We also examined the STAT1
binding to the LCN2 promoter under conditions where ERK was
inhibited. As shown in Figure 5D, there was no difference in binding
in vitro or in vivo for any of the STAT1 binding sites identified.
To determine if ERK inhibition modulated LCN2 promoter activity in
adipocytes, we cloned �3.5 kb of the murine LCN2 promoter into a
pGL4.27 vector expressing firefly luciferase. This vector was transiently
ISM 2 (2013) 161–170 & 2013 Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



Figure 2: The effect of IFNg and TNFa on LCN2 expression are additive. Mature 3T3-L1
adipocytes were treated with 100 ng/ml IFNg or 0.5 nM TNFa or both cytokines. A: RNA was
isolated 16 h later and subject to reverse transcription and qPCR. B: Whole cell extracts and
media samples were collected after a 24 h treatment. 250 mg of protein from media samples
and 150 mg of whole cell extracts were analyzed by western blot analysis. These are
representative experiments performed with three biological replicates and independently
performed on three batches of cells.

Gene Position Sequence TNFα responsive

EMSA ChIP

Consensus GGG NNN NNC

C

Lipocalin-2 �266 to -247 GC CCT GGG

AAT GTC CCT

CTG

Yes Yes

Lipocalin-2 �713 to -694 GG AGA GGG

TGA GTC CCT

GAG

No No

Lipocalin-2 �1795 to -1774 GAA CTT GGG

GTC TCC CAT

GTG C

No No

Table 1: NF-kB binding sites in lipocalin-2 promoter.

Gene Position Sequence IFNγ responsive

EMSA ChIP

Consensus GAS TTC N2-4 GAA

Lipocalin-2 �160 to �142 G TAT TTC AAC

AGA ATG TAC

No No

Lipocalin-2 �619 to �602 GA CAC TTC

CAG GAT AAT C

Yes Yes

Lipocalin-2 �676 to �697 GT CTG TTC

CTG TAA ATG

GCA

Yes Yes

Lipocalin-2 �705 to �688 GT GAG TCC

CTG AGA GTT C

No No

Lipocalin-2 �1014 to �994 CCC ACT TTC

CCC AAG GGC

TCC

No Yes

Lipocalin-2 �1822 to �1806 GGT TGT TTC

TTT GTA CT

Yes Yes

Lipocalin-2 �3132 to �3115 GGA TCC TTG

AGA TGC AAC

No No

Lipocalin-2 �3159 to �3143 AG AGT TTC

TGG ATC CGA

No No

Lipocalin-2 �3171 to �3152 CC AGT TTC

TGG AAG AGT

TTC

Yes Yes

Table 2: STAT1 binding sites in lipocalin-2 promoter.
transfected into 3T3-L1 adipocytes. A Renilla-TK vector was
co-transfected to control for transfection efficiency. One day after
transfection, the cells were treated with IFNγ or TNFα for 24 h in the
presence or absence of the ERK inhibitor. A dual-luciferase reporter
assay was performed to quantitate the expression of luciferase.
The results clearly showed that the �3.5 kb segment, immediately
upstream of the transcription start site within the LCN2 promoter was
sensitive to both pro-inflammatory cytokines. The promoter activity was
highly similar to what we observed for the induction of LCN2 mRNA
(refer to Figures 2 and 5). However, UO126 pretreatment abrogated the
stimulation of luciferase expression by both IFNγ and TNFα indicating
that the inhibition of ERKs impaired the transcription activation activity of
STAT1 and NF-κB (Figure 6).
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3.5. IFNγ and TNFα induce lipocalin-2 expression in human
subcutaneous adipocytes
An in silico analysis of the human LCN2 promoter revealed five potential
STAT1 binding sites at �856, �885, �1405, �1934, and �3610.
As shown in Table 5, sequences of all these potential binding sites are
largely conserved between mice and humans. Furthermore, the
distribution of these sites in the human promoter is comparable with
the STAT1 binding sites we characterized in the murine LCN2 promoter.
We also identified one potential NF-κB binding site in the human LCN2
promoter at -176 and this is completely conserved between humans and
mice (Table 5). Our in silico analysis of the human LCN2 promoter
strongly suggests that STAT1 and NF-κB also mediate the induction of
LCN2 expression in human adipocytes. In order to determine if the
regulation we observed in murine 3T3-L1 adipocytes also occurred in
human cells, we purchased human adipocytes. Human IFNγ and TNFα
were used to treat human subcutaneous adipocytes for 24 h. As shown
in Figure 7A and B, the expression of LCN2 was up-regulated by both
IFNγ and TNFα in human adipocytes.
4. DISCUSSION

