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Abstract

A universal biomarker panel with the potential to predict high-risk pregnancies or adverse pregnancy outcome does
not exist. Transcriptome analysis is a powerful tool to capture differentially expressed genes (DEG), which can be
used as biomarker-diagnostic-predictive tool for various conditions in prenatal setting. In search of biomarker set for
predicting high-risk pregnancies, we performed global expression profiling to find DEG in Ts21. Subsequently, we
performed targeted validation and diagnostic performance evaluation on a larger group of case and control samples.
Initially, transcriptomic profiles of 10 cultivated amniocyte samples with Ts21 and 9 with normal euploid constitution
were determined using expression microarrays. Datasets from Ts21 transcriptomic studies from GEO repository were
incorporated. DEG were discovered using linear regression modelling and validated using RT-PCR quantification on
an independent sample of 16 cases with Ts21 and 32 controls. The classification performance of Ts21 status based
on expression profiling was performed using supervised machine learning algorithm and evaluated using a leave-
one-out cross validation approach. Global gene expression profiling has revealed significant expression changes
between normal and Ts21 samples, which in combination with data from previously performed Ts21 transcriptomic
studies, were used to generate a multi-gene biomarker for Ts21, comprising of 9 gene expression profiles. In addition
to biomarker’s high performance in discriminating samples from global expression profiling, we were also able to
show its discriminatory performance on a larger sample set 2, validated using RT-PCR experiment (AUC=0.97),
while its performance on data from previously published studies reached discriminatory AUC values of 1.00. Our
results show that transcriptomic changes might potentially be used to discriminate trisomy of chromosome 21 in the
prenatal setting. As expressional alterations reflect both, causal and reactive cellular mechanisms, transcriptomic
changes may thus have future potential in the diagnosis of a wide array of heterogeneous diseases that result from
genetic disturbances.
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Introduction

Progressive development and improvement of methods for
investigation of global transcriptional alterations in human
disease is now enabling reproducible and consistent selection
of genes that best differentiate samples originating from
disease-affected or healthy individuals [1]. Although
transcriptome is a highly complex and dynamic system, difficult
to model with classical approaches, it does nevertheless
present a landscape where manifold pathogenic and reactive
processes occurring in disease may be detected. As
transcriptional regulation results from genetic as well as
environmental influences, transcriptomics present a valuable
opportunity for the development of a heterogeneous diagnostic
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tool for diseases ranging from those of clear genetic aetiology
to those of complex unexplained aetiology.

Identification of high-risk pregnancy with its heterogeneous
aetiology and complex pathogenesis remains complicated
since there is no single investigation deemed to be best in all
circumstances. As there already are  successful
implementations of expression biomarkers into clinical practice
[2] we opted to investigate and demonstrate the feasibility of
expression biomarkers to predict high-risk pregnancy status on
Ts21 as a model of high-risk pregnancy. The objective for
selecting Ts21 as a model system is its definite genome-
phenome correlation. Several global gene expression studies
of Ts21 demonstrated extensive changes in expression of
chromosome 21 (HSA21) and non- chromosome 21 (non-
HSA21) genes [3-10].
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Global transcriptome profiling studies on prenatal samples of
amniotic fluid and chorionic villi with trisomy of chromosome 21
[3,5] revealed significant dysregulation of HSA21 and non-
HSA21 genes and concluded that resulting alterations reflect a
combination of gene dosage effect and genome-wide
transcriptional  dysregulation  hypotheses. Reports on
transcriptomic analyses of other fetal tissues [4,6,10], including
cerebellum, heart or fibroblasts demonstrated that sets of over-
expressed and under-expressed genes differ across different
cell types. In addition, data from global gene expression
studies on postnatal samples with Ts21 [7-9], including adult
human brain, lymphoblastoid cell line or fibroblasts showed a
profile of up-regulation of HSA21 and dysregulation of non-
HSA21 genes, consistent with the results of transcriptomic
studies on Ts21 prenatal samples.

