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Abstract

Objective—We aim to automatically detect fast oscillations (40–200 Hz) related to epilepsy on 

scalp EEG recordings.

Methods—The detector first finds localized increments of the signal power in narrow frequency 

bands. A simple classification based on two features, a narrowband to wideband signal amplitude 

ratio and an absolute narrowband signal amplitude, then allows for an important reduction in the 

number of false positives.

Results—When compared to an expert, the performance in 15 focal epilepsy patients resulted in 

3.6 false positives per minute at 95% sensitivity, with at least 40% of the detected events being 

true positives. In most of the patients the channels showing the highest number of events according 

to the expert and the automatic detector were the same.

Conclusions—A high sensitivity is achieved with the proposed automatic detector, but results 

should be reviewed by an expert to remove false positives.

Significance—The time required to mark fast oscillations on scalp EEG recordings is drastically 

reduced with the use of the proposed detector. Thus, the automatic detector is a useful tool in 

studies aiming to create a better understanding of the fast oscillations visible on the scalp.
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1. Introduction

Fast oscillations (FOs) are oscillations visible in EEG signals at frequencies higher than the 

conventional clinical range of analysis. Recent studies suggest that they may play an 

important role in normal and pathological brain function. In epileptic patients high 

frequency oscillations were found in intracranial EEG recordings, both with microelectrodes 

(Bragin et al., 1999a,b; Staba et al., 2002) and macroelectrodes during ictal (Jirsch et al., 

2006) and interictal intervals (Urrestarazu et al., 2007; Jacobs et al., 1893; Worrell et al., 

2008; Crepon et al., 2010). The high frequency oscillations appear to be a good indicator of 

the seizure onset zone (Zijlmans et al., 2009), and are possibly related to the outcome of 

epilepsy surgery (Jacobs et al., 2010).

The possibility to study high frequency oscillations noninvasively in scalp EEG recordings 

would help the development of more clinical applications. Early studies reported fast 

oscillations in scalp EEG of only a small percentage of epileptic patients (Rodin et al., 1976; 

Nealis and Duffy, 1978). In the past few years there have been several reports of fast 

oscillations in scalp EEG (Kobayashi et al., 2004, 2010; Inoue et al., 2008; Wu et al., 2008; 

Yamazaki et al., 2009; Andrade-Valença et al., 2011). Interictal fast oscillations were 

specific in identifying children with epilepsy and localized ictal onsets (Wu et al., 2008). 

Ictal gamma activity was recorded on scalp EEG during epileptic spasms (Kobayashi et al., 

2004; Inoue et al., 2008). Frequencies in the ripple band (80–200 Hz) were observed in 

children suffering from status epilepticus during sleep (Kobayashi et al., 2010). Recently, 

fast oscillations in the gamma band were identified in 15/15, and in the ripple band (80–200 

Hz) in 12/15 patients with focal epilepsy during non-REM sleep scalp EEG recordings 

(Andrade-Valença et al., 2011).

In this work we study fast oscillations (FOs) in the 40–200 Hz range in scalp EEG signals. 

Note that this is not exactly the same frequency band as the 80–450 Hz high frequency 

oscillations (HFOs) band from intracranial recordings. The high sampling rate necessary to 

record this fast activity leads to recordings with large amounts of data. The amplitude of the 

fast oscillations is generally very low. The visual detection and marking of events in these 

recordings by human reviewers is therefore a very time consuming task, and subjectivity in 

the results is unavoidable. Several automatic detectors have been proposed to aid in the 

detection of HFOs in intracranial recordings (Staba et al., 2002; Gardner et al., 2007; Crepon 

et al., 2010; Zelmann et al., 2010). We propose an algorithm specially designed to 

automatically detect FOs in scalp EEG recordings. The main difference with existing HFO 

detectors is a processing in narrow frequency bands that should help in the detection of 

events in a high amplitude scalp EEG background. We evaluated the performance of the 

proposed detector with data from 15 focal epilepsy patients. The FOs in the fast gamma (40–

80 Hz) and ripple (80–200 Hz) bands were marked by an expert and reported in a previous 

study (Andrade-Valença et al., 2011).

2. Methods

In order to design our detector, we adopted the following qualitative definition of an FO: an 

oscillation that stands out of the background, with an approximately sinusoidal shape, a 
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duration of at least four cycles, and a frequency between 40 and 200 Hz. The four cycle 

minimum duration has been adopted in our previous studies involving FOs (Andrade-

Valença et al., 2011) and HFOs (Jacobs et al., 1893; Zelmann et al., 2009, 2010; Zijlmans et 

al., 2009).

The automatic detector works in two stages, the first, the predetector, aims to separate the 

background from non-background, and the second consists in a classification of the 

previously detected events, in order to distinguish FOs from artifacts.

2.1. Pre-detection stage

The pre-detection consists in identifying localized power increments in narrow frequency 

bands. The separation in narrow bands ensures that the shape of a detected event in a given 

band will be approximately sinusoidal, as required by the adopted FO definition. The 

algorithm is described qualitatively in this section, and in Appendix A we provide the 

implementation details. In Fig. 1 we show a diagram of the pre-detection stage. The notation 

in the figure corresponds to the notation in Appendix A.

The raw EEG signal has much larger power content at low frequencies than at the fast 

gamma and ripple bands in which we are interested. The first step of the pre-detector is a 

bandpass filter between 35 and 205 Hz; the resulting signal will be called broadband signal. 