The endocrine properties of adipocytes are one of its most critical
functions [2]. Leptin and adiponectin are two hormones that are
produced exclusively from adipocytes in mouse and man. Like LCN2,
these hormones are also implicated in modulating insulin sensitivity and
whole body energy balance [2]. Although it is known that LCN2
expression can be highly induced and secreted from adipocytes and
LCN2 is significantly regulated in condition of mouse and human obesity,
the mechanisms involved in this induction are poorly understood.
Lipocalin-2 protein level are elevated in ob/ob mice and db/db mice
[20]. In agreement with these animal experiments, human studies
revealed that circulating LCN2 concentrations positively correlate with
adiposity, triglyceride concentration, blood glucose level and insulin
resistance [21,22]. Yet, LCN2 is negatively related to high-density
lipoprotein cholesterol [22]. However, there is very little information on
the mechanisms involved in the modulation of LCN2 expression. It has
been reported that Interleukin-1 beta (IL-1β) induces LCN2 expression
lecularmetabolism.com 165



Figure 3: TNFa induces NF-kB binding to LCN2 promoter. A: Mature 3T3-L1 adipocytes were treated with 0.5 nM TNFa for 20 min. Cytosolic and nuclear extracts were separated from treated
or untreated mature adipocytes. 10 mg of each extract was incubated with 50,000 cpm/ml 32P-labeled double-stranded oligonucleotides of murine LCN2 promoter. Protein–DNA complexes were
resolved by EMSA. The TNFa-responsive shift is indicated with an arrow (left panel). For cold competition, nuclear extracts were incubated with 50,000 cpm/ml 32P-labeled probe and 2 ml
unlabeled oligonucleotides of different concentrations (0.4 mM, 2 mM, 10 mM) (middle panel). Nuclear extracts were also incubated with 50,000 cpm/ml 32P-labeled double-stranded probe of
LCN2 promoter or probe of mutated sequence (right panel). B (left panel): Cytosolic and nuclear extracts were prepared from mature adipocytes treated with TNFa for 20 min. For supershift assay,
the nuclear protein was pre-incubated with 1 mg indicated antibody for 1 h, and then incubated with 32P-labeled probe and protein–DNA complexes were resolved by EMSA. B (right panel): 3T3-
L1 adipocytes were treated or untreated with 0.5 nM TNFa for 30 min, and then cross-linked with formaldehyde. Chromatin extracts were prepared and subject to immunoprecipitation with IgG
(Negative control) or p65 antibody. IP products were analyzed by qPCR. Percentage of input was calculated and normalized to negative control. ***Po0.01. These are representative experiments
independently performed three times.

Gene Position Mutated sequence IFNγ responsive (EMSA)

Lipocalin-2 �619 to -602 GA CAC CTC CAG

GCT AAT C

No

Lipocalin-2 �676 to -657 GT CTG TAC CTG

TCA ATG GCA

No

Lipocalin-2 �1822 to -1806 GGT TGT CTC TTT

GTC CT

No

Lipocalin-2 �3171 to -3152 CC AGT CTC TGG

ACG AGT TTC

No

Table 3: Mutated STAT1 binding sites.

Gene Position Mutated sequence TNFα responsive (EMSA)

Lipocalin-2 �266 to -247 GC CCT GAG AAT

GTA CCT CTG

No

Table 4: Mutated NF-kB binding site.

