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Abstract
Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from
enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion,
SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal
lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating
their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal
immunity and intestinal homeostasis through mechanisms that have only recently been revealed.
In just the past several years, SIgA has been identified as having the capacity to directly quench
bacterial virulence factors, influence the composition of the intestinal microbiota by Fab-
dependent and -independent mechanisms, promote the retro-transport of antigens across the
intestinal epithelium to dendritic cell (DC) subsets in gut-associated lymphoid tissue, and, finally,
to down-regulate pro-inflammatory responses normally associated with the uptake of highly
pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic
biological activities now associated with SIgA and their relationships to immunity and intestinal
homeostasis.

Introduction
As the most abundant class of antibody found in the intestinal lumen of humans and most
other mammals, secretory IgA (SIgA) has long been recognized as a first line of defense in
protecting the intestinal epithelium from enteric pathogens and toxins. SIgA production
against specific mucosal antigens is dependent on the sampling by Peyer's patch M cells,
processing by underlying antigen-presenting cells such as dendritic cells (DCs), T cell
activation, and ultimately B cell class switch recombination in gut-associated lymphoid
tissue (GALT), mesenteric lymph nodes, and possibly neighboring lamina propria
(MLNs) 1, 2. Isolated lymphoid follicles (ILFs) in the small intestine also function in the
induction of mucosal immune responses 3. Multiple cytokines, including IL-4, TGF-β, IL-5,
IL-6, IL-10 are instrumental in intestinal stimulating SIgA production. A subset of these
cytokines, notably TGF-β and IL-10, are also required for maintaining mucosal tolerance,
thus establishing one of the many links between SIgA production, immunity and intestinal
homeostasis.

This review highlights our current understanding of SIgA's many (recently revealed)
functions in mucosal immunity and intestinal homeostasis. Because SIgA essentially resides
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within an external environment (i.e., the intestinal lumen), it must combat microbial
infections through mechanisms that are fundamentally different than those employed by
antibodies in systemic compartments. Whereas IgG, for example, promotes the killing and
clearance of pathogenic bacteria through the coordinated activity of complement and Fc-
mediated uptake by macrophages and neutrophils, it generally assumed that SIgA primary
acts through receptor blockade, steric hindrance and/or immune exclusion. We summarize
evidence for each of these activities as revealed through the use of animals models, but
argue that the mechanisms underlying SIgA-mediated immunity are in fact much more
complex than previously appreciated.

With respect to intestinal homeostasis, we make the case that SIgA's multifaceted roles in
controlling inflammation and regulating immune responses to certain dietary antigens,
commensal microflora, and enteric pathogens it is only beginning to be understood. The past
several years has seen an emergence of evidence that indicates that SIgA influences the
composition of the intestinal microbiota, promotes the uptake and delivery of antigens from
the intestinal lumen to dendritic cell (DC) subsets located in GALT, and, influences
inflammatory responses normally associated with the uptake of highly pathogenic bacteria
and potentially allergenic antigens. Due to space limitations, this review will be restricted to
SIgA's activities within the intestinal lumen; we will not discuss the capacity of polymeric
IgA (pIgA) to neutralize pathogens intracellularly during transepithelial transport, or to
promote excretion of antigens present in the lamina propria.

Multiple neutralizing properties of SIgA at gut mucosal surfaces
Blocking attachment to epithelial cells by steric hindrance and binding to receptor
recognition domains

SIgA is capable of interfering with the earliest steps in the infection process by virtue of its
ability to block toxins and pathogens from adhering to the intestinal epithelium 4-9. One of
the best examples of this mode of protection involves cholera toxin (CT), the toxin
responsible for the severe secretory diarrhea associated with Vibrio cholerae infection. In
mouse models, it has been demonstrated that SIgA is essential in protecting the intestinal
epithelium from the effects of luminal CT exposure 9, 10. Not surprisingly, mouse
monoclonal IgA antibodies (mAbs) against the toxin's B subunit (CTB), a homopentameric
molecule that binds to ganglioside GM1 on the apical surfaces of enterocytes, were
sufficient to prevent CT attachment to polarized intestinal epithelial cell monolayers in vitro.
These same mAbs protected neonatal mice from CT-induced secretory diarrhea, weight loss
and death 11. The monoclonal antibodies did not, however, directly interact with the GM1
binding site on CTB. Therefore, it was suggested that they likely interfere with CT binding
to epithelial cells through a mechanism involving steric hindrance.

