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Abstract

Popeye domain containing1 (Popdc1), also named Bves, is an evolutionary conserved membrane protein. Despite its high
expression level in the heart little is known about its membrane localization and cardiac functions. The study examined the
hypothesis that Popdc1 might be associated with the caveolae and play a role in myocardial ischemia tolerance. To address
these issues, we analyzed hearts and cardiomyocytes of wild type and Popdc1-null mice. Immunoconfocal microscopy
revealed co-localization of Popdc1 with caveolin3 in the sarcolemma, intercalated discs and T-tubules and with costameric
vinculin. Popdc1 was co-immunoprecipitated with caveolin3 from cardiomyocytes and from transfected COS7 cells and was
co-sedimented with caveolin3 in equilibrium density gradients. Caveolae disruption by methyl-b-cyclodextrin or by
ischemia/reperfusion (I/R) abolished the cellular co-localization of Popdc1 with caveolin3 and modified their density co-
sedimentation. The caveolin3-rich fractions of Popdc1-null hearts redistributed to fractions of lower buoyant density.
Electron microscopy showed a statistically significant 70% reduction in caveolae number and a 12% increase in the average
diameter of the remaining caveolae in the mutant hearts. In accordance with these changes, Popdc1-null cardiomyocytes
displayed impaired [Ca+2]i transients, increased vulnerability to oxidative stress and no pharmacologic preconditioning. In
addition, induction of I/R injury to Langendorff-perfused hearts indicated a significantly lower functional recovery in the
mutant compared with wild type hearts while their infarct size was larger. No improvement in functional recovery was
observed in Popdc1-null hearts following ischemic preconditioning. The results indicate that Popdc1 is a caveolae-
associated protein important for the preservation of caveolae structural and functional integrity and for heart protection.
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Introduction

The Popeye domain containing (Popdc) family comprises three

highly conserved, developmentally-regulated genes, Popdc1-3,

expressed predominantly in muscles but also in epithelia and

other cell types. Popdc1, also named Bves (blood vessel epicardial

substance), is considered to be the founding member and being the

most studied one, represents the prototype for the entire Popdc

gene family [1–6].

Popdc1 possesses an extracellular N-glycosylated amino-termi-

nus, three transmembrane domains and an intracellular carboxyl-

terminus. The highly conserved Popeye domain, found in the

intracellular segment, contains one or more homodimerization

motifs and functions as cAMP binding domain [5,7–9]. Studies in

epithelial cells have indicated that Popdc1 plays a role in cell-cell

interaction and adhesion and that the interaction of Popdc1

molecules with one another is important for the maintenance of

intercellular junctions [8–10]. Involvement of Popdc1 in the

regulation and signaling of tight junction formation and function,

vesicular transport and receptor cycling has been demonstrated

[11–14]. Hypermethylation of the Popdc1 promoter was observed

during tumorigenesis and was correlated with the downregulation

of Popdc1 expression [15–17] and mutated Popdc1 has been

identified in patients born with Fallot’s tetralogy [18], suggesting a

potential role for Popdc1 in the control of cell growth and

differentiation and in heart morphogenesis.

While Popdc1 expression in muscles is several-fold higher than in

epithelia [2], our knowledge of Popdc1 function and regulation in

the heart and skeletal muscles is rather poor. We identified a

marked reduction in Popdc1 expression in end stage failing human

hearts [19]. In addition, Popdc1-null mice did not develop any

obvious heart defect but displayed impaired skeletal muscle

regeneration [3] and maladaption of heart rhythmicity to
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adrenergic stress that might be related to the ability of Popdc1 and

the other family members to bind cAMP and to interact with ion

channels such as TREK-1 [20,21].

Caveolae are cholesterol and glycosphingolipid-rich plasma

membrane microdomains that contain the scaffolding protein

caveolin and appear as 50–100 nm plasma membrane invagina-

tions. The caveolae serve as dynamic docking sites to organize,

traffic and regulate membrane and membrane-associated signaling

complexes [22,23]. The muscle specific caveolin3 (Cav3) and the

caveolae have been found critical for cardioprotection and for

ischemic preconditioning [24] and play a role in the modulation of

calcium handling during excitation-contraction coupling and in

hypertrophy [25–27]. Cav3 appears in the cardiomyocyte

sarcolemma, intercalated discs and T-tubules and was identified

in the costameres, rib-like perisarcolemmal multiprotein complex-

es that align with Z disks and T-tubules and function in cell

adhesion, stretch-sensing and force transmission [28,29]. Sequence

analysis of Popdc1 revealed a putative caveolin binding motif

within the highly conserved Popeye domain [30], suggesting Cav3

as a potential interacting protein and caveolae as a possible

membrane site for Popdc1.