The broadband bandpass filtering allows the use of filters with less attenuation in the next 

processing step (multiple narrowband filters), reducing the computational load because the 

broadband filtering is performed once whereas there are many narrowband filters.

Assuming the FOs have a duration of four cycles, the duration will be between 100 ms and 

20 ms for FOs with central frequency between 40 and 200 Hz, respectively. The bandwidth 

of a signal is not smaller than approximately the inverse of its duration, the exact value 

depending on the signal shape. Then, the bandwidth of the FOs will vary in the range from 

approximately 10–50 Hz. We detect these FOs by identifying localized power increments in 

narrow frequency bands. In this way we have an increased sensitivity compared to existing 

intracranial HFO detectors (Staba et al., 2002; Crepon et al., 2010; Gardner et al., 2007; 

Zelmann et al., 2010) that look for a power increase in the whole frequency band of interest; 

the increase in power in a narrow band coincident with the FO’s bandwidth is greater than 

the increment in a wider band. Then, the narrowbands used to detect the FOs should not be 

wider than the bandwidth of these FOs. On the other hand, frequency bands narrower than 

the FO’s bandwidth will not deteriorate the performance of the detector, but may lead to a 

computation load larger than necessary. We adopt narrowbands of constant bandwidth equal 

to 10 Hz (the narrowest expected FO bandwidth), as a trade-off between computational load 

and design simplicity. This means that FOs with high central frequency will be detected in 

more than one frequency band simultaneously, but this does not affect the performance of 

the detector.

In each frequency band we compute the RMS value of the signal in a moving window of 

duration equal to 4 cycles of the center frequency of the band, and compare it to a moving 

threshold. An event or candidate FO is detected every time the RMS value of the signal is 

above the threshold during a time interval equal to four cycles of the central frequency of the 
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band plus the effective duration of the impulse response of the narrowband filters. These 

filters have an impulse response with a shape that could be confused with an FO, and any 

glitch or fast transient in the broadband signal generates a confounding event in the narrow 

bands. The duration of these events is equal to the effective duration of the filter response. 

On the other hand, if an FO is present in the broadband signal, when filtered by the 

narrowband filter its duration also increases by an amount equal to the effective duration of 

the impulse response. Then, by selecting only oscillations lasting longer than fours cycles 

plus this effective duration, we avoid false positives related to fast transients in the original 

signal.

The moving threshold is proportional to the background signal level, with proportionality 

constant c. The background signal level is computed based on the RMS signal of the 

previous step, averaged in a causal moving window of length tb. Since we are interested in 

the background level, the RMS signal is limited to the threshold value before averaging, i.e. 

samples of the RMS signal with values higher than the threshold value are replaced by this 

threshold value, and the resulting signal is averaged in a window of length tb. In this way 

high RMS values not corresponding to background are excluded from the background level 

computation. Alternatively, a median filter could be used, but the computation of the moving 

average of the limited signal is less computationally demanding. The algorithm is not 

sensitive to changes of the parameters tb and c within a certain range, as shown in Appendix 

B. The values selected for these parameters are tb = 30 s and c = 2.5.

Several detections can occur almost simultaneously at different frequency bands. We 

implement a channel level detector by joining all the detected events in different frequency 

bands. Also, we consider consecutive oscillations separated by less than a certain time 

interval tsep as a single FO. Since in scalp EEG the measured electric potential distribution is 

spatially spread by the scalp, we expect events to be detected simultaneously in several 

channels. We form a subject level detector joining all events at different frequencies and 

channels, occurring at almost the same time, i.e. with separation less than tsep between them. 

The performance of the algorithm is not affected by the choice of this parameter within a 

certain range (see Appendix B), we select a value of tsep = 50 ms.

2.2. Classification

By design, the pre-detection stage has very high sensitivity, but the false positive rate of pre-

detections is also high. In order to reduce the number of false pre-detections, a classification 

step is necessary. We implement this classification on the subject level pre-detector results.

Two major types of false pre-detections can be found in the pre-detection stage results. The 

first type consists of artifacts, such as muscle artifacts, glitches, or power-line interference. 

The second type are events which look like background. These events may have a power 

increase in a frequency band relative to the background, but the amplitude of the signal is 

still very small compared to other bands, and the event goes unnoticed in the broadband 

signal (35–205 Hz).

We select two features for a classification of the pre-detections in true and false positives. To 

obtain the first feature we compute the ratio of the maximum absolute value of the 
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broadband signal, to the maximum absolute value of the signal in the narrow frequency band 

in which an event was detected. The feature used for the classification is the maximum value 

of this ratio among all the individual events that form a subject level detection. This feature 

is useful to discriminate between true positive pre-detections and several types of false 

positive pre-detections: glitches with much higher maximum absolute value in the 

broadband signal than in the narrowband signals, muscle artifacts showing a simultaneous 

power increment in all the narrowband signals, and low amplitude oscillations in 

narrowband signals with lower background than the rest of the bands. The threshold 

(Threshold A) will be selected based on the value of this feature in the events marked by the 

expert.

The second feature is the maximum of the RMS value of the narrowband signal, among all 

the individual events that are part of a subject level pre-detection. The events with RMS 

value lower than a threshold are considered false positive pre-detections. The threshold value 

(Threshold B) will be selected based on the value of the feature in the events marked by the 

expert. Low amplitude pre-detections could also be avoided by rising the threshold of the 

pre-detection stage, but a better overall performance of the automatic detector is achieved 

when using the proposed feature.

