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Cancer stem cells (CSCs) existing in human cancers have been demonstrated to be a major cause of cancer treatment resistance,
invasion, metastasis, and relapse. Self-renewal pathways, Wnt/𝛽-catenin, Sonic hedgehog (Shh), and the Notch signaling pathway
play critical roles in developing CSCs and lead to angiogenesis, migration, invasion, and metastasis. Multidrug resistance (MDR) is
an unfavorable factor causing the failure of treatments against cancer cells.Themost important and thoroughly studiedmechanism
involved in MDR is the active efflux of chemotherapeutic agents through membrane drug transporters. There is growing evidence
that Norcantharidin (NCTD), a water-soluble synthetic small molecule derivative of naturally occurring cantharidin from the
medicinal insect blister beetle (Mylabris phalerata Pallas), is capable of chemoprevention and tumor inhibition. We summarize
investigations into the modulation of self-renewal pathways and MDR in CSCs by NCTD. This review may aid in further
investigation of using NCTD to develop more effective strategies for cancer treatment to reduce resistance and recurrence.

1. Introduction

Cancer stem cells (CSCs) exist in many kinds of human
cancers [1–5], and they are capable of continuous self-
renewal and differentiation [6, 7]. In addition, CSCs may
be responsible for tumor initiation, progression, metastasis,
relapse, and resistance to chemotherapy or radiation therapy
[8–11]. Several pathways, including Wnt/𝛽-catenin, Hedge-
hog, and Notch, have been identified as playing pivotal roles
in CSC self-renewal [12–14], leading to relapse andmultidrug
resistance [15].

After developing resistance to a single drug or a class of
drugs, cancer cells show cross-resistance to other functionally
and structurally unrelated drugs, causing the failure of treat-
ments against cancer cells [16]. This phenomenon is known
as multidrug resistance (MDR). MDR has an unfavorable
effect on successful outcomes of chemotherapy against cancer
[17]. MDR can reduce intracellular drug accumulation by
the active efflux of chemotherapeutic agents to modulate

the expression of target genes controlling the cell cycle, cell
adhesion, signal transduction, vascularization, and apoptosis.

Norcantharidin (NCTD, exo-7-oxabicylo-[2.2.1] heptane-
2,3-dicarboxylic anhydride), a water-soluble synthetic small
molecule, is a demethylated analog of cantharidin (CTD,
7-oxabicyclo-[2.2.1] heptane-2,3-dicarboxylic acid) [18]. The
molar weight, complexity, and heavy atom count for NCTD
are 168.15 g/mol, 246, and 12, respectively (Figure 1). CTD is
a naturally occurring compound isolated from the medicinal
insect blister beetle (Mylabris phalerata Pallas) [18].Themost
important of themedicinal uses ofCTD is its anticancer activ-
ities [18]. It is capable of inducing p53-dependent apoptosis
and double-strand breakage of DNA in cancer cells [18–22].
CTD treatment could cause granulocytosis in vivo but not
granulocytopenia induced by most chemotherapeutics [18].
This unique bioactivity renders CTD a promising lead com-
pound for chemical modification to develop cancer thera-
peutics. However, the application of CTD is limited due to
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Figure 1: Chemical structure of norcantharidin (NCTD).

its toxicity to gastrointestinal and urinary tracts [23]. NCTD
causes fewer nephrotoxic and inflammatory side effects than
CTD [18, 23], and like CTD has been demonstrated as a
potential agent against certain cancers [24]. The cytotoxic
and antitumor activities of NCTD are multifarious: it can
cause apoptosis, inhibition of angiogenesis, andmetastasis for
many cell lines, and it can affectmultiple pathways controlling
cell proliferation [25–27].Moreover, NCTDwas found able to
inhibit P-glycoprotein (P-gp) [28] and overcome MDR [29].

