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Abstract
Magnetic resonance (MR) guided optical breast imaging is a promising modality to improve the
specificity of breast imaging, because it provides high-resolution quantitative maps of total
hemoglobin, oxygen saturation, water content, and optical scattering. These properties have been
shown to distinguish malignant from benign lesions. However, the optical detection hardware
required for deep tissue imaging has poor spectral sensitivity which limits accurate water
quantification; this reduces the accuracy of hemoglobin quantification. We present a methodology
to improve optical quantification by utilizing the ability of Dixon MR imaging to quantitatively
estimate water and fat; this technique effectively reduces optical crosstalk between water and
oxyhemoglobin. The techniques described in this paper reduce hemoglobin quantification error by
as much as 38%, as shown in a numerical phantom, and an experimental phantom. Error is
reduced by as much 20% when imperfect MR water quantification is given. These techniques may
also increase contrast between diseased and normal tissue, as shown in breast tissue in vivo. It is
also shown that using these techniques may permit fewer wavelengths to be used with similar
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quantitative accuracy, enabling higher temporal resolution. In addition, it is shown that these
techniques can improve the ability of MRI to quantify water in the presence of bias in the Dixon
water/fat separation.

Index Terms
Breast cancer; diffuse optics; image reconstruction; magnetic resonance (MR)

I. Introduction
MAGNETIC resonance (MR) guided diffuse optical breast imaging generates spatial maps
of tissue oxyhemoglobin (HbO), deoxyhemoglobin (Hb), water fraction, lipid fraction, and
optical scattering amplitude (ScA) and scattering power (ScP) [1]–[3], at a higher resolution
than standalone optical imaging [4], [5]. From these quantities, the more clinically relevant
values of total hemoglobin (HbT = HbO + Hb) and oxygen saturation fraction (HbO/HbT)
can be calculated, which have been shown in standalone optical imaging to exhibit high
contrast between normal and diseased tissue [6]–[8], as well as between malignant and
benign lesions [9]–[11].

Optical imaging determines tissue contents (chromophores) by reconstructing for the
absorption and scatter properties at multiple wavelengths and fitting for tissue contents using
their spectral signatures, known a priori. Light in the near infrared (NIR) is highly attenuated
in thick tissue, and may decrease by seven orders of magnitude through the breast. This
large dynamic range often necessitates imaging with photomuliplier tube (PMT) detectors
(gain of 107 in this study). However, the current state-of-the-art PMTs for detection of near
infrared light have nonuniform spectral sensitivity, and are ill-suited to measure wavelengths
greater than about 850 nm, due to their use of multialkali photocathodes, which have
reduced sensitivity in the NIR spectrum.

The omission of wavelengths greater than 850 nm leads to errors in water quantification [12]
because the water spectrum is similar to oxyhemoglobin across the sensitivity range of the
PMTs, as shown in Fig. 1 [13]. Previous studies have shown the limitations of poor spectral
sampling within optical imaging. Franceschini et al. [14] determined that with two
wavelengths in the NIR (715 and 825 nm), oxygenation was overestimated by 15% in
typical brain tissue. This error increased as tissue properties were modified to match known
tumor tissue estimates. Cerussi et al. [15] found that water errors caused by imaging with
three wavelengths of 672, 806, and 849 nm could induce errors as high as 60% and 10% in
total hemoglobin and oxygenation, respectively, in a diseased breast in vivo compared to
imaging using the broadband NIR spectrum.

To correct for water quantification errors and the associated crosstalk between it and
hemoglobin, investigators have assumed water values [16], [17], or calculated the water
content from scattering power [17]. These techniques are suboptimal because water
concentration in the breast varies both spatially and quantitatively between individuals, and
scatter power measurements are sensitive to structural tissue property changes that may be
independent of water concentration.

An effective way to remove water/hemoglobin crosstalk is to determine water concentration
using another modality that is more accurate. Towards this goal, this paper investigates the
use of Dixon MR water/fat separation [18] as prior information for the optical reconstruction
to provide water quantification. MR water/fat separation has been proposed previously by Li
et al. [19] to structurally guide the optical reconstruction. Other methods to incorporate the
MR anatomical information into the optical reconstruction have used T1-weighted
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gadolinium contrast enhanced images [20]. The spatial prior has been either incorporated as
a cost-term in the reconstruction objective function [19], [21], [22], or as an absolute
structural bound [23], [24]. This study expands on the utility of MR within optical breast
imaging by presenting a means to use the MR for quantitative guidance of the
reconstruction, through the use of quantitative water priors.