Since there are only two parameters in the classification, it is easy to find the optimum 

values based on events marked by an expert. We simply select the threshold values that 

minimize the number of false positive detections for any given number of true positive 

detections.

2.3. Performance metrics

We describe next the different quantities we adopt to evaluate the performance of the 

automatic detector. We are interested in two aspects of the detector performance. The first 

aspect is the performance in time, i.e. quantifying simultaneous expert’s marks and 

automatic detections, and the second aspect is the performance in space, i.e. quantifying to 

what degree the expert’s marks and automatic detections occur in the same channels. This is 

important since one of the purposes of the automatic detector is to determine which channels 

present a high number of FOs, in order to relate them to the epileptogenic zone (Andrade-

Valença et al., 2011). In both aspects, time and space performance, we provide metrics that 

assume the expert’s marks are the gold standard and metrics to compare expert’s marks and 

automatic detections without assuming one of them is a gold standard.

2.3.1. Time performance—The time performance of the detector is analyzed at the 

subject level (i.e. to determine if there are simultaneous automatic detections and expert’s 

marks in any channel), and at the channel level. When considering the channel level 

detector, it is not clear if an automatic detection occurring at the same time as an expert’s 

mark but in a different channel should be considered as a true or false positive. We report 

then the strict channel level performance considering these events as false positives, and the 

loose channel level performance considering them as true positives.

Both expert’s marks and automatic detections are very short compared to the total duration 

of the recordings, and any performance metric based on true negative epochs would be quite 
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meaningless since almost all the recording corresponds to true negatives. Hence, the 

reported performance metrics are derived from positive events. Also, note that in some cases 

a long expert’s mark can be detected by the automatic detector twice, and vice-versa. Hence, 

the number Ntp of true positive automatic detections is not exactly the same as the number 

Ndem of detected expert’s marks. Ndem is the number of expert’s marks which overlap with 

one or more automatic detections, and Ntp is the number of automatic detections which 

overlap with one or more expert’s marks.

When the expert’s marks are considered the gold standard we report the sensitivity (S) and 

the proportion of the automatic detections that are true positives, called positive predicted 

(PP) value. The sensitivity as a function of the positive predicted value is sometimes called 

precision-recall (PR) curve (Temko et al., 2011). The sensitivity and positive predicted 

values are computed as

(1)

(2)

where Nexpert is the total number of expert’s marks (detected plus undetected by the 

automatic detector), Ndem is the number of detected expert’s marks, Nauto is the total number 

of automatic detections (true plus false positives), and Ntp is the number of true positive 

automatic detections.

The other important measure we report is the false positive rate (FPR) per minute,

(3)

where Nfp = Nauto − Ntp is the number of false positive automatic detections and T is the 

total duration of the recordings in minutes.

For comparing both detectors assuming none of them is perfect we report the positive 

agreement (PA) (Cicchetti and Feinstein, 1990; Aarabi et al., 2007),

(4)

2.3.2. Space performance—Another point of interest is whether the high frequency 

activity is detected at the same channels by the automatic detector and the human expert. To 

evaluate this channel involvement we compare, for each subject level event, which channels 

exhibit fast oscillations.
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Assuming the expert’s marks are the gold standard, we compute for each subject level event 

the spatial sensitivity (Se) and specificity (Sp) as

(5)

(6)

where Aexpert is the number of active channels (channels in which an FO is detected) 

according to the expert’s marks, Iexpert the number of inactive channels according to the 

expert’s marks, and Aboth and Iboth the number of active and in active channels according to 

both expert’s marks and automatic detections. Note that for each subject level event we have 

a sensitivity and specificity value. We report the average value of all these events.

In order to relate them to the epileptogenic zone it is useful to determine which channels 

present a high number of FOs. Then, the relative number of events in the different channels 

when using the automatic detector should be as close as possible to the one derived from the 

expert’s marks. To quantify this aspect of the performance we report the ranking distance 

(RD) (Zelmann et al., 2009). The ranking distance compares the ordering of the channels 

according to the number of detected FOs. The expert’s marks are considered the gold 

standard, a RD of 1 indicates the same ordering, RD = 0 corresponds to the reverse ordering, 

and the RD value weights the order difference by the difference in number of FOs between 

channels. A random ordering of the channels will almost always result in a RD very close to 

0.5.

When the expert’s marks are not considered as gold standard, we report the comparison 

between the detectors using the positive agreement (P) and negative agreement (N),

(7)

(8)

where Aauto and Iauto are the number of active and inactive channels according to the 

automatic detector. For each subject level expert’s mark we get a positive and negative 

agreement value, and we report their average value.

We also report the Cohen’s Kappa coefficient κ (Cohen, 1960) as a comparison between the 

expert and the automatic detector, but the correction due to chance agreement in the Kappa 

coefficient computation is unrealistic (Maclure and Willett, 1987; Cicchetti and Feinstein, 

1990; Guggenmoss-Holzmann, 1993; Hutchinson, 1993). This chance correction assumes 

the detections of each reviewer are independent random choices, not a realistic model if 
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there are true events in the data that lead to correlated detections. In this particular case the 

correction is even more questionable since the automatic detection thresholds are selected 

based in the expert’s marks, thus the detectors are clearly not independent. Then, we believe 

it is better to compare detectors using the positive and negative agreement measures.