SIgA has also been shown to be capable of blocking pathogens from attaching to intestinal
epithelial cells by direct recognition of receptor-binding domains, as demonstrated in the
case reovirus type 1 Lang (T1L). SIgA is required for full protection against intestinal
reovirus T1L infection, as revealed through the use of IgA knockout mice 12. To investigate
the molecular mechanism underlying SIgA-mediated immunity to reovirus, a panel of
reovirus-specific monoclonal IgA antibodies was screened for those that protected mice
against an oral T1L challenge. Protection was conferred by mAbs directed against the σ1
protein, an adhesin fiber known to promote viral attachment to a number of epithelial cell
types 13. The exact epitope recognized by one particular IgA mAb was localized to a ～30
amino acid region of the σ1 receptor-binding head domain, providing strong evidence that
the mAb directly interferes with epithelial recognition 5. Monoclonal IgA antibodies against
the other viral surface antigens, including the capsid protein, were not protective in the T1L

Mantis et al. Page 2

Mucosal Immunol. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



peroral challenge model, underscoring the importance of epitope specificity in SIgA-
mediated immunity 6.

Immune exclusion: agglutination, entrapment and clearance
“Immune exclusion” generally refers to the ability of SIgA to prevent microbial pathogens
(and antigens) from gaining access to the intestinal epithelium through a stepwise series of
events involving agglutination, entrapment in mucus, and/or clearance via peristalsis 14-16.
Although immune exclusion has been recognized as a function of SIgA for nearly four
decades 17, and often attributed as being an important component of protective immunity 18,
very little known about the specific details of the process.

Agglutination, for example, is simply the formation of macroscopic clumps of bacteria (or
viruses) as the result of antibody-mediated cross-linking via polyvalent surface antigens.
There are no reports in the literature to suggest that agglutination per se has any detrimental
effect on microbial physiology or virulence. On the contrary, we (and others) have reported
that bacterial growth rates in culture are unaffected by agglutination 19, 20. However,
scanning and transmission electron microscopy analysis of Salmonella enterica serovar
Typhimurium cross-linked by a protective monoclonal IgA (“Sal4”) against the O-antigen
has revealed evidence of antibody-mediated distortion of the bacterial outer membranes
(Figure 1), secretion of a capsular exopolysaccharide, and alterations in the bacterial gene
expression (S. Forbes, J. Dornenburg, and N. Mantis, manuscript in preparation). Cross-
linking of S. Typhimurium with antibodies against the flagella did not elicit any
ultrastructural changes in membrane integrity, demonstrating that agglutination is
qualitatively different depending on the epitope recognized by the agglutinating antibody,
and that some antibodies may have immediate effects on bacterial physiology and gene
expression.

Work by Phalipon, Corthésy and colleagues has examined in mouse and rabbit model
systems the capacity of SIgA to entrap bacterial pathogens in the mucus layer overlying
respiratory and intestinal epithelia in vivo 21, 22. Through the use of light microscopy,
immunohistochemistry, and autoradiography, it was shown that a murine IgA mAb (IgAC5)
specific for the O-antigen of Shigella flexneri readily entrapped S. flexneri within a thin
layer of mucus overlying the epithelium. This activity was considerably greater when the
IgAC5 was complexed with secretory component (SC), because apparently the
oligosaccharide side chains of SC associate with mucus. The mucus layer in the mouse and
human small and large intestines is complex 23, and defining the specific molecular
interactions between SIgA and individual components of the mucus layer will be necessary
to fully understand the mechanisms that govern immune exclusion.