NCTD decreased hepatic leukemia factor (HLF) protein
levels, a gene implicated in hematopoietic stem cell (HSC)
regulation, and induced apoptosis in the acute myeloid
leukemia (AML) cell line MV4-11 by modulating the expres-
sion of several molecules that govern survival pathways,
including HLF, SLUG, NFIL3, and c-myc, thereby inducing
p53 and the mitochondrial caspase cascade that explores the
ability of NCTD to target stem cells [30]. NCTD encapsulated
liposomes modified with a novel murine anti-human CD19
monoclonal antibody 2E8 (2E8-NCTD-liposomes) could
specifically target the B-lineage leukemia stem cells (B-LSCs)
and their progeny in vitro [31]. Their results have shown that
the internalization of 2E8-NCTD-liposomes into the cells
and the subsequent release of NCTD into the cytoplasm
to induce the apoptosis of B cells were responsible for
specific cytotoxicity to the cells, using confocal microscopy
and multiparameter flow cytometry analyses. In addition,
immunoliposomes were able to induce the apoptosis of B-
LSCs via downregulating the HLF and upregulating the
NFIL3 (nuclear factor, IL3 regulated) expressions at the
mRNA level, proved by real-time RT-PCR [31].

Besides inhibiting cancer cells, NCTD also affects normal
cells. NCTD inhibits peripheral blood mononuclear cell
(PBMC) proliferation with a 50% inhibitory concentration
(IC (50)) 42.1 ± 2.3 microM without direct cytotoxicity or
the arrest of cell-cycle progression in the cells [37]. NCTD
modulates the differentiation and maturation of human
myeloid DCs and causes deviation of standard DC differen-
tiation toward a tolerogenic phenotype through calcineurin
phosphatase inhibition and, thus, has potential for develop-
ment as an immunosuppressant for transplant rejection [47].
NCTD is protective against renal tubulointerstitial fibrosis
both in vivo and in vitro [48, 49]. Epithelial-mesenchymal
transition (EMT) contributes to the progression of renal
tubulointerstitial fibrosis. NCTD antagonizes tubular EMT
by inhibiting the TGF-beta1/Smad pathway, which suggests
that NCTD may play a critical role in preserving the normal
epithelial phenotype and modulating tubular EMT [48].

On high glucose-induced extracellular matrix (ECM) and
TGF-beta1 in human kidney proximal tubular epithelial
(HK-2) cells, the antifibrogenic effect of NCTD on tubular
interstitium in diabetic nephropathy (DN) is independent
of calcineurin (CaN)/Nuclear Factor of Activated T-cell
(NFAT) pathway inhibition [49]. However, Yan et al. [50] also
noted that NCTD has no effect on inactive lymphocytes but
selectively acts on activated lymphocytes. These data support
themultiple abilities ofNCTD to influence cancer cells, CSCs,
or normal cells.

In this paper we review the current understanding of
NCTD, which has cancer treatment potential, with a focus
on overcoming MDR and CSC self-renewal characteristics
(Table 1).

2. Self-Renewal Pathways of Cancer Stem Cells

2.1. Wnt/𝛽-Catenin Pathway. The Wnt/𝛽-catenin pathway
modulates cell proliferation, migration, apoptosis, differen-
tiation, and stem cell self-renewal [51–53]. 𝛽-Catenin par-
ticipates in two distinct functions in the cell. Membrane-
localized 𝛽-catenin is a protein adhesive that with E-cadherin
maintains cell-cell adhesion [54]. Cytoplasmic accumulation
of 𝛽-catenin cooperates with the transcription factors T cell
factor/lymphoid enhancer factor (TCF/LEF) as a transcrip-
tion activator, which eventually leads to activation of Wnt
target genes such as c-Jun, c-Myc, fibronectin, and cyclin D1
[55–60].

Increasing evidence supports the ability of NCTD to
inhibit the Wnt/𝛽-catenin pathway. Cimmino et al. [32]
reported that NCTD could impair the growth of medul-
loblastoma cells and promoted the loss of beta-catenin acti-
vation. Additionally, the Wnt/𝛽-catenin signaling pathway
contributes to refractory and relapsed leukemia. Chuang et
al. [33] also confirm NCTD as an inhibitor for the Wnt/𝛽-
catenin pathway.They note that NCTD (50microM) inhibits
the proliferation of Jurkat cells with dominant beta-catenin
signaling by 64% in a concentration-dependent manner. In
CT26 colorectal adenocarcinoma cells, NCTD decreases the
adhesive ability of CT26 cells and shows a downregulation of
several cadherin-catenin adhesionmolecules in vitro. It could
reduce both the pulmonary metastatic capacity of CT26 cells
and prolong the survival time of the tumor-bearingmice [34]
(Figure 2).