2.4. Data

To evaluate the performance of the detector we compare it with EEG recordings marked by a 

human expert. Fast gamma and ripple oscillation had been previously marked in scalp EEG 

recordings of 15 patients with focal epilepsy (Andrade-Valença et al., 2011). The patients 

(31.7 ± 11.6 years old, 13 women) underwent EEG-telemetry investigation at the Montreal 

Neurological Institute (MNI). The study was approved by the MNI and Hospital Research 

Ethics Committee and all patients signed an informed consent. The clinical purpose of EEG-

telemetry included determination of seizure classification and epilepsy syndrome, and pre-

surgical evaluation. The only inclusion criterion was the presence of at least 1 spike per 

minute during a previous record. The duration of epilepsy in the 15 patients was 12.6 ± 8.8 

years. The age of the patients at the first epileptic seizure was 18.5 ± 11.6 years. No lesion 

was detected at the MRI in 9/15 (60%) patients. A seizure onset zone was identified in 8/15 

(53.3%) patients; in 6/15 (40%) the discharge at the beginning of the seizure was not 

localized or lateralized; and one patient did not show any clinical seizure or ictal discharge.

Recordings were performed using the Harmonie monitoring system (Stellate, Montreal, 

Canada), with scalp electrodes placed according to the International 10–20 system, with 

additional zygomatic electrodes and electrodes at F9/F10, T9/T10, and P9/P10, and 

reference CPz. The EEG signals were acquired at a 600 Hz sampling rate, with a low pass 

antialiasing filter with 200 Hz cutoff frequency. For each patient, 30 min of non-REM sleep 

recordings were marked in a 31-channel bipolar montage. For marking the fast oscillations, 

the channels were displayed with the time scale at 250 mm/s. The computer screen was split 

to show the scalp EEG with the high-pass filter at 40 Hz and at 80 Hz simultaneously, thus 

removing the “standard” EEG and showing only fast activity. After all events were marked, 

the EEG was reviewed a second time by the same reviewer for verification.

Some channels were left out in the original study (Andrade-Valença et al., 2011) due to 

malfunction or continuous artifacts. We excluded the same channels and used the same 

montage in order to work with exactly the same data. One patient presented several bursts of 

almost continuous high frequency activity spread in many channels lasting between 1 and 10 

s. The expert did not mark the individual FOs in these bursts, so all the automatic detections 

corresponding to subject level events with duration above 1s were excluded for this patient 

during the performance evaluation.

As mentioned at the end of Section 2.3 the threshold values for the classification stage are 

selected based on the expert’s marks. The number of marks varies in a large range among 

the patients (between 3 and 421 subject level events per patient), and the number of patients 

is not too large. Then, to make the threshold selection and evaluate the performance of the 

automatic detector, instead of separating the patients in training and test groups we adopted 

a jackknife, or leave one out approach (Efron, 1982). With this approach, the threshold 
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levels for the classification stage are computed for each patient based in the expert’s marks 

of the other 14 patients.

To get the threshold values for any patient and any desired sensitivity, we compare the 

results of the pre-detection stage in the rest of the patients to the expert’s marks. First, we 

compute the number of true positive pre-detections that should pass the classification stage 

to get the desired sensitivity, given the number of expert’s marks in the 14 patients set. Then, 

the threshold values are varied to minimize the number of false positive pre-detections with 

maximum ratio of broadband to narrowband signal amplitude lower than Threshold A and 

maximum RMS value larger than Threshold B, always for the previously computed number 

of true positive pre-detections fulfilling the same conditions.

3. Results

A scatter plot showing the feature values of the events after the pre-detection stage is shown 

in Fig. 2. True and false positive pre-detections are shown in different colors, and lines 

showing the optimum threshold values to achieve 95% sensitivity after classification are also 

shown in the figure. We checked that the outliers of the true positive pre-detection cluster are 

not all from the same patient, but from several different ones. The pre-detection stage results 

for the 15 patients yields a 99.5% sensitivity, and a rate of 115 false positive pre-detections 

per minute at the subject level. The number of false positives is drastically reduced at the 

classification stage, giving a more reasonable number of false positive automatic detections. 

The processing of each 30 min recording of the 31 channels takes around 5 min of 

computing time in a standard desktop computer. The precise value depends on the number of 

FO pre-detections in the recording.

In Fig. 3 we show examples of true and false positive and negative events after the 

classification stage, i.e. of the results of the automatic detector. We see in the figure that 

some false positives are artifacts, while others could be actual FOs. Regarding the false 

negatives, i.e. events marked by the expert but not detected, some seem rather clear FOs, but 

others are weak and do not stand out of the background very much, although when reviewed 

at subject level most of them do seem to be actual FOs. We must point out that given the 

high sensitivity of the detector, the number of false negative or missed events is low. The 

shown true negatives are examples of glitches, artifacts, and weak signals that were correctly 

excluded from the pre-detection results.

In Fig. 4 we show performance curves for the detector. The curves are obtained by first 

computing the optimum thresholds for each desired sensitivity and then computing the 

resulting positive predicted and positive agreement values. We also show the curves that 

would be obtained if the thresholds for the classification were computed using all the 

patients, instead of the leave one out approach. The difference between both curves is small, 

which indicates that the threshold selection is robust with not too much patient to patient 

variation.