While the capacity of specific SIgAs to entrap bacteria in intestinal mucus in experimental
settings is undeniable, it remains to be determined to what degree immune exclusion
contributes to protective immunity to other enteropathogens, especially viruses. Indeed, it
has been argued that any SIgA capable of binding to the surface of a pathogen is
theoretically sufficient to intercept that pathogen in the intestinal lumen and reduce or even
block its attachment to the intestinal epithelium 24. However, coating of rotavirus or reovirus
with “non-neutralizing” monoclonal IgA antibodies in the intestinal lumen of mice is not
sufficient to block infection 6, 25. Rather, the primary determinant of protective immunity
correlated with epitope specificity; thus, challenging the importance of immune exclusion in
mucosal immunity to viruses.
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Direct effects of SIgA on bacterial virulence
It has been recognized for years that neither immune exclusion nor direct interference with
attachment to epithelial receptors can fully account for the protective effects observed by a
number of monoclonal IgA antibodies, such as those against the O-antigens of V. cholerae,
S. Typhimurium and S. flexneri 11, 19, 22, 26, 27. This prompted us to examine the possibility
that IgA may have a direct effect on bacterial virulence. We found that the binding of a
murine monoclonal IgA (IgAC5) to the O-Ag of S. flexneri suppressed activity of the
bacterial type 3-secretion (T3S) system that is necessary for S. flexneri to gain entry into
intestinal epithelial cells 28. IgAC5's suppressive effect on T3S activity was rapid (5-15 min)
and coincided with a partial reduction in the bacterial membrane potential and intracellular
ATP levels. Although IgAC5 is neither bacteriostatic nor bactericidal, it clearly has the
capacity to selectively “quench” certain virulence factors. It remains to be determined
whether other IgA antibodies share this trait.

Fab-independent interaction between natural SIgA and intestinal pathogenic and
commensal bacteria

SIgA is also capable of preventing pathogen and toxin attachment to epithelial surfaces,
independent of the antibody variable region. In this respect, SIgA can be considered a
component of the innate immune system. Both the IgA heavy chain (Fcα) and SC are
heavily glycosylated. Because the oligosaccharide side chains on SIgA share a high degree
of similarity with those on the luminal face of the intestinal epithelium, it has been proposed
that both IgA and free or bound SC can effectively serve as competitive inhibitors
(“decoys”) of pathogen binding to host cells 29-35. For example, SIgA in concentrations at or
below those found in human milk inhibited the binding of Clostridium difficile toxin A to
purified enterocyte brush border membrane receptors 29. Toxin A bound to free SC as
strongly as it did to the heavy and light chains of IgA. Perrier and colleagues subsequently
identified the galactose and sialic acid residues on free SC as being primarily responsible for
blocking toxin A attachment to epithelial cell monolayers 32. SC's activities are in fact quite
broad, as free SC has been shown to serve as a decoy receptor for other pathogens, including
enteropathogenic E. coli via binding to intimin 32 and Streptococcus pneumoniae through
interaction with choline-binding protein A {Lu, 2003 #3717. Along the same line, a recent
study has shown that mannose residues present on SIgA are implicated in the inhibition of
Vibrio cholerae biofilm formation contrary to serum IgG or IgM 36.

The interaction between SIgA and commensal bacteria involves Fab- and Fc-independent
structural motifs, featuring bound SC as a crucial partner. Removal of glycans present on
free SC or bound in SIgA resulted in a drastic drop in the interaction with Gram-positive
bacteria, indicating the essential role of carbohydrates in the process. 37. Coating of
commensal microorganisms by SIgA may favor gut colonization and education of the
newborn's mucosal immune system towards antigens associated with symbiotic partners. For
example, using human intestinal epithelial Caco-2 cell grown as polarized monolayers, we
found that association of a Lactobacillus or a Bifidobacterium with nonspecific SIgA
enhanced probiotic adhesion by a factor of 3.4-fold or more. Moreover, SIgA affected
epithelial permeability, signaling events involved in NF-κB nuclear translocation,
production of pIgR, and induction of immune mediators 38. Taken together these
observations suggest that although sugar-mediated non-specific recognition occurs, its
highly plastic, combinatorial nature still permits a selective interaction with commensal,
non-pathogenic and pathogenic bacteria.
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Role of SIgA in homeostasis of the intestinal microbiota
Induction of SIgA by neonatal exposure to commensal microorganisms

Immediately following birth, mammals are exposed to microbes associated with the external
and maternal environments. The transition from a sterile environment to a highly colonized
environment is accompanied by the concomitant exposure of the newborn's gastrointestinal
tract to maternal IgA antibodies acquired through breast-feeding. Natural and specific SIgA
antibodies in breast milk are capable of binding commensal bacteria and may be involved in
the progressive, controlled establishment of the newborn's microbiota 39, 40. The microbiota,
in turn, stimulates maturation of GALT, resulting in the production of IgA with both a
limited affinity and repertoire to redundant epitopes on gut microorganisms 41-43. By direct
visualization of a fluorescently labelled commensal bacterium administered in the form of
an SIgA-based complex into the intestines of mice, we observed both preserved association
with the antibody and specific targeting to, and passage across, Peyer's patch M cells (Figure
2). This observation suggests that SIgA, by virtue of its ability to associate with commensal
bacteria and promote their uptake via M cells (see below), may play an important role in
promoting the sampling of commensal bacteria in the form of SIgA-immune complexes by
the GALT that perception of commensals by the mucosal immune system relies on this
sampling site, and that the association with SIgA is essential in the process (N. Rol, L.
Favre, J. Benyacoub, B. Corthésy, submitted for publication).