II. Methods
A. MR-Guided Optical Image Formation

MR-guided optical imaging creates images of tissue components by sampling tissue
absorption and scattering properties at several wavelengths in the near infrared range. The
system instrumentation to perform optical imaging has been described previously [5].
Briefly, 16 13-m-long optical fiber bundles which operate in transmit or receive mode are
coupled to the breast tissue through a custom-designed optical fiber holder. NIR light is
frequency modulated at 100 MHz and transmitted through the tissue sequentially through
each fiber bundle. The amplitude attenuation and phase shift of light emitted from the tissue
are measured with PMTs attached to the distal end of the remaining 15 fibers. These data are
input into a light propagation model to determine the optical absorption and scattering
coefficients for tissue at each wavelength.

Hemoglobin species, water, and lipid content can be computed from optical absorption by
solving a linear system that maps the tissue optical absorption coefficients at multiple
wavelengths to tissue content concentrations, given by

(1)

where μa are the absorption coefficients in tissue which are dependent on wavelength λ, and
ɛ are well-known molar extinction coefficients which quantify the optical absorption of
tissue components with respect to concentration for each wavelength in the set of measured
wavelengths. Hemoglobin optical absorption depends on the concentration of red blood cells
in the blood plasma (i.e., the hematocrit) and the concentration of blood in the tissue. Water
and lipid absorption is determined by the relative percentages of these components
compared to pure (100%) water and lipid. The reduced optical scattering coefficient is

represented by . It can be decomposed into scattering amplitude and scattering power by

fitting  at multiple wavelengths to the form

(2)

This is done with a least squares method (lsqlin, MATLAB, Mathworks Natick, MA).
Scattering depends on tissue microstructure [25]; the analysis of scattering is beyond the
scope of this work.

Light propagation through the breast can be modeled with the lossy diffusion equation [26],
which is solved numerically via the finite element method [27], [28]. Images of the tissue
properties are formed using a model-based reconstruction approach, utilizing the generalized
least squares framework [29]. This optimization problem minimizes the difference between
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modeled data and experimental data, with a constraint on contrast that is physiologically
relevant. The objective function is

(3)

where μ is the tissue property vector for N discrete tissue voxels

δ is the difference between the photon propagation model Φm and the experimental
measurements Φd, and Wd and Wμ are weighting functions based on the data noise and
chromophore concentrations, respectively. Wd is determined from a system noise
characterization, and Wμ incorporates several factors based on typical tissue contrasts [3].
[9]. edge-preserving filters [30]. and the water/fat weighting proposed herein. This
parameter estimation problem is nonlinear and must be solved iteratively to achieve high
quantitative accuracy. Equation (3) is linearized for iterative solving as follows:

(4)

where the model data, G(μ), can be approximated with a first-order Taylor series

(5)

Here, J (the partial derivative of G with respect to μ) is known as the Jacobian sensitivity
matrix, as has been formulated previously [31], [32]

(6)

where Φ are the simulated M measurements of amplitude and phase (M = 240 with this
instrument) calculated from the current estimate of the optical properties, and N is the
number of unknowns (e.g., nodes in a finite element mesh).

The optimization procedure begins by calculating an initial guess, μprior, for each parameter
by fitting the data to a light propagation model for a homogeneous volume to determine the
average tissue properties [33]. In this study, fat is ignored because its contribution to the
optical absorption spectra between 660 and 850 nm is negligible. The initial guess of the
tissue property vector, μprior is therefore

(7)

Next, the heterogeneous tissue properties are determined by calculating an update to the
parameters. The update equation is
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(8)

where i is the iteration number.

To improve chromophore quantification and accuracy, interior tissue boundaries, determined
by MR, can be incorporated into the image reconstruction [5]. The various methods to
incorporate this a priori information have been described elsewhere [34]. Here, a region-
based reconstruction scheme is used to determine average optical properties in each MR-
defined region (adipose tissue, fibroglandular tissue, and suspect lesions) [23].