Any point on the performance curve can be selected as an operating point, but points at 

which the slope of the curve changes are good options. Two possible operating points are 
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indicated on the curves. When the expert’s marks are considered the Gold Standard a high 

sensitivity is desired. The operating point is selected in this case near the point of 95% 

sensitivity and 40% positive predicted, where there is a change in the slope of the S vs. PP 
curve. The threshold values for each patient are then selected to have the desired 95% 

sensitivity in the remaining 14 patients. We will denote this operating point as S95. When 

comparing the expert and the automatic detector without considering any of them as a gold 

standard, the selected operating point is near the point of 86% sensitivity and 69% positive 

agreement. Near this point there is a change in the S vs. PA curve, and the positive 

agreement is almost at its maximum. The individual threshold values are selected to get an 

86% sensitivity; this operating point will be called S86.

Details of the subject level performance for the automatic detector are given in Table 1, for 

the S86 and S95 operating points. In the latter case the performance is also reported for each 

patient. The overall performance is not computed as an average of the different patients, but 

based in all the expert’s marks and automatic detections, even though the threshold values 

for the classification are different for each patient, as seen in the table. The actual sensitivity 

achieved in each patient is almost always high. Only in Patient J the sensitivity is low, and in 

this patient only 3 events were marked by the expert. One of these events is too weak and 

another too short to be detected by the automatic detector. We can also see in the table that 

the overall subject level false positive rate is 1.6 per minute at S86 operating point, and 3.6 

per minute at S95, with values between 1.0 and 7.4 per minute for the different patients.

The channel level performance of the detector is reported on Table 2. We see that the strict 

channel level performance is worse than the subject level, and the loose channel level a little 

better. Again the worst results correspond to the patient with rare channel marks. The overall 

strict and loose false detection rates are 0.19 and 0.10 per channel per minute respectively at 

S86, and 0.51 and 0.29 per minute at S95.

In Table 3 we show the results comparing the channel involvement during the marked 

events, between the expert and the automatic detector. The mean number of channels 

involved in a subject level event is almost the same for the automatic detector at S86 and the 

expert. At S95 the average number of active channels is 1.5 times higher than in the case of 

the expert’s marks. This difference in the number of active channels explains the higher 

sensitivity and lower specificity of the automatic detector at the S95 operating point, 

compared to the S86. There is much less difference in the automatic detector performance at 

different operating points when comparing the expert reviewer and the automatic detector 

without considering the former a gold standard. This indicates that at S86 there are as many 

active channels as in the expert reviewer results, but not necessarily the same ones.

The ranking distance results are an important end point, and are also reported in Table 3. In 

this case the channel ordering derived from the expert reviewer is the gold standard, and the 

analysis is not restricted to true positives. To have an idea of the range of RD values, in a 

different study involving HFO detection in recordings with depth electrodes (SEEG), the RD 

value between two human reviewers was 0.07 after joint review of intervals with important 

differences (Zelmann et al., 2009). In this study, at the S95 operating point, we have 8 

patients with RD below 0.11, and only two patients with RD near 0.5. One of them has only 
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5 channel level expert’s marks. Given that the number of false positives in this patient is 

almost 80 times larger (see Patient J in Table 3), it is natural that the results are equivalent to 

selecting a random ordering. The other patient with RD near 0.5 (patient D) has expert’s 

marks (and automatic detections) distributed among all the channels. It is the patient that 

presented long bursts of distributed fast activity spanning all the channels, which were 

excluded from the performance analysis. Almost no difference is found in the performance 

of the automatic detector at different operating points. This indicates that the events left out 

when changing the operating point to a lower overall sensitivity have a similar spatial 

distribution than the rest of the events.

More details regarding the channels presenting FOs is shown in Fig. 5. The figure shows the 

proportion of channel level events at different channels, for 3 of the 15 patients. The color/

gray level scale indicates the proportion of events corresponding to each channel. Results are 

shown for the expert’s marks and the S95 and S86 operating points of the automatic 

detector. In general, the results of the automatic detector are more spatially spread. We 

observe that in patients with low RD, such as Patient M in Fig. 5, the channels with a high 

proportion of automatic detections are the same as the ones with high proportion of expert’s 

marks, even though this proportion is not as high given the more spatially spread distribution 

of automatic detections. In patients with RD around 0.3, such as Patient A, there are some 

more channels with high proportion of automatic detections compared to channels with high 

proportions of expert’s marks, presumably due to artifacts. As expected, the channels with 

high proportion of expert’s marks also have a high proportion of automatic detections. 

Patient D, with RD around 0.5, shows a distribution of involved channels with the maximum 

in different channels than the expert’s marks, the pattern of marks is much more spatially 

spread than in other patients. In the figure we can also see that there is no significant 

improvement of the automatic detector at S86 compared to the S95, as mentioned earlier. 

The patients in Fig. 5 were selected to show results with different RD values. In the 

Supplementary Fig. S1 we show the same diagrams for all the patients, and it can be seen 

than in most patients the channels with a high proportion of events are the same according to 

the expert and the automatic detector.

The expert also marked the interictal spikes, and in Table 4 we present results regarding the 

co-occurrence of spikes and FOs. There are 20704 channel-level marked spikes in the 

recordings, and 17% have simultaneous fast activity according to the expert’s marks. This 

represents 70% of all the marked high frequency events. The percentage of spikes with 

simultaneous fast activity is higher for the automatic detector at S95. From the table we also 

see that the percentage of automatic detections that occur at the same time as a spike is 

lower for the automatic detector.