NCTD also inhibits the activation of Wnt target genes
such as c-Jun and cyclin D1. In human gallbladder carcinoma
xenografted tumors, an NCTD-treated group decreased the
expression of cyclin-D1, Bcl-2, and survivin proteins/mRNAs
significantly [35]. Similar results were noted in human gall-
bladder carcinomaGBC-SD cells in vitro [36]. NCTD inhibits
the growth of GBC-SD cells by increasing the rate of cell
apoptosis and decreasing the expression of the proliferation-
related genes, such as cyclin-D1 or the apoptosis-related
genes [36]. NCTD also arrests the cell-cycle progression from
the G1 transition to the S phase through declining cyclin
D3, E, A, and B transcripts and stops protein production
in phytohemagglutinin (PHA-) treated peripheral blood
mononuclear cells (PBMC) [37].
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Figure 2: Model of crosstalk between hedgehog signaling, Wnt/𝛽-catenin signaling, notch signaling, and phosphoinositide 3 (PI3)-
kinase/Akt pathway and targeting by norcantharidin (NCTD). 𝛽-cat: 𝛽-catenin; BCRP: breast cancer resistance protein; Fu: fused; HSPG:
Gli: glioma-associated oncogene family zinc finger; GSK-3: glycogen synthase kinase 3; Heparin-sulfated forms of proteoglycans; NICD:
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multidrug resistance proteins; NCTD: norcantharidin; P-gp: P-glycoprotein; PI3K: phosphoinositide 3-kinase; PKA: protein kinase A; Ptch:
patched; SFRPs: secreted frizzled receptor proteins; Shh: sonic hedgehog; Smo: smoothened; Sufu: suppressor of fu.

2.2. Hedgehog Pathway. The Hedgehog (Hh) signaling path-
way plays a major role as regulator of cell differentiation,
tissue polarity and cell proliferation [61, 62]. There are three
secreted proteins belonging to the Hh family, including Sonic
Hedgehog (Shh), Desert hedgehog, and indian hedgehog.
In the absence of hedgehog ligands, the transmembrane
receptor Patched (Ptch) blocks the Smoothened (Smo) func-
tion [63–65]. If secreted hedgehog ligands bind to Ptch1,
then Smo is reversed to activate the Shh signaling pathway,
resulting in the translocation of the transcription factor Gli
(glioma-associated oncogene family zinc finger) family into
the nucleus to modulate the expression of target genes,
such as cyclin D, cyclin E, Myc, and elements of the EGF
pathway, which control the cell cycle, cell adhesion, signal
transduction, vascularization, and apoptosis [63–67]. Hh
plays a central role in the control of proliferation and
differentiation of both embryonic stem cells and adult stem
cells; the aberrant activation of Hh signaling could lead to
the generation of CSCs and the development of cancer [68]
or cancer angiogenesis, metastasis, and invasion [69].

The plasma VEGF levels of tumor-bearing mice, migra-
tion, and capillary-like tube formation of HUVECs are
suppressed by NCTD with potential antimetastasis and
antiangiogenesis [38]. Chen et al. [39] demonstrated that
the Shh expression for various cell lines of breast cancer is
suppressed by NCTD and the nuclear translocation of Gli-1is
inhibited as well. NCTD inhibits metastasis in CT26 cells by
the downexpression of matrix metalloproteinase-9 (MMP-9)
activity and of several cadherin-catenin adhesion molecules
[34] through inhibiting the transcriptional activity of Sp1 [40]
(Figure 2).