The past several years have yielded important information about the mechanisms involved
in the intestinal IgA response against commensal microorganisms. It has been proposed that
in mice a proportion of the specific SIgA against commensal bacteria are induced in a T
cell-independent pathway, independent of the development of follicular lymphoid
structures 44, 45. Subsequent studies in mice revealed that commensal bacteria persist in
Peyer's patch DCs, contributing to induction of local specific immune responses that limit
dissemination no farther than the MLNs, ultimately preventing systemic spread 46. Recently,
Hapfelmeier and colleagues reported using a “reversible” germ-free mouse model that the
intestinal-specific IgA response against commensal bacteria (1) requires a high threshold for
induction (～109 bacteria), (2) has a slow onset (≥ 14 days) with a long half-life (>16 weeks)
and (3) constantly adapts to the predominant commensal species in the intestinal lumen 47.
However, it remains an open question as to whether this type of selective SIgA response
actually reflects the situation in conventionally raised mice, which encounter a complex and
diverse microbiota in the context of a fully matured GALT.

Involvement of SIgA in the control of commensal microorganisms
Different model systems have been used to investigate the role of SIgA on intestinal
homeostasis. Among them, mouse strains deficient in activation-induced cytidine deaminase
(AID) that are unable to class switch from IgM to IgA. AID mice were shown to have
profound increases in the number of non-pathogenic, anaerobic bacteria throughout their
small intestines, as well as hyperplasia of isolated lymphoid follicles 48. Because AID-/-

mice do not have functional SIgM, this study demonstrated that SIgA is essential in
preventing hyper-stimulation of the local and non-mucosal immune systems. However, it
has been noted that secretory IgM has compensatory activities in IgA-deficient mice,
possibly explaining why IgA-deficient mice are “healthy” under normal laboratory
conditions. These observations in mice can be compared to human IgA deficiency in which
a maturation defect in B cells is commonly observed 49. IgA-deficient patients are generally
asymptomatic but do exhibit a tendency to develop gastrointestinal disorders such as celiac
disease 50 and allergies 51. IgA-deficient patients often have airway infections; however,
these problems are mainly seen because compensatory SIgM is lacking in the airways (in
contrast to the gut) 52. Together, this supports the notion that the adaptive SIgA responses
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may allow the host to respond to fluctuations in commensal bacteria without eliciting a
deleterious response, and thus favor mucosal homeostasis 53.

The dynamics between the commensal microbiota and SIgA are likely highly complex,
considering that a considerable proportion (24-74%) of the microbiota is coated with
SIgA 54, 55. Peterson and colleagues used an ingenious germ-free mouse model to directly
examine the impact of SIgA on host-commensal interactions 56. The authors first produced a
monoclonal IgA against the capsular polysaccharide of Bacteroides thetaiotaomicron. Germ-
free, immunodeficient mice secreting this particular monoclonal IgA into the intestinal
lumen by virtue of a hybridoma “backpack” were then challenged with B. thetaiotaomicron
and both the host's and the commensal's responses were analyzed. The authors found that B.
thetaiotaomicron, in the absence of specific anti-capsular SIgA, elicited a robust oxidative
stress response in the host. The presence of SIgA antibodies suppressed this response,
thereby underscoring SIgA's potential to dampen deleterious host responses to commesal
microflora.