We also studied the frequency of the detected events. In Fig. 6 we present the number of 

events detected at each frequency band, before grouping them in channel or subject level 

events. We separate the events belonging to true positive and false positive subject level 

events of the automatic detector at S95. From the figure there seems to be no reason to treat 

differently the fast gamma (40–80 Hz) and ripple (80–200 Hz) bands.
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4. Discussion

We believe that fast oscillations in scalp recordings may be clinically relevant in epilepsy 

(Andrade-Valença et al., 2011). More studies are necessary to investigate this potential. We 

present an automatic scalp FO detector to be used as a tool in future studies. In order to 

replace the time consuming marking of the EEG recordings by human reviewers, the 

automatic detector should produce a similar output. Hence, this work focuses in the 

comparison between the human expert and the automatic detector.

In scalp EEG signals the frequency band under study is affected by the presence of muscle 

artifacts (Whitham et al., 2007), such as eye saccades (Yuval-Greenberg et al., 2008). To 

minimize these artifacts the analyzed recordings correspond to non-REM sleep. This reduces 

the number of artifacts, but some are still present. The expert reviewer distinguishes them by 

their irregular morphology compared to the more sinusoidal shape of the fast oscillations. 

Extreme care was taken in the marking procedure, and each mark was reviewed by the same 

expert at different time scales and frequency bands to exclude artifacts. The automatic 

detector also looks for events with sinusoidal shape, and was carefully designed to avoid 

detections associated to sharp transients, which are another possible source of false 

detections. Examples of these sharp transients can be seen in some of the true negative 

examples of Fig. 3. The automatic detector and the expert’s marks show a good agreement 

even though they use different filters, indicating that the FOs are not likely to be filtering 

artifacts. Another strong evidence supporting this is that most of the FOs can be seen in the 

unfiltered EEG signal, as shown in the true positives’ EEG signal (0.3–205 Hz) in Fig. 4. 

Finally, we also checked that the expert’s marks and automatic detections are not artifacts 

produced by sleep phenomena, such as sleep spindles or vertex waves.

The proposed automatic scalp FO detector shows a good performance in the tested group of 

patients. The sensitivity is high in all the patients with a reasonable number of clear FOs. 

The ordering of the channels based on the number of detected FOs is almost equal to the 

ordering based on the expert’s marks in more than half of the patients. Nevertheless, since 

for several patients the channel ordering is different than the expert’s, we consider that a 

review of the automatic detector results by a human expert is necessary. This is a common 

necessity also for intracranial HFO detectors (Staba et al., 2002; Gardner et al., 2007; 

Crepon et al., 2010; Zelmann et al., 2010). Given the limited experience with scalp FOs, we 

believe that a review of the automatic detector results by a human expert is necessary 

regardless of performance. The patients with more differences between the expert and the 

automatic detector, such as patients A and J, have a low number of expert’s marks. It seems 

reasonable that a human reviewer would unconsciously relax the qualitative requirements to 

find FOs in a recording with very few events compared to a recording with many events.

For the proposed detector we consider the S95 operating point a better choice than a lower 

sensitivity one. The number of events to be reviewed may be larger, but the chance of 

undetected FOs will be smaller. With an average number of less than 3.6 detected subject 

level events per minute, and at least 40% true positives, the review of the results will be 

much faster than manual marking. The classification stage implemented in the detector is a 

simple thresholding based on two features. We tried other options, such as clustering 
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algorithms, and other features. We found that the improvements were only marginal, and 

every included feature could only identify a few extra false positives. Since the results 

should be checked by an expert anyway, we prefer this simple classification rather than 

using more features and risk an algorithm too finely tuned to our particular data.

Some of the results of the automatic detector at the S95 operating point suggest that a 

proportion of the false positive events could actually be FOs not marked by the reviewer (see 

some of the false positive examples in Fig. 3). The average number of active channels during 

subject level events is 1.5 times larger for the automatic detector at S95 than for the expert 

(see Table 3). The same 1.5 times increment is observed in the proportion of spikes with 

simultaneous automatic detections in Table 4. This supports the idea that the automatic 

detector at this operating point is more sensitive than the expert, detecting weaker but 

probably real FOs (note that for the automatic detector operating at S86 the proportion of 

spikes with simultaneous fast activity for the automatic detector is 0.95 times that of the 

expert, and the same 0.95 proportion is observed when comparing the average number of 

active channels in the subject level events). Also, almost no difference is found in the 

ranking distance of the automatic detector at both operating points (see Table 3 and Fig. 5). 

Again, this indicates that the events left out when changing the thresholds to obtain a lower 

sensitivity, have a similar spatial distribution than the rest of the events. Thus, probably an 

important proportion of them are actually weak FOs and not artifacts. Hence, the false 

positive rate is expected to be lower than the reported value.

A large proportion of the FOs (47–70%) occur at the same time as a spike. This provides a 

strong evidence for a relationship between FOs and epilepsy. Note that these spikes are a 

small fraction of the total spikes (16–26%), and they may be more specific in localizing the 

seizure onset zone (Andrade-Valença et al., 2011). We are quite confident that the detected 

events do not correspond to artifacts associated to bandpass filtering of the spikes since they 

can be seen in the unfiltered EEG signal in the true positive examples shown in Fig. 4. No 

evident difference, other than the presence of the FOs, was noted between the morphology 

of both groups of spikes.