B. Separating Water and Fat With MR
There are several different approaches to separate water and fat signals in the MR. These
methods are based on the proton chemical shift, where differences in the local electronic
environment of lipids and water cause differences in the resonant frequency of protons that
are exposed to an external magnetic field. The Dixon-type sequences, originally developed
by Dixon [18] and Glover et al. [35], sample the magnetic signal at multiple echo times and
enable the decomposition of the total signal into water signal and lipid signal. Since the
signal in H1 MRI is dominated by the proton density of these two constituents, images of
water and fat percentage can be calculated simply by taking the ratio of either component to
the total signal [36]. These methods are the most quantitatively accurate water/fat sequences
because they are less sensitive to magnetic field inhomogeneities compared to other
methods.

In this study the IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry
and Least-squares estimation) sequence was used, which improves the signal-to-noise ratio
(SNR) of the Dixon sequence by sampling at echo times which minimize the effects of noise
[37]. IDEAL imaging improves on Dixon imaging by enabling the choice of echo times
which maximize SNR. This sequence has been shown to have extremely high lipid
quantification accuracy in the liver [38] and ex vivo swine samples [39]. Bernard et al. [40]
found a 3.7% mean difference in lipid quantification between IDEAL and MR spectroscopy,
the “gold standard,” and concluded that the IDEAL MR sequence was the best sequence of
the available methods to provide quantitative water and fat images.

C. Correlation of Water and Fat Between Optical and MR Imaging
It is critical for the methods presented in this work that the water and fat measured by the
MR are the same substances that are measured optically. In principle, optical and MR
imaging are sensitive to different characteristics of water and lipids; whereas optical
imaging is sensitive to the electronic atomic structure, MR imaging is sensitive to the proton
resonance, which is affected by local magnetic shielding. However, for a given voxel of
tissue, these modalities both determine water and lipid volume fractions, which are
equivalent. This separation is shown pictorially in Fig. 2.

The total signal detected by MR in a unit of tissue consisting of protons only associated with
water and fat is [37]

(9)

where sW, sF are the signals from water and fat, respectively, ΔfW,F are differences in
frequency between the known spectrum of water and lipids, shown in Fig. 2(a), and the
frequency of the measurement, and t is the time of the measurement (i.e., the echo time).
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Water and fat are separated in the IDEAL sequence by measuring the changes in the signal
at a distinct number of echo times, and decomposing (9) for water and fat signal. Most
importantly, the IDEAL sequence and reconstruction remove contributions due to local field
inhomogeneities (offsets), ψ. A comprehensive detailing of this procedure is given in [37].

The signal calculated for each component is

(10)

where i is either water, W, or fat, F, ρ is the proton density, k is a scaling factor, which
depends on coil sensitivity [41], and R is a relaxation factor which is dependent on tissue
relaxation parameters and sequence selection. The coil sensitivity factor is difficult to
determine in practice; however, this is not critical since the goal is to separate the signal into
water and fat fractions. Additionally, for a small tip angle (used in this work), the
contributions from the different Ri are minimal—these can be set equal. Therefore,
normalizing the signal in (10) by kR and assuming uniform proton density gives the relative
fraction of water and fat

(11)

In optical imaging, light absorption from a voxel of tissue is due to the concentration of
water, lipids, and hemoglobin. However, water and lipids make up the great majority of the
tissue volume. Since water and lipids make up nearly 100% of the volume of breast tissue,
one constituent may be determined by subtracting the percentage of the other from 100%.
This allows the determination of lipid fraction without the need for its inclusion in the
spectroscopic system of equations, given by (1).

Merritt et al. [42] investigated the correlation between water and fat measured optically and
by a three-point Dixon MR sequence in water and soybean oil emulsion phantoms. They
found an R2 agreement of 0.97 in water, and 0.99 in lipid. The difference in water fraction
between the modalities was highest, 5% and 8%, when water percentages were at the
extremes of water fraction in tissue, at 10% and 100%, respectively.