These studies mainly addressed the issue of transcriptomic
changes in trisomy of chromosome 21 in different human
tissues mainly with the aim to dissect Down syndrome
phenotype and to explain the pathogenic mechanisms
underlying variability of Down syndrome. However, they did not
primarily aim to assess the diagnostic potential of
transcriptomic changes in trisomy of chromosome 21 samples.

One problematic aspect of aforementioned studies was also
that the reported results overlapped only partially and were
therefore difficult to reproduce, probably due to small study
power stemming from low numbers of biological replicates
investigated and large heterogeneity of analysed tissues
across various studies. However, a recent meta-analysis from
45 heterogenous publicly available Ts21 datasets succeeded
to organize these results and identify a pattern of consistency
in dysregulated genes from Ts21 studies [11].

Among the aforementioned transcriptomic studies only a few
investigated transcriptomic alterations in prenatal Ts21
samples, including chorionic villi, amniotic fluid cell-free mRNA
or amniocytes [3,5,12-14]. The rationale for selecting
amniocyte samples is in investigating the gene expression
profile of a developing fetus. The heterogeneity of cells derived
from different fetal tissues increases not only the biological
variability, but also the possibility of identifying an expression
biomarker that would discriminate between Ts21 and a normal
euploid samples.

We aimed to design a discriminatory gene expression
signature by a 2-stage approach. Firstly, in the discovery stage,
we performed detection of differentially expressed genes
(DEG) by global gene expression profiling and evaluated these
results in the context of existent body of literature. Based on
this step, a subset of genes was incorporated in the core gene
set for further analyses. In the second, validation stage, the
performance of biomarker gene set was evaluated on an
independent study sample. Additionally, the biomarker set
performance was tested on processed datasets from the GEO
database.

Results
Discovery stage

Results from global profiling of gene expression in cultured
amniocyte samples suggest that chromosome trisomy causes
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a considerable perturbation of complete cellular transcriptional
composition in the amniocyte cells. Altogether, we have
detected altered levels of mRNAs transcribed from 964 unique
genes, accounting for 4.9% of complete set of genes
investigated using microarray profiling in the discovery phase.
Among these, an apparently increased tendency towards
differential expression was observed for HSA21 genes, with 32
such genes showing significant deregulation in trisomy 21
amniocytes (Table S1). This subset represented a significant
enrichment of HSA21 genes among DE genes, with significant
over-representation (p=1.9-10""%), according to hypergeometric
distribution test. This subset of genes was characterized by
average fold change of 159 (95% ClI 1.39-1.82). A
considerable proportion of HSA21 genes (87.1%), however,
appeared to resist the dosage effect and their expression level,
while showing slight tendency towards up-regulation (their FC
values averaged at 1.03, with 95% CI 1.01-1.04), did not
display significant changes in comparison to controls after
significance values were corrected for multiple testing.
Altogether, 240 genes satisfied (Table S2) our predefined
criteria, attaining false-discovery rate values below 0.05 and
50% reduction or increase in expression in Ts21 amniocytes,
and were thus regarded as candidate genes for inclusion in the
core biomarker gene set.

In addition to differential expression of genes on
chromosome 21, we have detected a widespread
transcriptional response of 932 non-HSA21 genes (Table S3),
which were equally distributed in the genome without any
observable  per-chromosome  overrepresentation  (after
Bonferroni correction, overrepresentation of genes for all
chromosomes failed to reach the significance of 0.05, with the
exception of chromosome 21). Interestingly, the overall
average tendency of non-HSA21 genes was directed toward
down-regulation, a phenomenon observed with greatest
prominence in genes with the greatest transcriptional
alterations in Ts21 (adjusted p-values below 0.01). In Figure 1
the density estimation of fold change values for genes located
on HSA21 and those located on a non-HSA21 location may be
observed, with apparent differences between directionality of
the response for HSA21 and non-HSA21 genes. A tendency of
all genes with highly active expression towards transcriptional
decompensation in Ts21 amniocytes has been observed with
Pearson rank correlation test confirming a relation between
gene’s expression level and susceptibility to changes in dosage
(p<1-107%).