There is a very marked decrease in the number of events as the frequency increases, part of 

this may be due to the fact that a non-ideal 200 Hz cutoff frequency antialiasing filter was 

used for the signal acquisition. This means that frequencies near 200 Hz may be attenuated 

up to 50% of their original amplitude. This does not affect the pre-detection stage of the 

automatic detector since amplitudes are compared to the background level in each frequency 

band. But it does affect both features in the classification stage, leading to an increased 

pruning of the attenuated higher frequency events. Higher sampling frequency recordings 

would allow a more accurate evaluation of the number of events as a function of the 

frequency. Finally, the figure also shows that for the expert’s marks (true positives) this 

decrease in number of events at higher frequencies is even more pronounced. This may 

mean that the higher frequency false positives correspond to artifacts, but it could also be 

explained if we consider that at frequencies above 150 Hz there are fewer than 4 samples per 

cycle, and the human expert may not consider the resulting signals as “sinusoidal” in shape, 

failing to mark such high frequency events.
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The proposed algorithm was able to detect the events marked by the reviewer, which were 

limited to 150 Hz. Given the large number of patients with activity in the fast-gamma and 

ripple band, it would be of interest to investigate oscillations in the fast ripple band. To 

maintain a good performance with higher sampling rates, some modifications may be 

necessary in the algorithm. Non-uniform frequency bands in the detection stage, wider for 

higher frequencies, would help to reduce the computational burden. Also, frequency 

dependent thresholds may be necessary in the classification stage to detect higher frequency 

oscillations with potentially lower amplitudes. The same modified algorithm could also be 

used to detect HFOs in intracranial EEG recordings, and in magnetoencephalography 

(MEG) signals.

The presence of FOs on EEG scalp recording may seem unlikely considering that from 

intracranial studies it is known that the generators of HFOs are rather small, in the order of 1 

cm3 or less (Bragin et al., 1999b; Crepon et al., 2010). A much larger area of synchronized 

cortex (at least 6–9 cm2) has been reported to be required for interictal spikes to be visible 

on the scalp (Tao et al., 2007). It is important to note that the skull and other tissues between 

the brain and the scalp do not attenuate the frequencies up to several KHz any more than the 

standard EEG frequencies below 40 Hz (Hämäläinen et al., 1993, Oostendorp et al., 2000).

A possible explanation of why there are visible HFOs on scalp recordings is that, on rare 

occasions, high frequency oscillations may occur simultaneously in larger brain regions 

(Crepon et al., 2010). To contribute significantly to a scalp event, such distant events would 

have to be synchronized and the above study did not address this issue. Another possibility 

is that some of the fast oscillation generators can produce a noticeable scalp potential with a 

smaller cortical area than a spike. The amplitude of the marked FOs in the analyzed 

recordings was about ten times smaller than the amplitude of the interictal spikes. A smaller 

generator for the scalp FOs than for the spikes could be the reason of this smaller amplitude. 

As to why they can be seen on the scalp, we found that the physiological noise level is lower 

in higher frequency bands than in the frequency band associated to the spikes (3–40 Hz), at 

least during non-REM sleep. A low frequency signal from a small generator may then be 

lost in the background noise in scalp recordings, but a generator of the same size could 

produce a fast oscillation that would stand clearly out of the (high frequency) background. In 

fact, we found in our scalp recordings that the spikes, fast gamma, and ripple oscillations 

have all a similar signal to noise ratio in their respective frequency bands. Simultaneous 

scalp and intracranial EEG recordings and/or combined EEG/MEG recordings may help 

create a better understanding of the scalp fast oscillations. The automatic detector described 

in this work would be a useful tool in such studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

In this section we give details regarding the pre-detection stage of the automatic detector, 

describing the algorithm used to detect the individual events in each channel and frequency 

band. These events will then be grouped to obtain the channel and subject level pre-

detections. In Fig. 1 we show a diagram of the pre-detection stage, with the signal and 

parameter notations used below.

Let xraw [n] be the sequence of samples corresponding to any channel of the unprocessed 

EEG, sampled at 600 Hz. The detector algorithm is as follows:

1. Filter all the channels with a bandpass filter

(9)

where x[n] is the sequence of bandpass filtered samples which we call broadband 

signal, hbp[n] is the impulse response of the bandpass filter, and {·*·}[n] is the 

convolution operator. The bandpass filter is an equiripple FIR filter of order 120, 
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with pass-band from 35 Hz to 205 Hz, and transition bands of 10 Hz. The 

resulting stop-band attenuation is 40 dB, and pass-band ripple 0.1 dB.

2. Separate each channel in narrow frequency bands

(10)

where yk[n] are the sequences we call narrowband signals, and hk[n] are the 

impulse responses of the narrowband filters. The filters are equiripple FIR filters 

of order 300, with pass-band from (30 + 10k) to (40 + 10k) Hz, transition bands 

5 Hz wide, and a weighting factor 10 times larger for the low frequencies stop-

band than for the other bands, resulting in approximately 60 dB attenuation in 

the low frequencies stop-band, 40 dB attenuation in the high frequencies stop-

band, and 0.1 dB ripple in the pass-band. The effective duration of the filter 

impulse response is given for even order filters by

(11)

where N is the filter order. All the specified narrowband filters have effective 

duration σk between 18 and 19 samples.

3. Compute the RMS value of the signal in each frequency band, for an interval 

centered at each sample and with duration equal to four cycles of the central 

frequency of the band

(12)

where Nk is the number of samples in one cycle of the central frequency of the 

band, i.e. the integer nearest to (35 + 10 k)/600.