2.3. The Crosstalk between Hedgehog Signaling, Wnt/𝛽-Cate-
nin, Notch Signaling, and Phosphoinositide 3 (PI3)-Kinase/Akt
Pathway. There are crosstalks between hedgehog signaling,
Wnt/𝛽-catenin, notch signaling, and the phosphoinositide 3-
kinase (PI3-kinase)/Akt pathway. These signaling molecules
are activated byG-protein-coupled receptors, such as Frizzled
or Smo [70, 71]. The pathways prevent phosphorylation-
dependent proteolysis of key effectors, cubitus interrup-
tus, or 𝛽-catenin [72]. The study notes that activation of
Gli stimulates the transcription of Wnt ligands [64]. The
molecule in Wnt signaling, glycogen synthase kinase (GSK)-
3𝛽, regulates the molecules involved in Hh signaling [73],
but the pathological response to oncogenic Hh signaling is
also dependent on canonical Wnt/𝛽3-catenin signaling [74].
Taken together, it is apparent that crosstalk betweenWnt and
Hh signaling is evident.

The PI3-Kinase/Akt pathway links to the Wnt/𝛽-catenin
pathway.ThePI3-Kinase/Akt pathway acts as a survival signal
and plays a key role in the regulation of apoptotic events.
The PI3-Kinase/Akt pathway is important in regulating the
mammary stem/progenitor cells by promoting 𝛽-catenin
downstream through phosphorylation of GSK-3𝛽. Activated
Akt was shown to be able to phosphorylate Ser9 on GSK-
3𝛽, which may decrease the activity of GSK-3𝛽, thereby
stabilizing 𝛽-catenin [75, 76]. Akt can exert its antiapoptotic
effects in several different ways, such as negatively regulating
proapoptotic factors and stimulating the nuclear factor-
kappaB (NF-𝜅B) survival pathway [77]. NF-𝜅B can promote
tumorigenesis and is linked to cell invasion and metastasis.
The suppression of NF-𝜅B activation is effective in the
prevention and treatment of cancer [78].
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More reports have demonstrated the direct or synergistic
role of PI3-kinase/Akt activation in mediating the biological
effects of hedgehog signaling [79–82]. Genetic studies in
mice reveal that the insulin-like growth factor (IGF)-PI3-
kinase/Akt pathway provides a synergistic signal for Shh
in tumor formation [83, 84]. Akt positively regulates Shh
signaling by controlling protein kinase A-(PKA-) mediated
Gli inactivation [79]. Shh induces capillary morphogenesis
of endothelial cells through activation of c-Fes/PI3-kinase
pathways [82] noted in the angiogenic study of bone-marrow-
derived endothelial progenitor cells (BM-EPC) [81]. Shh
signaling could promote the metastasis of gastric cancer
cells through the activation of the PI3K/Akt pathway, which
may lead to epithelial mesenchymal transition and MMP-9
activation [85]. Shhmay protect the astrocytes from oxidative
stress by activating the PI3-Kinase/AKT pathway [86].

Likewise, the Shhpathway is linked to transcription factor
NF-𝜅B signaling. It has been suggested that overexpression of
Shh is activated byNF-𝜅B in pancreatic cancer and pancreatic
cancer cell proliferation is accelerated by NF-𝜅B in part
through Shh overexpression [87]. Kasperczyk et al. further
characterized Shh as a novel NF-𝜅B target gene and mapped
a minimal NF-𝜅B consensus site to position +139 of the Shh
promoter [88].

Notch signaling is known to control cell proliferation
and apoptosis to modulate the development of many organs
[89]. A number of recent studies have demonstrated that
Notch-activated genes and pathways can drive tumor growth
through the expansion of CSCs [89–94]. Notch 1, a trans-
membrane receptor, has been reported to crosstalk with
the NF-𝜅B pathway in diverse cellular situations [95–97].
Specifically, Notch-1 is necessary for the expression of several
NF-𝜅B subunits [96, 98], and it stimulates NF-𝜅B promoter
activity [96].