Subsequently, the classification properties of obtained
microarray results were inspected. The clustering analyses
have shown spontaneous separation of samples into two larger
groups, with separation clearly corresponding to Ts21 status
(Figure S1). We verified the actual classification performance
by using cross-validation techniques, which have shown
excellent prediction performance of the selected genes using 5-
fold cross-validation of SVM classifier (AUC of 1.0 with 10
genes in the model). The performance of the classifier trained
on permuted class information averaged at 0.42 (Figure S2).
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Directionality of differentially expressed genes on HSA21 and non-HSA21 chromosomes
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Figure 1. The directionality of HSA21 differentially expressed genes in comparison to non-HSA21. A pattern of upregulation
is present in differentially expressed HSA21 genes, while non-HSA21 genes tended to be slightly down-regulated.

doi: 10.1371/journal.pone.0074184.g001

Validation on data from quantitative real-time PCR
experiments

Based on results obtained in the discovery phase in addition
to information from previously performed study a core set of
classifying genes was selected and included in the core
biomarker set (Table 1). Expression profiling of these genes
has shown that differential levels of expression could be
reproduced on a larger and independent replication sample of
patients. With the exception of the ATP50 gene, all the genes
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taken to validation step displayed significant differential
expression in the anticipated direction (7 DE genes from
chromosome 21 with fold change values ranging from around
1.2-2.2), while for LAMB3 consistent down-regulation was
observed in trisomy 21 samples with fold change values
estimated at 0.09. Comparison between gene expression
levels in the two study groups along with fold change values
and t-test significance values are presented in Figure 2.

September 2013 | Volume 8 | Issue 9 | e74184



Diagnostic Expression Profiling in Trisomy 21

Table 1. Validation set characteristics, based on data from discovery stage in this study, in addition to data from other gene
expression profiling studies.

Supporting
Entrez Chromosomal evidence from other
GenelD Gene SymbolGene name location Fold changeFDR ‘ studies Function
ATP synthase, H+ transporting, .
539 ATP50 . i i 21922.1-9q22.2 2.29 8.20E-04 [4,9,10] energy metabolism
mitochondrial F1 complex, O subunit
6651 SON SON DNA binding protein 21922.11 2.51 4.32E-02 [4,7,9] regulator of cell-cycle
6647 SOD1 superoxide dismutase 1, soluble 21g22.11 2.29 2.52E-05 [4,7,9,10,20] involved in ROS metabolism
6453 ITSN1 intersectin 1 (SH3 domain protein) 21922.1-q22.2 211 1.79E-02 [3,7,10] actin assembly and trafficking
SMT3 suppressor of mif two 3 homolog . . .
6612 SUMO3 . 21922.11 2.53 4.33E-03 [3,4,9] involved in ROS metabolism
10950 BTG3 BTG family, member 3 21921.2 2.14 4.51E-03 [3,4,7,9] role in neurogenesis
1827 RCAN1 regulator of calcineurin 1 21922.12 2.33 4.58E-02 [3,7,9,10] role in neurogenesis
10600 USP16 ubiquitin specific peptidase 16 21922.11 3.24 4.78E-03 [4,7,9] involved in ROS metabolism
. . laminin is a basement
3914 LAMB3 laminin, beta 3 1932 0.16 5.79E-03 [7]

membrane protein

#. FDR — stands for “false discovery rate”, proportion of anticipated false discoveries, according to Benjamini-Hochberg method of adjusting for multiple testing

*. Although LAMB3 was not identified in other studies, we incorporated it into our biomarker set, due to its marked and highly significant down-regulation in TS21 samples.
Additionally, its down-regulation was not directly reported in [7], but it could nevertheless be detected in the same processed dataset in the Gene Expression Atlas (http://
www.ebi.ac.uk/gxa/)

doi: 10.1371/journal.pone.0074184.t001

Differential expression in euploid and trisomic amniocytes — Validation results
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Figure 2. Differential expression of genes in the validation core set, where light blue bars represent average expression in
euploid samples and dark blue in samples with trisomy 21. Confidence intervals of 95% for the expression mean based t-
ditribution are also presented.
doi: 10.1371/journal.pone.0074184.g002
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ROC curve for 9 core set of genes in validation