An interesting observation from Peterson's work was that the capsular polysaccharide-
specific monoclonal IgA reduced, but did not prevent, B. thetaiotaomicron from
colonization of the mouse gut 56. Thus, under steady-state conditions, the presence of
specific SIgA antibodies against surface antigens does not necessarily lead to bacterial
clearance. Zitomersky and colleagues performed a longitudinal study of Bacteroidales
species in 15 health adults over a period of a year and reached a similar conclusion 57. In
fact, it has been argued that bacteria that bind SIgA may actually have a selective advantage
in the gut 58. Bollinger and colleagues have shown that SIgA and mucin facilitate the
formation of biofilms by non-pathogenic E. coli on epithelial cell monolayers grown in
vitro59, 60. Biofilms have been proposed as a means by which endogenous microbiota
colonize mucosal surface and ensure a steady-state growth rate in the intestinal lumen 61.
The association of SIgA with biofilm formation in the gut has been demonstrated using
sections from rat, baboon and human tissues 62. FISH analysis has revealed that that
Lactobacilli species establish biofilms in different parts of the gastrointestinal tract, although
it remains to be determined if SIgA antibodies are involved in the process 63.

Retro-transport of SIgA across the intestinal epithelium
SIgA-based transport of immune complexes by M cells

It has been known for some time that Peyer's patch M cells selectively bind SIgA and SIgA-
immune complexes 64, 65. While there is evidence for a SIgA-specific receptor on M cells,
this receptor has not been identified. Therefore, the exact mechanism by which M cells
selectively internalize SIgA-Ag complexes in the face of a large excess of free SIgA present
in the intestinal lumen remains unknown. Nonetheless, we recently provided evidence that
SIgA undergoes conformational changes upon antigen engagement 66. Using specific SIgA
antibodies with antigens of various sizes and complexity, we found that SIgA protease
sensitivity profiles were altered upon antigen engagement, presumably reflecting differences
in heavy chain backbone conformations. The conformational changes induced upon antigen
interaction resulted in enhanced binding of SIgA to cellular receptors (FcαRI and pIgR), as
compared to free (unbound) SIgA. These data reveal that antigen recognition by SIgA
triggers structural changes in the immunoglobulin that result in enhanced receptor binding
properties. It remains to be determined whether this is relevant to M cell recognition of
SIgA-immune complexes.

Consequences of SIgA-immune complex uptake by M cells
The recognition that SIgA-based immune complexes are transported by Peyer's patch M
cells into the subepithelial dome (SED) regions has led us to investigate the role of “retro-

Mantis et al. Page 6

Mucosal Immunol. Author manuscript; available in PMC 2013 September 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



translocation” in the regulation of intestinal immune responses 67. Oral delivery to mice of
recombinant SIgA (rSIgA) consisting of mouse pIgA and human bound SC (hSC) as a
surrogate non-self antigen, triggered hSC-specific mucosal and systemic immune responses,
as evidenced by antigen-specific serum and salivary antibody titers, T cell proliferation in
draining MLNs and spleen, and pronounced expression of IL-10 and TGF-β by cells
recovered from MLNs 67. Furthermore, analysis of IgG isotypes and cytokine profiles
demonstrated the tendency of rSIgA immunization to induce a mixed Th1/Th2, tolerance-
biased pattern of mucosal immune responses. It was also observed that rSIgA induced
migration of DCs from the SED region to the interfollicular region, a phenomenon
indicative of DC activation. Although these responses were significantly less marked when
compared with responses triggered upon mixing of hSC with the prototype mucosal
adjuvant CT, they nonetheless reveal that IgA can function as an immunopotentiator in the
mucosal environment.

Reduction of pathogen-mediated pro-inflammatory responses by mucosal SIgA
Besides being a weak immunopotentiator, there is evidence that SIgA may actively quench
the capacity certain antigens to elicit severe pro-inflammatory responses following uptake
via Peyer's patch M cells. SIgA-coated S. flexneri, when injected into to ligated ileal loops
are detected in the SED region in close association with myeloid CD11c+CD11b+ DCs,
which are known to be tolerogenic. In the rabbit model (unlike the mouse), S. flexneri elicits
a local severe acute inflammatory response that is reminiscent of that observed in human 68.
This mode was used to assess the non-inflammatory capacity of protective SIgA at mucosal
surfaces 21. Analysis of cytokine expression in Peyer's patches demonstrated that SIgA-
coated S. flexneri results in down regulation of pro-inflammatory cytokines TNF-α, IL-6,
IFN-γ, while maintaining a sustained level of regulatory IL-10. This resulted in preservation
of the integrity of the intestinal barrier, and suggests that under homeostatic conditions,
SIgA exerts its anti-inflammatory effects by reducing bacteria-induced pro-inflammatory
circuits (rather than promoting the onset of anti-inflammatory pathways). It is therefore
tempting to speculate that the retro-transport of antigen-SIgA complexes is important for the
maintenance of tolerance towards innocuous proteins, including allergens.