D. Methods to Incorporate MR Water and Fat Into Image Reconstruction
In this work, quantitative MR water/fat separation is incorporated into the optical
reconstruction using two methods: the direct substitution method, and the joint weighted
estimation method. For both methods, quantitative water and fat fractions from MR are
substituted into the initial guess, μprior, whereas the other parameters are computed from an
optical calibration routine [33], mentioned above. An example of an all-optical initial guess
from the patient imaged in Section III-D is shown in Fig. 3(a), whereas the initial guess
using the MR water image is shown in Fig. 3(b). In this work, lipids are ignored since their
spectral contribution to the optical signal for the PMTs used in this system is insignificant.
Lipid signals are used to determine water concentration in the MR sequences, and are
ignored for the MR/optical reconstruction. Once water images are formed, lipid images can
be calculated simply by subtracting the water fraction from 1.0, if desired.

1) Direct Substitution of Water and Fat: If it is assumed that the MR water and fat
information is perfectly accurate, these values can be substituted directly into the objective
function. Thus, the Water estimate in the tissue property vector, μ, can be replaced with the
MR water estimate, MRWATER, which is the water fraction calculated via MR.
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The water fraction is fixed throughout the reconstruction, since it is assumed to be estimated
accurately by MR. Thus, the water contribution to the Jacobian may be removed during
matrix inversion. The Jacobian is modified to

(12)

Its dimensions are reduced. The tissue property vector during matrix inversion is reduced to

After the update is calculated, the water estimate from MR is inserted back into the tissue
property vector μ to calculate the data/model misfit. This formulation has several
advantages. First and foremost, the water is forced to be a more accurate value for water
fraction, which ensures that hemoglobin/water crosstalk is reduced. Additionally, the
inversion is more stable because of the reduction in the number of unknowns.

2) Joint Weighted Estimation of Water and Fat: A concern with the direct substitution
method is in the assumption that the MR quantitative information is perfect. Even in MR
sequences that are quantitatively accurate in phantoms, effects from T1 relaxation,
inhomogeneous Rf excitation, and spectral deviations from the assumed spectral signatures
will lead to inaccuracies. These errors in MR estimation will corrupt not only the MR
measured water, but also other parameters because of similarities in the optical absorption
spectrum. The joint weighted estimation (JWE) method estimates tissue properties using
both optical and MR information jointly. Since both datasets are available, bias in water
estimation in one modality will have smaller detriments to parameter recovery. In contrast to
the direct substitution approach, this method uses the full Jacobian in the image
reconstruction.

The advantage of this method is that the weighting function can be adjusted to control the
expected contrast of the water and fat. This weighting function depends on the expected
accuracy of the ability of the MR to separate water and fat. These quantities are incorporated
into the parameter weighting function

(13)

where each of the tissue content weight submatrices, WC (where C are the chromophores),
contains the variance, or contrast bound, of each of the parameters on the diagonal, and the
covariance, or spatial interdependence of the parameters on the off-diagonal. The weighting
functions for WHbO, WHb, WScA, and WScP incorporate the known physiologically possible
contrasts of oxyhemoglobin, deoxyhemoglobin, scattering amplitude, and scattering power,
respectively, extracted from the literature [3], [9], [43]. These values are described in more
detail in Yalavarthy et al. [29] The water weighting function, WWaterMR, incorporates the
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known accuracy of the MR water quantification measurement at each voxel (denoted with
subscript)

(14)

In this approach, as opposed to the direct substitution approach, the tissue property vector is

for each calculation of the update equation. The initial guess, μprior is the same as that used
for the direct substitution approach (7). In this method, the MR water is used only for the
prior estimate of the water—it is not used to fix the water value throughout the
reconstruction, as in the direct substitution approach. This formulation allows a joint
determination of water, and therefore maintains the dimensions of the Jacobian. This
weighting function in is input into the objective function of (3). In this work, the covariances
were set to zeros, as covariance of the water voxels between each tissue region were
assumed to be independent. The variance of the MR water quantification can be determined
via phantom experiments, as performed by Bernard et al. [40].

III. Results
A. Effects of MR Water-Guidance on Errors Caused by Insufficient Spectral Sampling

In any spectroscopy problem, insufficient spectral sampling will lead to errors in separation
of the different components due to measurement noise. In optical imaging, the use of fewer
wavelengths leads to greater errors in chromophore estimation. In particular, fewer
wavelengths is expected to increase crosstalk between water and oxyhemoglobin, as
measurement noise will have a greater impact on their spectral separation.