4. Compute the moving background level bk[n] as

(13)

where Nb is the number of samples in the background moving window, i.e. the 

integer nearest tb*600, and z̄k[n] is the moving RMS value signal zk[n] limited 

by the moving threshold value, i.e.
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(14)

where c is the proportionality constant that sets the threshold based on the 

moving background level. Note that the background level corresponding to 

sample n is computed based on a window from n − 2Nk − Nb + 1 to n − 2Nk, so 

its based on previous values of the background level and RMS signal, and (13) 

and (14) can be implemented causally. The recursive implementation of (13) as

(15)

is adopted for computational efficiency. The 2Nk delay of the background 

window is to avoid an overlap with the window for the RMS value computation 

in (12).

5. Compute the detection indicator signal dk[n] as

(16)

The individual events detected in frequency band k are all the sequences of ones 

in dk[n] which are at least 4Nk + σk samples long.

Appendix B

As seen in Section 2.1, there are three parameters involved in the pre-detection stage; the 

length tb of the averaging window in the computation of the background level, the 

proportionality constant c to obtain the threshold value, and the minimum separation tsep 

between events at channel and subject level.

The algorithm is insensitive to changes in a large range of values of tb and tsep. We tested 

values in the range 10 s < = tb < = 60 s and found no noticeable change in the performance, 

and the same conclusion could be drawn for changes in tsep between 25 and 100 ms. We 

selected values in the center of the range for both parameters; tb = 30 s and tsep = 50 ms. In 

the Supplementary Fig. S2, we show performance curves for different parameter values. The 

proportionality constant c should be chosen as low as possible to have a high sensitivity, but 

if it is too low there will be detections at some frequency band and channel almost anytime, 

leading to very long and unrepresentative channel and subject level events. We found that a 

value of 2.5 leads to almost 100% sensitivity in every tested patient, without continuous 

spurious detections. If a higher parameter value is used, the positive agreement and positive 

predicted values will deteriorate at high sensitivities, but remain almost unchanged at low 

sensitivities. A low parameter value may show excellent positive agreement and positive 

predicted values at high sensitivity, but the reason is simply that there are almost continuous 
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detections. For lower sensitivities these performance measures degrade very quickly since 

large intervals of data including both true and false positives are discarded. A reasonably 

stable performance is found in the range c = 2.25 to c = 2.75. See performance curves for 

different parameter values in the Supplementary Fig. S2.
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HIGHLIGHTS

• Fast oscillations present in scalp EEG signals can be detected automatically.

• The fast oscillations are characterized by local increments of power in narrow 

frequency bands.

• There is a high agreement between an expert reviewer and the automatic 

detector regarding the channels with the highest proportion of fast 

oscillations.
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Fig. 1. 
Diagram of the pre-detection processing. The passband of the band-pass filters (BPF) in 

indicated below the corresponding block. Below the averaging (AVG) and adding (SUM) 

blocks we indicate the number of involved samples. The comparing (CMP) blocks have unit 

output if the difference between inputs is grater than zero, and zero output otherwise.
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Fig. 2. 
Feature values of the events after the detection stage, for the 15 patients set. Each point 

corresponds to a subject level event, and is either a true or false positive based on the 

expert’s marks. The number of events is given in the legend. An example of threshold values 

used for the classification is also shown, corresponding to the optimum threshold values to 

obtain 95% sensitivity considering all the patients as training data.
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Fig. 3. 
(A) Example of true positive events illustrating clear events marked by the expert and 

identified by the detector. (B) Examples of false positive events; some look like genuine FOs 

that may have been missed by the expert and others are clearly part of artefacts. (C) Example 

of false negatives: these events marked by the expert but were not very clear and probably 

for this reason were missed by the detector. (D) True negatives show transients that were not 

marked by the expert and not detected. Gray background indicates detections of the 

automatic detector and dark lines at the bottom of the figures are expert’s marks. The EEG 

signal (0.3–205 Hz) and the broadband signal (35–205 Hz) are shown for each event, and the 

narrowband signal at which an event was detected are shown for the true and false positive 
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detections. The Amplitude is given in μV, the ticks in the time axes correspond to 100 ms 

intervals.
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Fig. 4. 
Performance curves of the automatic detector. Sensitivity vs. positive predicted and 

sensitivity vs. positive agreement curves are shown. The curves obtained with a jackkinfe 

approach (leave one out) are the curves used in the rest of the study. The curves obtained 

when training with all the patients are shown for comparison purposes. Two possible 

operating points (S95 and S86) are indicated in the curves.
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Fig. 5. 
Channel involvement results. Every dot corresponds to a bipolar channel on the scalp. The 

color/gray level of the dots indicates the proportion of events in that particular channel. Left: 

distribution of expert’s marks. Center and right: distribution of detections of automatic 

detector at operating points S95 and S85, respectively. The total number of events is given 

below each diagram, as well as the ranking distance (RD) value for the automatic detector. 

Results are shown for three patients with different RD values.
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Fig. 6. 
Number of detected events at different frequency bands. True positives and false positives of 

the automatic detector at operating point S95.
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Table 4

Co-occurence of spikes and FOs. Percentage of the 20704 spikes with simultaneous high frequency activity, 

total number of channel level events and percentage of them occuring at the same time as a spike.

Detector Spikes with FOs (%) Number of FOs FOs with spikes (%)

Expert 16.9 6879 70.3

Auto. S86 16.3 5876 54.9

Auto. S95 26.2 11052 47.0
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