08

D4

True Positive Rate (Sensitivity)

AUC=0.97 (95%Cl 1 - 0.94)

02 04 06 08 10
False Positive Rate (1-Specificity)
Figure 3. Random operator curve analyses, based on
data from the RP-PCR validation stage.
doi: 10.1371/journal.pone.0074184.g003

Performance of the core gene expression set in the
validation sample was estimated afterwards. The performance
of SVM estimated using a leave-one-out cross-validation
approach (LOOCV) resulted in AUC values of 0.97 for
discrimination between euploid and trisomic samples (Figure
3).

Validation on previously published microarray studies

Further support for the true performance of gene expression
biomarker for classification was obtained from previously
performed global gene expression profiling studies of trisomy
21 performed on prenatal samples. The predictive performance
of our 9-gene set was high in each dataset, reaching AUC
values of 1.0 for both Altug-Teber and Chou dataset (Figure 4).
The high performance of our gene set in Altug-Teber datasets
demonstrates its high robustness, as our biomarker could
differentiate trisomic samples from control ones in chorionic
villus samples, even though gene selection in the discovery
stage was wholly based on data from amniocyte profiling.

Discussion

In this study we demonstrate the potential of gene
expression signature, consisting of 9 genes, in prediction of
Ts21 status in the prenatal setting.

In contrast to previously performed studies investigating
transcriptional alterations in Ts21 which mainly focused on
detecting transcriptome alterations or explaining the variability
of DS phenotype [3,5,12-14], our main objective was to identify
gene expression signature for discrimination of Ts21 from
euploid status. We show that gene expression signature
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consisting of 9 genes could discriminate Ts21 cases from
normal samples (AUC performance estimate reached 0.97 for
discrimination of Ts21 samples from controls). We have also
demonstrated the high discriminatory performance of the same
9-gene expression signature on data from two previous
transcriptome profiling studies, measured either in amniocyte
samples or chorionic villus biopsy samples [3,13].

While initial studies on expression alterations in Ts21
reported discordant results, Vilardell and coworkers have
recently performed a meta-analysis of several Ts21 expression
studies [11], including those performed in various tissue types
and were able to demonstrate the existence of consistent gene
expression alterations occurring in Ts21. This is in accordance
with our observation, suggesting good consistency of gene
expression data, even across different microarray platforms
and laboratories or bioinformatic workflows.

The effect of an additional copy of HSA21 has previously
been thought to result in 1.5 times upregulation of gene
expression of HSA21 genes. This has been in part refuted by
large-scale studies investigating whole chromosome 21 and
whole genome expression perturbances in trisomy 21, when a
requirement for a better pathogenetic model has surfaced to
explain complex transcriptional alterations detected on global
scale. To rectify these drawbacks and to facilitate the selection
of genes for best discrimination of prenatal samples with
trisomy 21 from those with euploid chromosomal constitution, a
two-tiered gene expression profiing study was performed,
consisting of a discovery and validation phase. The discovery
phase was performed utilizing global microarray expression
profiling on the largest collection of trisomy 21 and control
euploid prenatal amniocyte samples investigated to date. To
optimize gene selection, we observed data originating from
studies previously performed on amniocytes [3,4,10].
Additionally, we also considered datasets from studies
performed on other tissues, such as chorionic villous cells,
brain and blood samples, as constitutional presence of an
additional HSA21 chromosome has been shown to cause a
subset of tissue-independent gene expression alterations [11].
Genes that were found differentially expressed in our study,
and have been consistently detected in at least three other
gene expression-profiling studies were then carried to second
validation phase.