This section investigates error due to hemoglobin/water crosstalk with differing numbers of
wavelengths. The water-guided reconstruction algorithms described above were compared
to a reconstruction which omitted MR water/fat information. Reconstructions were
performed with ensembles of 3, 4, 5, and 6 wavelengths typically used in optical
tomography [1], [44] (chosen from 661 nm, 761 nm, 785 nm, 808 nm, 826 nm, 849 nm).

A simulated test problem was created from a breast MR scan, shown in Fig. 4. A finite
element mesh was created from the MR images, segmented, and used to generate noisy data
(5% Gaussian noise in amplitude, 5° Gaussian noise in phase). A 5-mm-diameter tumor was
embedded in the fibroglandular region of a segmented coronal breast MR slice. The
diameter of the domain was ～ 90 mm. The contrast added to the breast was typical of
recovered breast properties [2], [20], and is shown in Table I. A separate reconstruction
mesh, made from the same volume but with slightly fewer nodes was used to reconstruct
tissue properties. The oxyhemoglobin concentration error was determined for various
wavelength sets for different numbers of wavelengths. For three wavelengths (N = 3), five
sets of different wavelengths (M = 5) were used. Similarly, five sets were used for four
wavelengths, five sets were used for five wavelengths, and one set for six wavelengths. The
error percentage, E, reported for each of N wavelengths was averaged over the M ensembles
of wavelength sets, according to
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(15)

where μHbO,est and μHbO,truth are the recovered (estimated) and true oxyhemoglobin
concentrations, respectively.

Fig. 5 shows the error in oxyhemoglobin concentration of the various reconstructions. The
mean from each set is plotted, as well as error bars indicating standard deviations for each
set. Omitting MR water yields average errors of 38%, 18%, 9%, and 2% for 3, 4, 5, and 6
wavelengths, respectively, whereas including MR water yields average errors of 1%, 2%,
2%, and 1%. It is apparent that using MR water information with either method, even with a
mere three wavelengths, gives superior oxyhemoglobin concentration quantification
compared to omitting MR water, as all are within 2%.

B. Influence of MR Water/Fat Separation Constraint on Crosstalk
It is important to study the effects of errors in MR quantification on these methods, as MR
water quantification is not expected to be perfect. Imperfect water estimation, if rigidly
enforced to incorrect values, will lead to errors in oxyhemoglobin concentration. With
sufficiently large errors in MR water, including this information may lead to poorer
estimation than excluding the water information altogether. This section investigates this
effect.

Datasets were formed from the previous test problem of Section III-A, using ensembles of
three-wavelengths. This case represents the worst-case scenario for spectral separation,
where there are only three datasets for the three unknowns of oxy-hemoglobin
concentration, deoxyhemoglobin concentration, and water concentration. While the true
water concentration was fixed, the initial water estimation used in the initial guess, μprior, for
the MR water guided reconstructions was perturbed by varying amounts, from 0% to 35%.
The joint weighted estimation approach incorporated the bound of the MR error into
WMRwater, as described in Section II-D. Fig. 6 displays errors in oxyhemoglobin
concentration as a function of errors in MR water quantification; means and standard
deviations for all sets are plotted. As expected, if the MR water quantification is accurate,
using MR water guidance results in lower errors in oxyhemoglobin concentration than if MR
water is ignored. However, these results suggest that if MR water quantification is worse
than about 22%, including MR water directly is detrimental to the optical reconstruction,
even compared to omitting this information entirely. On the other hand, using the joint
weighted estimation approach yields a superior estimate when there are biases in MR water
for all investigated perturbations.

Fig. 7 examines the recovered water values using the two water-guided methods. This shows
the increased errors in water estimation as the prior water concentration is increasingly
perturbed. In the direct substitution case water error increases linearly, as this method fixes
the water concentration to its erroneous prior estimate. In contrast, the joint weighted
estimation approach improves the water estimate. Thus, this method may be beneficial in
applications where obtaining highly accurate water or lipid concentrations with MR is
difficult because of anatomically-induced field inhomogeneity or time constraints.