SIgA as a scavenger of allergenic antigens
The importance of the secretory immune system in controlling allergic symptoms has been
put forth in many animal and human studies, yet the phenomenon does not appear an
absolute paradigm. Neutralization of allergen occurred with the abundant SIgA found in
mucosal secretions and contributed towards limiting the access of allergen to the lamina
propria and thus the inflammatory responses 69. Passive administration of antigen-specific or
non-specific IgA reduced airways responsiveness and lung eosinophilia 70 or allergic
rhinitis 71. The impact of IgA and SIgA titers during the first two years on the development
of allergy was also reported 72. Reduction of fecal SIgA when compared to mice actively
tolerized with the same Ag protein 73 argue in favor of the importance of SIgA in controlling
allergic reactions, yet the role of IgG-based complexes with Ag cannot be excluded 74.
Furthermore, pIgR KO mice, which are unable to produce SIgA and have increased
intestinal permeability, display a greater immune response towards commensal bacteria, but
not towards food antigens 75, a phenomenon possibly linked to increased uptake of food
antigens 76. In the same knockout model, the capacity of mice to trigger oral tolerance and
protect against systemic hypersensitivity by the same tolerizing antigen has also been
demonstrated 77; this suggests a delicate balance between the development of secretory
immunity and mucosal leakiness.

Moreover, first-line mucosal defenses were documented in grass pollen immunotherapy 78.
CD89 (FcαRI) cross-linking by IgA inhibits FcεRI-dependent activation of mast cells, and
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diminishes allergic asthma in transgenic mice expressing the human receptor 79. Aggregated
milk allergens are taken up by Peyer's patches rather than by classical epithelial cell-
mediated phagocytosis 80: this resulted in the increased production of both Th2-associated
IgE and SIgA. While the authors concluded on enhanced sensitization, they neglected to
consider the increase in luminal SIgA, and the contribution of the Ab in neutralizing the
allergens, ultimately limiting allergic responses.

However, the presence of allergen-specific SIgA is not always augmented in successfully
tolerized animals, and can even be present in large amounts in sensitized ones without
conferring protection 81. Moreover, the importance of SIgA against allergic diseases remains
unclear with respect to recent clinical studies; patients with IgA deficiency display an
increased risk of food hypersensitivity at the age of 4 years solely 51, whereas in another
cohort, IgA deficiency does not show any correlation with food allergy 82. It is an open
question whether the production of compensatory SIgM can explain this discrepancy. The
sum of these data suggests that SIgA production is more critical for homeostasis towards
commensal bacteria than food antigens. Additional studies are required to clarify the
importance of SIgA in the maintenance of oral tolerance, and hence the integrity of the
intestinal barrier.

Celiac disease: SIgA as a Trojan horse
An exception to the generally accepted function of immune exclusion of SIgA is the
observation that the antibody acts a Trojan horse in people suffering from celiac disease
(CD). In genetically susceptible individuals with CD, complexes of luminal specific SIgA
antibodies and gluten-derived deamidated gliadin peptides are retro-transcytosed across
epithelial cells, leading to the basal delivery of intact, highly reactive peptides that stimulate
inflammatory processes via activation of target CD4+ T cells 83. This abnormal intestinal
transport is mediated by the recognition of SIgA-gliadin complexes by the transferrin
receptor (TfR, CD71) expressed at high levels on the apical surface of intestinal epithelial
cells in CD patients. The disease appears thus as a deficient confining of SIgA-based
immune complexes resulting from the misaddressing of CD71, and its subsequent fortuitous
capacity to transcytose toxic gliadin peptides. However, it remains unclear why in the
physiologic context the large excess of luminal SIgA displaying multiple specificities cannot
prevent most of receptor-mediated endocytosis, although effective competition occurs in the
presence of pIgA, SIgA or soluble CD71 in Ussing chambers in vitro.