We also recognize some limitations of our study. Firstly, the
classification performance of the proposed gene expression
signature was high, AUC values reaching 0.97. However, we
believe that with introduction of additional genes in the
signature, the performance could likely be further improved.
Secondly, the expression profiling experiments in our study
were performed on the samples of cultivated amniocytes,
which might influence actual expression alterations taking
place in Ts21. Nevertheless, since we could demonstrate high
accuracy of the same signature on the uncultivated chorionic
villus biopsy tissue sample set [3], it could be anticipated that
cultivation would not influence the predictive power of our
expression signature in an important manner. Thirdly, although
we have shown high discriminatory performance of the gene
expression test and performed analytic validation of expression
signature in Ts21, further studies should be performed prior to
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Per-sample trisomy 21 SVM classifier prediction
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Figure 4. Validation of results, based on data from studies by Altug-Teber et al [3] and Chou et al [13]. In the upper part of
the figure, the per-sample predictions based on the expression profiles of 9 gene biomarker are displayed, with predicted probability
of positive Ts21 status presented on y axis. The color of the dots represent the actual karyotyping diagnostic result. Below, heatmap
representing gene expression level for each sample (heatmap rows) and for each gene (heatmap columns) is presented. The
expression of 8 genes tends to be comparatively increased in samples with true trisomy 21 status, while expression of LAMB3 is
directed oppositely, towards down-regulation in Ts21 samples. In the heatmap yellow color represents higher expression and red
color lower expression level, where values have been scaled separately per each row. Middle part of the figure represents principal
component analysis of 9-gene expression for samples expression profiles published in [3,13]. In the bottom part, plots representing
ROC-based classification performance of 9-gene expression biomarker may be observed.

doi: 10.1371/journal.pone.0074184.9g004
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actual introduction of the test into the clinical practice and
implementation should be accomplished in accordance with
standards of quality assurance [15].

Although this research was focused on the delineation of
consistent alterations present in trisomy 21 and definition of a
biomarker with potential in clinical use, the utility of expression
profiling may pervade other pathological entities encountered in
the prenatal setting. As gene profile is not solely determined by
the genetic constitution of an individual, but is the sum of
genomic, epigenomic and environmental influences, its utility
may surpass detection of Ts21 presented here and may
present a possible multifaceted biomarker of high risk
pregnancies.

Materials and Methods

Ethics statement

This study was approved by Slovenian National Ethics
Commitee. All participants have signed an informed consent
prior to participation in the study and clinical investigations
have been conducted in accordance with principles expressed
in Helsinki declaration.

Cell culture samples

Amniotic fluid samples were collected between 16" and 18%
week of gestation for routine cytogenetic analysis. Primary cell
cultures of amniotic fluid were performed according to standard
protocols using tissue culture flasks (TPP, Switzerland). Cell
cultures were grown in Amnio Max C100 Basal Medium and
Amnio Max C100 Supplement (Invitrogen, CA, USA) at 37°C in
5% CO, environment. Cytogenetic analysis was performed
according to standard protocol with a resolution of 450-550
bands per haploid set. Following a routine diagnostic analysis a
second passage of amniotic cell culture was grown in the same
condition as primary cell culture. The gene expression
discovery group (sample set 1) comprised of 19 samples,
namely 10 derived from fetuses with trisomy 21 and 9 coming
from normal pregnancies (Table S4). The validation group
(sample set 2) consisted of an independent set of 48 amniotic
fluid samples, namely 16 cases with Ts21 (Table S5) and 32
controls. The control group consisted of 32 samples with
normal karyotypes and normal ultrasound scans, collected at
16-18 weeks gestation. Cell suspension was centrifuged at
2500rpm for 8minutes and supernatant was removed. Pelleted
cells were processed further according to the manufacturers
recommendation for RNA isolation.

RNA isolation

Isolation of RNA from cultured amniocytes was performed
using the Fujifilm QuickGene-810 automated isolation system
(Fujifilm Life Sciences, Tokyo, Japan), using columns in the
Fujifilm RNA Cultured Cell kit to capture purified RNA samples.
The purity and yield of isolated RNA samples was determined
using NanoDrop 2000c spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA).

The integrity of RNA samples isolated from subjects selected
for genome-wide profiling of gene expression was investigated
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on Agilent’s Bioanalyzer using RNA 6000 Nano Kit, where only
samples attaining RNA integrity number (RIN) values greater
than 8.0 were used for downstream array experiments.