Activation of PI3K/Akt and NF-𝜅B increases the migra-
tion of cancer cell lines such as human lung cancer A549
cells [99] and human breast cancer MDA-MB-231 cells [100].
NCTD dose-dependently suppresses the phosphorylation of
Akt and NF-𝜅B expression in human breast cancer MDA-
MB-231 cells [41]. Moreover, NCTD reduces the human
lung cancer A549 cell migration by more than 65% at
low concentrations (0.2–0.8𝜇g/mL) without affecting cell
viability [42]. Activation of extracellular signal-regulated
kinase (ERK), c-Jun NH2-terminal kinase (JNK) and the
modulation of downstream transcription factor NF-kB are
involved in NCTD-induced apoptosis for human hepatoma
HepG2 cells [43]. Similarly, NTCD is effective as a c-Jun N-
terminal kinase inhibitor, SP600125, for breast cancer cells
(HS-578T) [26]. NCTD can inhibit ERK1/2 phosphorylation
effectively, by reducing NF-𝜅B DNA-binding activities, lead-
ing to matrix metalloproteinases (MMP)-9 downregulation
and u-plasminogen activator (PA) expression to reduce the
invasion of hepatocellular carcinoma (Huh7) cells [44]. It
suggests that NCTD, not solely due to viability inhibition,
may inhibit the PI3-K/Akt pathway to contribute activity
against CSCs (Figure 2).

3. Multidrug Resistance (MDR)

Multidrug resistance (MDR) is an unfavorable factor causing
the failure of treatments against cancer cells [16]. It occurs
when cancer cells acquire simultaneous resistance to various
kinds of chemotherapeutic agents with no structural or
functional similarities [101]. Although many mechanisms of
MDR in cancer cells have been studied, the most important
and thoroughly studied mechanism involves the reduction
in intracellular drug accumulation by the active efflux of
chemotherapeutic agents through membrane drug trans-
porters. These ATP-binding cassette (ABC) proteins include
p-glycoprotein (P-gp, MDR1, and ABCB1) [17, 102, 103],
the multidrug resistance protein 1 (MRP1) [104, 105], lung
resistance protein (LRP) [106, 107], and breast cancer resis-
tance protein (BCRP, ABCG2) [108–111]. The P-gp acts as
a drug efflux pump to extrude a wide range of different
chemotherapeutic drugs out of MDR cancer cells [102].

NCTD is found to inhibit the P-gp [28] and themultidrug
resistance-associated protein 2 (MRAP 2) to significantly
enhance the uptake amount of nanoparticles with lactosyl-
norcantharidin in a heterogeneous human epithelial col-
orectal adenocarcinoma cells monolayer model [45]. NCTD
irreversibly reduced the clonogenic efficiency of parental and
drug-resistant K562 sublines, with drug-resistant sublines
showing greater susceptibility to NCTD than parental cells.
The data suggest that NCTDmay be suitable in the treatment
of drug-resistant leukemia [29]. Similarly, apoptosis of oral
cancer cells with resistance to multiple chemotherapeutic
agents can be induced by NCTD [46]. In a study of
doxorubicin-(DOX-) resistant human breast cancer MCF-
7R cells, NCTD increased the intracellular accumulation of
DOX in MCF-7R cells and suppressed the upregulation of
the MDR-1 mRNA, P-gp and BCRP protein expression but
not MRP-1 [39]. Collectively, it is apparent that NCTDmight
be the substrate of P-gp and might overcome multidrug
resistance in cancer cells.