C. Experimental Validation in a Breast Tissue-Simulating Phantom
A gelatin (G2625, Sigma), tissue-simulating phantom was used to test the methodology of
using MR water/fat priors. This phantom had a 24 mm gelatin inclusion with 2:1 contrast in
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total hemoglobin. It was made following techniques described elsewhere [21], [45], [46].
The optical properties of this phantom are shown in Table II. Optical properties are
quantified in terms of total hemoglobin (HbT = HbO + Hb) and oxygen saturation (Sat),
because the blood oxygenation was not measured (although it was nearly fully oxygenated),
and these properties are arguably more interesting clinically.

1) Measurement of Water Concentration in Gelatin: To determine the water content in the
gelatin, measurements were performed using both a UV-VIS-NIR spectrophotometer
(Varian Cary, Varian, Palo Alto, CA) and an MR water/fat separation gradient echo DIXON
technique.

Optical absorbance data was collected by placing water and the prepared gelatin into sample
cuvettes and measuring their spectra with a spectrophotometer. These spectra were
calibrated with a blank cuvette. The spectral absorbance for water and the gelatin phantom
are shown in Fig. 8(a). A power law fit was performed on the gelatin data to remove the
offset due to scatter signal from the gelatin. Using pure water as a reference, it was
determined with this method that the gelatin contained 87% water.

To measure the water content in gelatin with MR, water-fat separated MR images (2D
GRASS, TR = 500 ms, TE = 2.3/3.5/4.6 ms, flip angle = 90°) of phantoms containing
varying amounts of water and soybean oil were acquired. These phantoms were blended
together by adding 1% Tween (Sigma–Aldrich, St. Louis, MO) and mixing on the blender's
high setting for ～3 min. The well-mixed phantoms had a milky consistency. These
phantoms were poured into a cylindrical mold to form phantoms with water concentrations
of: 0%, 25%, 50%, 75%, and 100%. The gelatin mixture was poured into a sixth hole, and
allowed to cool. The signals from the resulting water images were normalized to the signal
of the phantom containing 100% water. Using this method, it was determined that the
gelatin phantom had a water concentration of 90%.

2) Reconstruction Results From the Gelatin Phantom: Calibrated data from six wavelengths
(661, 761, 785, 808, 826, 849 nm) were used to reconstruct images of chromophore
concentrations with water-guided and non-water-guided reconstructions. To again
investigate the effects of poor spectral sampling, reconstructions were performed with
varying numbers of wavelengths. Specifically, three reconstructions used three wavelengths
of data (one with 661, 785, and 849 nm, one with 661, 761, and 785 nm, and one with 661,
785, and 826 nm), two reconstructions used four wavelengths (one with 661, 761, 785, 849,
and one with 661, 761, 785, 808) one reconstruction used five wavelengths (661, 761, 785,
808, 826), and one used the full six wavelength dataset. For the MR water guided methods,
water was input exactly (88.5%, averaged from the spectrometer and DIXON methods), as
determined above. Since the water-guided reconstructions give the same result with 0%
error in water, only the JWE approach was used in this section. Example optical image
reconstructions are shown in Fig. 9(a)–(c) for the wavelength set of 661, 785, and 826 nm.
Absolute percent errors are shown in Fig. 9(d).

As expected, when the MR water image is used, errors in total hemoglobin decrease
compared to the non-water-guided technique, especially when using three or four
wavelengths. As more wavelengths are included in the reconstruction, the non-water-guided
case converges to the water guided-case. These reconstruction results show that utilizing the
MR water information yields a more accurate estimation of total hemoglobin (statistical
significance: p < 0.001, one-tailed two-sample t-test).
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D. In Vivo Results in a Human Breast
A 47-year-old woman with an invasive ductal carcinoma of the left breast was imaged
postbiopsy. MR images were taken in the coronal plane, including a gradient echo T2-
weighted sequence [Fig. 10(b)] and a spoiled gradient echo IDEAL water/fat sequence.
Anatomical boundaries of the fibroglandular tissue and suspect lesion were manually
segmented under supervision of the radiologist (B. Daniel). Gadolinium-enhanced images
were collected 11 days prior to the imaging session according to the clinical breast protocol
at Stanford University Medical Center [Fig. 10(a)]. IDEAL water/fat separation images in
the plane of the optical fibers are shown in Fig. 10(c) and (d). Three reconstructions were
performed: one without water-guidance, one with water-guidance using the direct
substitution method, and one with the JWE approach with MR water accuracy of ±3.7%.
This value was taken from [40], which used the same commercially available Fat/Water
imaging sequence.