Development of gene expression signature for
discrimination of Ts21 samples from controls

In the present study we have constructed and evaluated
potential gene expression signature for Ts21 in two separate
stages.

Initially, in discovery stage of our study, we aimed to identify
the gene expression signature for Ts21, consisting of a minimal
set of genes with predictive diagnostic power for discrimination
of Ts21 cases from controls.

Subsequently, in the validation stage of this study, the
expression signature of genes selected in the discovery stage
was validated on an independent group of samples. We
employed two different approaches to validation of samples —
firstly, we proposed validation of gene signature on an
independent sample of Ts21 cases and controls by means of
quantitative PCR and secondly, we have validated the
discriminatory performance of the signature on data from two
previously performed independent genome-wide expression
profiling studies [3,13].

Discovery stage — global gene expression profiling

Agilent’s 4x44 two-colour Whole Human Genome Expression
arrays, containing 41.001 feature probes for interrogation of
over 19.644 human genes, were selected to estimate the
extent of global transcriptional alterations in investigated cells.
Preparation of RNA samples, their labelling and hybridization
were performed according to manufacturer’s instructions. For
the purposes of microarray study, test samples and control
samples from sample set 1 were hybridized against a common
reference, obtained by pooling all samples. Here, the reference
RNA pool was labelled with Cy3 and each sample was labelled
separately with Cy5 [16].

Microarray slides were scanned using GenePix 4100A
microarray scanner. Post-processing steps included intra-array
loess and inter-array quantile normalization to correct for
potential bias resulting from differential stability of cyanine
dyes. Fluorescent values were offset by 100 units to reduce the
anomalous dispersion of fold change (FC) values at lower
signal intensities. MA and multidimensional scaling (MDS) plots
were inspected for each array to detect any systemic error
resulting from preceding steps.

Subsequently, results were statistically analyzed using a
linear model fit in limma package for Bioconductor in an R
statistical environment. To account for multiple testing,
obtained significance values were corrected using the
Benjamini-Hochberg method and the adjusted significance
threshold set at a<0.05.

Selection of classifying core gene set

Genes that would be included in the core biomarker gene set
were selected based on multiple lines of evidence. For
inclusion, the gene would have to be differentially expressed in
the discovery phase, with significance values below the
adjusted p-value threshold. Additionally, to technically facilitate
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subsequent validation, the gene’s expression levels should be
altered by at least 50% (under-expressed or over-expressed).

To expand the information landscape used for gene
selection, data from previous studies were incorporated into the
gene selection process. Only genes, detected in at least 3
other studies and our study were considered to have enough
consistent differential expression to be included in the core
gene set (Table 1).

Validation stage — testing of core gene set on
independent set of samples

A core set of genes selected in the discovery phase was
investigated in a validation step on an independent set of
samples using real-time PCR quantification of gene
expression. For this purpose, RNA samples passing quality
checks were subjected to reverse transcription using the
Superscript Vilo reverse transcriptase (Invitrogen, Carlsbad,
CA, USA) according to manufacturer’s instructions. Afterwards,
gene expression was quantified using pre-designed TagMan
assays (Applied Biosystems, Foster City, CA, USA) with assay
identification  numbers:  Hs00533490_m1 for SOD1,
Hs00426889_m1 for ATP50, Hs00165078_m1 for LAMB3,
Hs00739248_m1 for SUMO3, Hs00199064_m1 for BTG3,
Hs00371372_m1 for SON, Hs00170791_m1 for USP16,
Hs01120954_m1 for RCAN1, Hs00161676_m1 for ITSN1.
Reactions were performed in volumes of 25uL, consisting of
12.5puLof 2x Universal Master Mix (Applied Biosystems),
1.25uL of a specific assay mix, 2uL of cDNA sample and
9.25pL of bidestilated water. Input cDNA samples were diluted
so that an amount of cDNA equivalent to 50ng of RNA was
used in each reaction. To minimize stochastic effects, all
reactions were run in triplicates. RT-PCR reactions were
performed on ABI Prism 7000 Sequence detection system
(Applied Biosystems). Thermal cycling conditions were as
follows: 50°C for 2 min, 95°C for 10 min and 40 cycles of 95°C
for 15s and 60°C for 1 min. The threshold cycle (Ct) values
were then determined for each assay and were normalized to
internal  control (ACTB gene, assay identification
number:Hs03023880_g1) that was co-run with each sample.
Differences in gene expression between samples could then be
calculated using the delta-deltaCt method, as previously
described [17]. The significance of expression differences in
the two groups investigated in the validation phase was
calculated using two-sample t-distribution test, and differences
were deemed significant at a <0.05.