Given that Popdc1 is an abundant membrane protein in cardiac

myocytes, we hypothesized that Popdc1 might reside in the

caveolae and function in cardiac injury and protection. We report

herein that Popdc1 is a caveolae-associated protein important for

the maintenance of caveolae number and size. Accordingly,

cardiomyocytes of the mutant hearts display impaired [Ca+2]i

transients, higher sensitivity to oxidative stress and no pharmaco-

logic preconditioning while the mutant hearts are more vulnerable

to I/R injury and show no ischemic preconditioning.

Methods

Animals
Ethics Statement. The study was carried out in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health. The protocol was approved by the Committee on the

Ethics of Animal Care and Use of Tel-Aviv University (Permits

number M- 05-068 and M-09-012). Surgery was performed under

isoflurane anesthesia and all efforts were made to minimize

suffering.

Wild type (WT) and Popdc1- null C57/BL/6J mouse colonies

were established from the progeny of heterozygous (Popdc1+/2)

breeders [31] and maintained in the Institutional Animal Facility

under standard controlled conditions. Biometric information of

the WT, Popdc1-null and heterozygotes is summarized in Table S1

in File S1. Unless otherwise stated, the measurements and

experiments were performed on 3 month-old male mice. Rat

neonates (Wistar, 24–48 h old) were purchased from Harlan

Laboratories (Jerusalem, Israel).

Isolated heart preparation and measurement of infarct
size

Hearts were quickly removed from heparinized (500 U/kg),

anesthetized (isoflurane inhalation) mice, cannulated through the

aorta, and retrogradely perfused according to the Langendorff

method using oxygenated, warmed (37uC) Krebs-Henseleit

bicarbonate buffer (KHB) containing in mM: 118 NaCl, 2.4

KCl, 1.2 MgSO467H2O, 2. CaCl2, 5 EDTA, 1.2 KH2PO4, 25

NaHCO3, 4 glucose, and 2 pyruvate) at a constant perfusion

pressure of 96 cm H2O as previously described [32]. To disrupt

the caveolae hearts were perfused with KHB containing 0.2 mM

methyl-beta-cyclodextrin (MbCD) for 20 min. The I/R protocol

included 30 min of normoxic perfusion (stabilization), 30 min of

global ischemia and 90 min reperfusion. For ischemia precondi-

tioning (IPC), hearts underwent 20 min normoxic perfusion,

5 min no-flow ischemia and 10 min of reperfusion prior to the

global ischemia. The pressure in the left ventricle (LV) was

continuously recorded and the LV developed pressure (LVP,

mmHg), the rates of pressure development and relaxation (dP/dt,

Figure 1. Localization of Popdc1 in WT cardiomyocytes. (a) Popdc1 (red labeling) is evident at the lateral membrane (arrow), intercalated discs
(arrowhead) and transverse striations (double arrow). (b) Upper panel, co-labeling for Popdc1 (red), Cav3 (green) and vinculin (light blue); on the left,
merge of Popdc1 with Cav3 (white) and on the right, merge of Popdc1 with vinculin (white). Lower panel, 3D surface analysis based on Z-stack
pictures. Popdc1 (red), Cav3 (light blue), vinculin (green), merge of Popdc1 with Cav3 (violet), merge of Popdc1 with vinculin, yellow. Square size
565 mm. (c) Popdc1 (red) and Cav3 (green) co-localize (yellow) in the sarcolemma (arrowhead) and T-tubules (arrows) in isolated adult WT
cardiomyocytes (Adult CM), at sites of cell-cell contacts in cultured neonatal WT cardiomyocytes (CMC), and in Popdc1/Cav3 co-transfected COS7 cells
at sites of cell adhesion (Asterisk) and inside the cells.
doi:10.1371/journal.pone.0071100.g001

Popdc1, Caveolae and Cardioprotection
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-dP/dt, mmHg/min), the heart rate (HR, beats/min) and the

rate?pressure product (RPP, beats/min?mmHg) were obtained.

The coronary flow (CF) was assessed by measuring the coronary

effluent drained from the pulmonary artery. Infarct size was

assessed at the end of reperfusion using triphenyltetrazolium

chloride (TTC) [33]. For further analyses, hearts were snap frozen

in liquid nitrogen and stored at 270uC.

Histology and electron microscopy
LacZ activity was visualized in 5 mm cryosections as previously

described [31]. For confocal immune-histochemistry, paraformal-

dehyde-fixed cryosections were incubated with anti-Popdc1

(sc-49889), anti-Cav3 (sc-5310), anti-vinculin (sc-5573) and anti-

connexin43 (sc-9059) primary antibodies (purchased from Santa

Cruz Biotechnology) and Cy3-conjugated or DyLight 488-

conjugated secondary antibodies (Jackson ImmunoResearch

Laboratories). Nuclei were labeled by Hoechst 33342. For

visualization and photography the Leica TCS SP5 Confocal

Imaging System (Leica Microsystems, Germany) was employed

using 663 oil objectives. For electron microscopy, heart samples

(1 mm3) were fixed in 2% glutaraldehyde, postfixed in 1% OsO4/

0.1 M cacodylate buffer, dehydrated and embedded in Epon 812.

Ultra thin sections (60 nm) were stained with 1% uranyl acetate

and Reynolds’s lead citrate and images were acquired using a

Philips CM 12 ultramicroscope (at 60 kV) and a Morada CCD,

iTEM camera (Olympus Soft Imaging Solutions, Münster,

Germany). The number of caveolae per membrane length (in

mm) and caveolae diameter (within the 50–100 nm diameter

range) were measured in 250 randomly sampled images acquired

at X40,000 magnification. A total of 680 and 660 mm membrane

lengths were analyzed in WT and Popdc1/Popdc1-null hearts,

respectively.