Original article
through NF-κB and JAK2 mediated signaling pathways [30]. However,
these observations are solely based on the use of inhibitors and no
binding sites or promoter activity was examined. Other studies indicate
that expression of LCN2 is up-regulated by agents that are associated
with insulin resistance, including lipopolysaccharide (LPS) [31], gluco-
corticoid [32], and insulin [33]. Insulin sensitizers, such as thiazolidi-
nedione, down-regulate LCN2 expression [23]. Our studies provide the
first mechanistic data on the identification and binding of two
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transcription factors (STAT1 and NF-κB subunit p65) to the binding
sites of the LCN2 promoter in vitro and in vivo. These results also reveal
a role of serine/threonine kinases ERKs 1 and 2 on the induction of
LCN2 by pro-inflammatory cytokines that can be produced from immune
cells in adipose tissue to inhibit insulin signaling and induce insulin
resistance in adipocytes.
Our studies demonstrate that IFNγ and TNFα induce LCN2 expression in
both murine and human adipocytes. We provide evidence that STAT1
plays a role in the effects of IFNγ, while TNFα induces LCN2 expression
via NF-κB signaling pathways. Sequence analysis of the LCN2 promoter
identified nine potential STAT binding sites and three potential NF-κB
binding sites. Binding of these transcription factors was assessed by
both EMSA and ChIP analysis. These studies revealed the binding
activity of a NF-κB site and five STAT1 binding sites in the LCN2
promoter. Transfection experiments with a promoter construct
confirmed that the region containing these binding sites in LCN2
promoter mediated the increase of gene expression after IFNγ and TNFα
treatment. Moreover, inhibition of ERKs 1 and 2 activation attenuated the
stimulatory effects of both cytokines. Our data suggest that ERK
signaling is required for the maximal transactivation activity of STAT1
and NF-κB, but ERK inhibition did not have significant effect on nuclear
localization or DNA binding activity of these transcription factors. We
hypothesize that ERK has direct effects on the serine phosphorylation of
ISM 2 (2013) 161–170 & 2013 Elsevier GmbH. All rights reserved. www.molecularmetabolism.com



Figure 4: IFNg induces STAT1 binding to LCN2 promoter. A: Mature 3T3-L1 adipocytes were treated with 100 ng/ml IFNg for 20 min for the preparation of cytosolic and nuclear extracts. There
was no binding in any cytosolic extracts (data not shown). 10 mg of nuclear extract was incubated with 50,000cpm/ml 32P-labeled double-stranded oligonucleotides of murine LCN2 promoter. The
protein–DNA complexes were resolved by EMSA. The IFNg responsive shift is indicated with an arrow. B: Nuclear extracts were prepared from mature adipocytes treated with IFNg for 20 min. For
supershift assay, the nuclear protein was pre-incubated with 1 mg indicated antibody for 1 h, and then incubated with 32P-labeled probe. Protein–DNA complexes were resolved by EMSA. C: 3T3-
L1 adipocytes were treated or untreated with 100 ng/ml IFNg for 30 min, and then cross-linked with formaldehyde. Chromatin extracts were prepared and subject to immunoprecipitation with IgG
(Negative control) or the STAT1 antibodies indicated in the figure. IP products were analyzed by qPCR. Percentage of input was calculated and normalized to negative control. ***Po0.01. Each
panel is representative experiment that was independently performed three times.
p65 or STAT1 and future studies will address this question. Previous
studies have demonstrated that serine phosphorylation of STAT1 is
required for its maximum transactivation activity [34]. Also, several
serine phosphorylation sites have been identified in NF-κB subunit p65
[35–39]. Although our preliminary studies suggest these transcription
factors are serine phosphorylated by ERKs, we have not examined
whether this phosphorylation mediates the ERKs dependent effects on
the LCN2 expression. Collectively, our findings suggest that ERKs
signaling pathways crosstalk with the STAT1 and NF-κB signaling
pathways in adipocytes.
One drawback related to our studies is that the functions of LCN2 still
need to be determined. Although several groups have studied the LCN2
MOLECULAR METABOLISM 2 (2013) 161–170 & 2013 Elsevier GmbH. All rights reserved. www.mo
null mice, the results of these studies are inconsistent. Previous
research have shown important roles of LCN2 in the transportation of
hydrophobic molecules, in limiting of bacterial growth [18] and
modulating degradation of matrix turnover enzyme MMP-9 [15]. The
versatile functions of LCN2 make it difficult to assess the primary reason
that accounts for the different phenotypes of the LCN2 null mice. Some
data shows induction of PPARγ and adiponectin by LCN2 [23]
suggesting that adipokine may be beneficial. Yet, other studies indicate
improved insulin action in LCN2 knockout cells [20], indicating that
LCN2 is associated with metabolic dysfunction. Although it is clear that
LCN2 affects adipocyte properties and participates in the regulation of
insulin sensitivity, opposite effects of LCN2 have been reported.
lecularmetabolism.com 167