Recognition of SIgA-antigen complexes by APCs
The SED region is the primary depot for antigens and SIgA-antigen complexes following M
cells transcytosis 67, 84. While both mouse- and human-derived DCs are capable of binding
and internalizing SIgA, the specific IgA receptor(s) on DCs involved in SIgA recognition
have not been fully identified. Heystek and colleagues speculated the interaction of SIgA
with human monocyte-derived DCs (MoDCs) occurs via a member(s) of the C-type lectin
family of receptors 85. We recently tested this hypothesis and found that human colostral
SIgA is recognized (and internalized) by human DC-specific ICAM-3 grabbing nonintegrin
(DC-SIGN), as well as the mannose receptor (CD206) 86. DC-SIGN (but not the MR) is
expressed on myeloid DCs in the SED region, arguing for a possible role for a subset of C-
type lectins in immune sampling 87. The mouse homolog of DC-SIGN, SIGNR1 (specific
ICAM-3 grabbing non-integrin-related-1; CD209b) has a binding specificity similar to
human DC-SIGN 88, and is similarly expressed on intestinal CD11c+CD11b+ DCs 89. On
the other hand, the possibility that other receptor(s) besides DC-SIGN are involved in
sampling SIgA cannot be excluded. In the mouse, for example, it was noted that the
association of SIgA with Peyer's patch DCs was largely unaffected by the glycosylation
state of IgA 90.
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Conclusions
Besides its well-documented capacity to protect the intestinal epithelium from toxins,
viruses and pathogenic bacteria, SIgA demonstrates an array of other activities that are
integral to the maintenance of mucosal homeostasis (Figure 3). SIgA influences the
composition of the intestinal microbiota, down-regulates pro-inflammatory responses
normally associated with the uptake of highly pathogenic bacteria and potentially allergenic
antigens, and promotes the retro-transport of antigens across the intestinal epithelium to
dendritic cell (DC) subsets in the GALT. SIgA's ability to multitask is due in large part to it
intrinsic complexity, particularly the diverse glycan arrays on both IgA and SC. Our
increasing ability to biochemically dissect SIgA into its individual components and test then
in define animal models will ultimately permit us ascribe specific tasks to SIgA in molecular
detail.
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Figure 1. IgA-mediated agglutination of S Typhimurium is accompanied by gross changes in cell
shape
Mid-log phase cultures of S. Typhimurium strain 14028S were exposed to Sal4 mAb (5 μg/
ml) for 45 min and then subjected to scanning electron microscopy. Panels: (A) S.
Typhimurium control cells not treated with Sal4; (B and C) Cells treated with Sal4 mAb at
(B) low and (C) high power. Note the gross changes in cell shape and the bridging that
occurs between cells in the presence of Sal4 (panels B and C) but not in the absence of Sal4
(panel A). Figure kindly provided by Dr. Steve Forbes.
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Figure 2. Entry of commensal bacteria coated with SIgA in a Peyer's patch via M cells
Image acquired by laser scanning confocal microscopy. Lactobacillus rhamnosus labeled
with FITC was injected in the form of SIgA-based complexes into a mouse intestinal ligated
loop comprising a Peyer's patch, and in vivo incubation was performed for 2 hours. After
cryosection of the tissue, M cells (blue), SIgA (red) and cell nuclei (greyish) were stained
respectively, with UEA-1 lectin, anti-SC antibodies, and DAPI. Arrowheads indicate
bacteria in the form of SIgA-based complexes. The appearance of SIgA-based complexes in
the lumen, at the surface of M cells, and transiting through an M cell on the snapshot picture
reflects the various steps in the passage from the lumen to the SED (subepithelial dome)
region. Bars in insets represent 5 μm.
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Figure 3. Multi-functional interactions of between SIgA and pathogenic and nonpathogenic
bacteria in the intestinal mucosa
In all pathways, pathogenic and non-pathogenic bacteria are coated by SIgA (depicted as a
dimer with bound SC) in a Fab-specific or in a Fab-independent, glycan-mediated manner.
(A) Enhanced interaction between SIgA-coated non-pathogenic bacteria and the epithelium
reinforces its barrier function via multiple mechanisms, including reinforcement of tight
junctions, overproduction of pIgR, and reduction in nuclear translocation of NF-κB. (B)
SIgA-based immune complexes with commensal and/or pathogenic bacteria are taken up by
M cells where they are targeted to underlying myeloid DCs, possibly upon binding to DC-
SIGN, resulting in the down regulation of local pro-inflammatory responses. (C) SIgA, as
well as free SC, may play a role of “selection” by excluding pathogenic bacteria off the
epithelial surface via anchoring within mucus and favoring biofilm formation of non-
pathogenic bacteria in the space in close contact with epithelial cells. +: activatory effect; −:
inhibitory effect.
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