Validation on previously performed global profiling
studies

To further investigate the discrimination properties of our
biomarker gene set, the complete (normalized and pre-
processed) datasets from two studies were obtained from
Gene Expression Omnibus (GEO) repository [18], namely
GSE6263 [3] and GSE10758 [13]. Here, only genes in the core
biomarker set were further investigated and used for biomarker
performance estimation.
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Evaluation of expression biomarker classification

performance
Statistical evaluation of the expression biomarker’s
classification performance was performed using the

classification toolset from CMA package for R [19]. In all cases
probabilistic support vector machine classification linear kernel
function was used for training of the model and subsequent
predictions. The classification performance was estimated
using the area under curve (AUC) value, based on random
operated curve (ROC) estimation.

Evaluation of global gene expression profile based
classification on microarray data was performed using
automated feature prioritization based on t-test statistic, and 5-
fold cross validation for repeated separation of samples into
training and testing subsets. To avoid over-training of classifier
function on microarray samples, the feature selection step was
repeated in each cross-validation sample. To further exclude
the possibility of over-fitting, another test was performed, where
sample status was permuted randomly and the distribution of
prediction performances was investigated in this setting. In the
absence of over-fitting bias, the prediction performance of the
classifier should on average be non-discriminatory, with
expected AUC values averaging at approximately 0.5.

The predictive performance of the gene set taken to the
validation stage was also investigated using SVM function. Due
to differences in platform utilized in gene expression profiling, a
new classifier, based on RT-PCR results was constructed for
this dataset. As the set of genes in the validation was
predefined, no feature selection on the validation dataset was
performed to avoid artificially inflating performances by
injection the knowledge obtained from validation stage. The
performance here was estimated by the leave-one-out cross
validation technique and performance was again estimated
using AUC.

The same procedural flow was also taken for evaluation of
data originating from publicly available gene expression
profiling studies, where classification performance was again
evaluated using the 9 gene set included in our biomarker.

Supporting Information

Figure S1. Unsupervised hierarchical clustering of samples,
based on expression profiles of top 500 differentially expressed
genes. A clear spontaneous separation between trisomy 21
and control samples may be observed, with red color
representing up-regulation and green color representing down-
regulation.

(TIFF)

Figure S2. Estimation of classification accuracy based on
microarray data before continuation to RT-PCR validation step.
The figure represents performance of classifier model based on
top differentially expressed genes, estimated by 5-fold cross-
validation. Red colored dots represent performance of classifier
generated on actual samples status information, while blue
dots represent performance of classifier learned on permuted
sample classification. Classifier performance was also
evaluated on progressively increasing number of genes
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included in the model (x-axis), where the best classification
performance was attained in the range of 5-25 genes included
in the model.

(TIFF)

Table S1. 32 chromosome 21 genes found differentially
expressed in trisomy 21 in comparison with euploid amniocyte
samples.
(DOCX)

Table S2. 240 candidate genes for inclusion in the core
biomarker gene set, satisfying 2 criteria: attaining false-
discovery rate values below 0.05 and 50% reduction or
increase in expression in DS amniocytes.

(DOCX)

Table S3. 932 non-chromosome 21 genes found differentially
expressed in trisomy 21 in comparison with euploid amniocyte
samples.
(DOCX)

Table S4. Clinical characteristics of the amniotic fluid samples
(controls, T21) used for global expression profiling.
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