The optical image results are shown Fig. 11. Without either MR-water method, the tumor
hemoglobin was estimated at 0.035 mM compared to 0.026 mM in the fibroglandular and
0.016 mM in the adipose tissue. Comparing the quantitative MR water image with the all-
optical estimatation, the water content is underestimated. Oxygen saturation was highest in
the tumor at 70%, slightly above the oxygen saturation in the fibroglandular and adipose
tissue, both around 60%.

By including MR water values via the direct substitution method, total hemoglobin was
estimated to be 0.039 mM in the tumor, and 0.019 mM and 0.015 mM in the fibroglandular
and adipose tissues, respectively. Because the direct method more accurately estimates water
at 60%, oxyhemoglobin estimates are lower, which results in more hemoglobin contrast
between the fibroglandular tissue and the tumor tissue. The effect of including MR water
priors via this method increased tumor to fibroglandular total hemoglobin contrast by
～42%, to ～103%.

The joint weighted estimation approach led to total hemoglobin recovery of 0.031 mM,
while fibroglandular and adipose were 0.018 mM and 0.017 mM, respectively. This led to
an increase in contrast compared to excluding water priors of ～7%. The decrease in contrast
in total hemoglobin of the JWE method versus the direct method could likely be attributed to
the decrease in water in the fibroglandular tissue by ～5%, from 60.2% to 54.9%, and no
significant change in water content in the tumor tissue.

IV. Discussion and Conclusion
MR-guided optical imaging offers the ability to characterize tissue properties that may
provide significant benefit to the identification and classification of lesions. One advantage
of using MR guidance compared to standalone optical imaging is its ability to provide
anatomical boundaries; this topic has been previously investigated in the literature.
Structural information enables several improvements: a more accurate light propagation
model is formed by better delineating the air/tissue boundary [47], optical fiber positions
relative to the tissue are identified with higher accuracy [5], and interior boundaries may be
incorporated [4], [21], [22]. Incorporating anatomical MR information has been shown to
improve a fundamental limitation of optical imaging—spatial resolution [48]. In this work,
we have shown that the MR may provide further aid to optical imaging through its spectral
capabilities, which improve a practical limitation—suboptimal optical detection hardware.

This study shows that including MR water/fat separation can yield significant improvement
in hemoglobin quantification. In a simulated complex case with added noise, inputting the
correct quantity of water through these techniques yielded nearly a 40% reduction in
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oxyhemoglobin error when imaging with as few as three wavelengths. This error was
demonstrated in Figs. 6 and 7 to be dependent on water bias, due to poor spectral sampling
of the water (compare the near-linear increase in recovered water bias in Fig. 7 with
oxyhemoglobin bias in Fig. 6). These numerical phantoms suggest that these methodologies
are less sensitive to data noise, which is the dominant cause of errors when de-convolving
spectra with a minimal number of samples (wavelengths).

In a tissue-simulating experimental phantom, including the MR water prior in the image
reconstruction yielded hemoglobin quantification improvements of near 40% when imaging
with three wavelengths.

In imaging a patient with breast cancer, it was found that hemoglobin contrast between the
tumor and the background tissue was increased when MR quantitative water information
was incorporated. Since the all-optical water estimation led to an underestimation of the
water content compared to the MR, this reconstruction may have led to an overestimation in
total hemoglobin in the fibroglandular tissue because of crosstalk. Thus, the ignoring the
MR water information led to reduced tumor to background contrast.

These results also demonstrate that large MR water quantification errors will result in poorer
tissue recovery with a constrained water-guided reconstruction than if MR water is ignored.
By incorporating the known variance of the MR sequence (here varied between 2.5% and
35%) into the reconstruction, the joint-weighted estimate algorithm recovered tissue
properties with up to 20% less error. This method is critical when there is a high degree of
magnet inhomogeneity, such as cases where patient size or patient position in the breast coil
degrades image quality. Thus, in cases where the water/fat separation is expected to be poor,
the joint weighted estimation method is more appropriate.