4. Prospect of Using Norcantharidin against
Cancer Stem Cells

The experimental demonstration of CSCs in several human
tumors in recent years promises a new cellular target for
anticancer drug discovery [1, 4, 5, 112–114]. Among various
agents that target self-renewal pathways, small molecules that
target the hedgehog pathways are in early clinical studies and
have shown promising results [115, 116]. The Smo antagonist
cyclopamine was shown to lead to the rapid regression of
basal cell carcinoma in patients [117]. In addition, an oral
small molecule inhibitor of Smo, GDC-0449, has shown
limited toxicity and partial responses in advanced basal
cell carcinoma tumors in a Phase I clinical trial, and it is
advancing to Phase II trials for metastatic colorectal cancer
and other advanced epithelial tumors [118]. Given that the
expression of SHH in various breast cancer cell clines and the
nuclear translocation ofGli-1 are suppressed byNCTD [39], it
may imply that NCTD can be used to target renewal signaling
against CSCs.
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The Wnt/𝛽-catenin pathway initiates a signaling cascade
critical in both normal development and the initiation
and progression of cancer [119–121]. Various 𝛽-catenin/TCF
inhibitors, most of them belonging to low molecular-weight
inhibitors, downregulate the expression of 𝛽-catenin/TCF-
responsive genes and disrupt the interaction of element-
binding protein (CBP) with 𝛽-catenin [122] or disrupt 𝛽-
catenin/TCF complexes directly [123]. Similarly, NCTD can
promote the loss of 𝛽-catenin activation [32] and inhibit
the proliferation of Jurkat cells with dominant 𝛽-catenin
signaling [33]. These data suggest that NCTD has significant
therapeutic potential for the treatment of cancer with acti-
vated Wnt/𝛽-catenin pathways.

Epithelial cell adhesion molecule (EPCAM) is highly
expressed in numerous solid tumors, and it has recently
been shown to be expressed on tumor-initiating cells from
breast, prostate, colon, and pancreatic cancer [3, 113, 124].
There are several antibodies against cell surface markers of
tumor-initiating cells in clinical studies [125, 126]. However,
EPCAM-specific mAbs have shown a limited efficacy in clin-
ical trials [125]. These data suggest that an immune response
stimulated by these mAbs by itself might not be effective
in killing EPCAM overexpressing tumor cells in clinical
settings. To overcome the limitations of the naked antibodies,
catumaxomab, a trifunctional antibody against EPCAM and
CD3, brings cancer cells into proximity with the immune
system cells that can destroy them [127]. NCTD is not only
cytotoxic for cancer cells but also plays a role in modulating
the development of dendritic cells to prolong skin allograft
survival [47]. With the multiple roles of NCTD, it needs to be
determined whether NCTD canmodulate immune tolerance
or antibody-dependent cellular cytotoxicity (ADCC) to kill
EPCAM overexpressing tumor cells in a microenvironment.

Radiation sensitization is one of the important directions
to develop anticancer agents for radiotherapy or chemoradi-
ation therapy. Shh signaling has been discovered as a mecha-
nism rendering cancer cells resistant to chemoradiation. In
clinical practice, the expression of Ptch or Gli-1 has been
significantly associated with a poor prognosis for oral cavity
cancer patients [128]. Cancer cells at the G2/M phase are
known to be sensitive to radiation [129, 130]. NCTD could
suppress the expression of Shh andGli-1for various cell breast
cancer lines [39]. NCTD can significantly increase the pro-
portion of cells in G2/M phase and decrease the proportion
of cells in S phase for CT26 colorectal adenocarcinoma cells
[27], gallbladder carcinoma GBC-SD cells [36], and human
breast cancer MDA-MB-231 cell lines [41]. Taken together,
NCTD may play a dual role as radiosensitizer and CSC toxic
agent.

Safety issues are worth noting in efforts to develop
chemotherapy-enhancing or radiation sensitization agents
aimed at eliminating CSCs. Research efforts should be ori-
ented toward avoiding, or at least minimizing, the inhibition
of crucial mechanisms for normal stem cell maintenance.

NCTD has pharmacological potential in the treatment of
CSCs. The beneficial effects of NCTD include the modula-
tion of CSC self-renewal pathways, overcoming multidrug
resistance and as radiation sensitizer. Although the mecha-
nisms are not clearly addressed in the reviewed publications,

the results indicate that further evaluation of NCTD is
warranted. In particular, the mechanisms of action by which
NCTD modulates CSC characteristics should be clarified.
Preclinical studies to pave theway for clinical trialsmay even-
tually enable scientists to discover more effective strategies
for cancer treatment to reduce resistance and recurrence and,
eventually, to improve survival of cancer patients.
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