Figure 5: ERK inhibition attenuates the ability of IFNg and TNFa to induce LCN2 without modulating the nuclear translocation or DNA binding activity of STAT1 and NF-kB. A: Cytosolic and nuclear
extracts were prepared from mature 3T3-L1 adipocytes treated or untreated with IFNg or TNFa for 20 min in the presence or absence of 50 mM UO126. 100 mg protein of each sample was
subject to Western blot analysis. B: Mature 3T3-L1 adipocytes were pretreated with 50 mM UO126 for 30 min, and then treated with IFNg or TNFa for 16 h. Total RNA was isolated and analyzed
with reverse transcription and qPCR. Cyclophilin A was used as endogenous control. ***Po0.01. C: (left panel): Nuclear extracts were separated from adipocytes untreated or treated with TNFa for
20 min in the presence or absence of UO126. 10 mg of nuclear extract was incubated with 50,000 cpm/ml 32P-labeled double-stranded oligonucleotides of murine LCN2 promoter. Protein–DNA
complexes were resolved by EMSA. C (right panel): 3T3-L1 adipocytes were untreated or exposed to TNFa for 30 min in the presence or absence of UO126, and then cross-linked with
formaldehyde. Chromatin extracts were prepared and subject to immunoprecipitation with IgG (Negative control) or p65 antibody. IP products were analyzed by qPCR. Percentage of input was
calculated and normalized to negative control. ***Po0.01. D: (upper panel): Nuclear extracts were separated from untreated adipocytes or treated with IFNg for 20 min in the presence or absence
of UO126. Protein–DNA complexes were resolved by EMSA as described above. (Lower panel): 3T3-L1 adipocytes were untreated or exposed to IFNg for 30 min (� /þ ) UO126, and then
cross-linked with formaldehyde. Chromatin IP experiments were performed with STAT1 antibody for each of the LCN2 promoter sites indicated. ***Po0.01. Each panel of this figure is a
representative experiment that was performed three times in independent batches of cells.

Figure 6: ERKs inhibition impairs the induction of LCN2 promoter by both IFNg and TNFa in adipocytes. Mature 3T3-L1 adipocytes were transiently transfected with murine lipocalin-2 promoter
(-3358 to 112)/luciferase plasmid. A TK/renilla vector was used as control for transfection efficiency. After 24 h post-transfection, adipocytes were pretreated with 50 mM UO126 for 30 min and
then stimulated with IFNg or TNFa for 24 h. Relative light units (RLU) were calculated by dividing firefly luciferase activity by renilla luciferase activity. ***Po0.01. Each condition was performed in
triplicate. These are representative experiments independently performed on three different groups of adipocytes.
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Murine Human

(ENSMUST00000050785) (ENST00000277480)

STAT1 (TTCN2–4GAA) �619 TTCCAGGATAAT �856 TTCAATGGAAAA

�676 TTCCTGTAAA �885 TTCCAGAACC

�1014 TTCAATTGAT �1405 TTCCTGGGAA

�1822 TTCTTTGTAC �1934 TTCCCGAGTA

�3171 TTCTGGAAGA �3610 TTCCTGAGATG

NF-kB
(GGGNNNNNCC)

�266 GGGAATGTCCC �176 GGGAATGTCCC

Table 5: A comparison of STAT1 and NF-kB binding sites in the murine and human lipocalin-
2 promoters.

Figure 7: IFNg and TNFa induce LCN2 expression in human adipocytes. Human subcutaneous
adipocytes, purchased from Zen-Bio, were treated with 100 ng/ml IFNg or 0.5 nM TNFa. Whole
cell extracts were harvested after 24 h. Time 0 indicates no treatment. 300 mg protein was used
to perform immunoprecipitation (IP) with a human lipocalin-2 antibody. IP products were analyzed
by western blot with the same antibody. This experiment was repeated twice on two different
batches of cells.
Therefore, our studies on the regulation of LCN2 expression have merit
and allow us to speculate the inflammatory cytokines we have shown to
induce LCN2 may play a role in metabolic dysfunction.
In summary, LCN2 expression and secretion is induced by IFNγ and
TNFα. Both of these pro-inflammatory cytokines are likely pathological
mediators of increased LCN2 expression that occurs in adipose tissue in
conditions of insulin resistance in mouse and man. Our mechanistic
studies reveal that STAT1, NF-κB and ERKs signaling pathways
participate in the modulation of LCN2 expression in vitro and in vivo.
Future studies will be needed to determine if these transcriptional
factors are essential for the induction of LCN2.
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