An important outcome from this work is the demonstration that incorporating MR water
quantification may alleviate the need to add more than the 3 wavelengths required to resolve
HbO, Hb, and Water. Figs. 5 and 9 demonstrated this capability. This has significant utility
for increasing temporal resolution, as adequate accuracy may be achieved with fewer
wavelengths. These results imply that adding additional wavelengths in endogenous optical
imaging mainly serves to improve water quantification, thereby indirectly aiding
hemoglobin quantification. However, this observation must be put into the context of the
system, both in terms of spectral capabilities and noise performance. Clearly, a system
which has poor accuracy in detecting the wavelengths most sensitive to hemoglobin (e.g.,
661, 761, and 785 nm) will suffer from poor quantification in hemoglobin regardless of
whether or not MR water quantification is utilized.

As multimodality instruments become more common in the clinic, a unique benefit is if they
offer complimentary information. Combining MR and optical provides benefits to each
modality; while MR can improve on the inherent limitations of optical imaging, optical
contrasts may improve the information content of MR. Imaging of water and fat quantities is
a good example of the synergy that can exist between these modalities.
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Fig. 1.
(a) Tissue absorption spectra for typical breast tissue optical properties of 20 μM HbO, 20
μM Hb, and 60% water. (b) Tissue absorption spectra in the sensitivity region of the PMTs.
Note the spectral similarity between oxyhemoglobin (HbO) and water.
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Fig. 2.
Comparison of the spectral dependency of MR and NIR optics on water and fat. Because the
signal contributions from water and fat can be isolated, percent water and fat calculated by
MR will in principle be the same percentages determined by optics (Optical spectrum
obtained from van Veen et al.).
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Fig. 3.
The initial guess determined by (a) optics alone, and (b) optics including the MR water
image, from the patient imaged in this study.
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Fig. 4.
Test problem used in this simulation study. Total hemoglobin in the tumor was set at 0.04
mM, a 2:1 contrast over the background fibroglandular tissue. Oxygen saturation was 50%
in the tumor, and 70% in the background. These values are within the range of contrast
found between healthy tissue and invasive ductal carcinomas [1]. Data with 5% white noise
in AC amplitude and 5° white noise in phase was generated from this geometry.
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Fig. 5.
Oxyhemoglobin error in terms of the means and standard deviations for all wavelength sets
with and without water quantification. Error in HbO decreases with additional wavelengths
because of the improved spectral sampling, which in turn leads to more accurate separation
between water and oxyhemoglobin. Comparatively, the direct substitution method gives
superior quantification, even with three wavelengths.

Carpenter et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Oxyhemoglobin error in terms of means and standard deviations for all wavelength sets with
respect to error in the water estimates. Error in oxyhemoglobin increases as MR water
quantification error increases. In this case, simulations were performed using three-
wavelength sets. Error is shown as the mean with error bars indicating standard deviation. In
these cases, if MR water quantification was within 20% error, using MR water guidance
provided a benefit (lower error). In all cases, using a weighted estimate achieved the best
quantification (within error bounds).

Carpenter et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Recovered water error in terms of the means and standard deviations for all wavelength sets
with respect to errors in the water estimates. Comparison of recovered errors in water
quantification between the direct substitution approach versus the joint weighted estimation
approach.
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Fig. 8.
Methods used to compute percent water in gelatin consisted of (a) NIR spectrophotometry,
and (b) DIXON MR. In both cases, pure water was used as a reference to determine the
water content of the gelatin (labeled here as “gel”).

Carpenter et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Comparison of reconstructions of three wavelengths of 661, 785, and 826 nm with and
without water priors. (a) Target true values, (b) non-water-guided reconstruction, and (c)
water-guided reconstruction. (d) Errors in oxyhemoglobin of water guided versus nonwater
guided reconstructions for different numbers of wavelengths.

Carpenter et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
(a) T1-W Gadolinium MR image of the affected breast (b) T2 weighted image in the coronal
plane of the optical fibers. Tumors are identified with the red arrows. Images of water (c)
and lipid (d) IDEAL MR images.
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Fig. 11.
(a) In vivo image reconstructions of a diseased breast without MR water guidance priors. (b)
Image reconstruction using the direct substitution gives the highest tumor to background
contrast. (c) Image reconstruction using the joint weighted estimation approach yields higher
contrast than ignoring water quantitative priors, but less contrast than the direct substitution
method.
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