Cell culture and transfection
Primary cultures of neonatal rat or mouse cardiomyocytes were

prepared as previously described [34]. Rat cells were seeded

(26106/ml) on collagen coated 100 mm culture plates and 72 h

later proteins were extracted for co-immunoprecipitation (co-IP).

Mouse cells were plated (56105/ml) on fibronectin coated glass

cover slips and 72 h later the cells were processed for immuno-

confocal microscopy using the above mentioned antibodies. COS7

cells were grown to 90% confluency on uncoated glass cover slips

and co-transfected with expression vectors of full-length mouse

Popdc1 and Cav3, using Lipofectamine2000 (Invitrogen, USA). At

the end of 36 h incubation the cells were fixed and processed for

immuno-confocal microscopy as above. For co-IP, Cos-7 cells

were transiently transfected with murine Myc-tagged full-length

Popdc1 and deletion mutant constructs Popdc1D92 or

Popdc1D116 (Popdc1 lacking 92 or 116 amino acids at the C

terminus) using Lipofectamine2000. Forty eight hours later, cells

were lysed and processed for co-IP.

Co-immunoprecipitation
(1) Neonatal rat cardiomyocytes were incubated with the

membrane permeable crosslinker dithio-bis-succinimidylpropio-

nate to stabilize protein complexes within the living cells. Proteins

were extracted and incubated with either, rabbit anti-Popdc1 (sc-

134807, Santa Cruz), mouse anti-Cav3 (sc-5310) antibodies or the

corresponding IgG controls. Protein A-Sepharose beads were

added and the Sepharose-bound immune complexes were spun

down by centrifugation, eluted by boiling with Laemmli’s sample

buffer and subjected to WB analysis on 12% SDS-PAGE using sc-

49889 and sc-5310 as primary antibodies for Popdc1 and Cav3

respectively. (2) Agarose bound anti-Myc antibody (ProFound c-

Myc Tag IP/Co-IP Application Set, Fisher Scientific) was added

to lysates of transfected COS7 cells. The bound proteins were

eluted by boiling and subjected to WB analysis using mouse anti-

Cav3 (BD Biosciences) as the primary antibody.

Quantitative polymerase chain reaction (qPCR) and
Western blot (WB) analysis

Total RNA was isolated from frozen hearts as previously

described [19], cDNA was prepared and qPCR was performed

using SYBR Green for product detection. The primer sequences

used were: Popdc1, F: GCCTGCACCACTTTCTGC; R: CTC-

GATTGGCTTCATCTTGG. Popdc2, F: CTCAATGACAAG-

CTGTTTGCC; R: ATCTTTCTCAGACTCTGGTTCC.

Popdc3, F: CCTGAGTGGGATTCGCTAAG; R: CGGTGT-

CTGCTGTGAGAGTT.

LacZ, F: AACCCTGGCGTTACCCAACT; R: TCTTCGCT-

ATTACGCCAGCT.

Rps3, F: AAGATGGCGGTGCAGATTTC; R: AGCCAGCT-

CCCGAGTGAGA. Expression values were obtained from Ct

values detected by the StepOnePlus V2.1 software (Applied

Biosystems, USA). The target gene levels were expressed as the N-

fold difference in the target gene expression relative to RpS3

expression (DCt), where DCt was determined in each sample by

Figure 2. Co-immunoprecipitation of Popdc1 and Cav3. (a)
Immunoblots demonstrating the precipitation of Popdc1 and Cav3
using mouse anti-Cav3 antibodies (left) and rabbit anti Popdc1
antibodies (right). Top labels: IP: immunoprecipitation tool; Cav3, anti-
Cav3; mIgG, mouse immunoglobulins (control); Popdc1, anti-Popdc1
antibodies; rIgG, rabbit immunoglobulins (control). Left/right labels:
Popdc1 migration at 68 kDa and Cav3 migration at 22 kDa. (b) Co-
immunoprecipitation of Popdc1 and Cav3 from COS7 cells co-
transfected with Cav3 and full length (WT) or deletion mutants (D92
and D116) Myc-tagged Popdc1 expression constructs. The scheme
depicts the position of the deletions relative to the predicted Cav3
binding site (BS). Shown is a Western immunoblot probed for the
detection of Cav3. Input, Cav3 in the original cell extract; IP-Myc, Cav3
that was precipitated by the anti-Myc antibodies. The figure depicts
results of a representative membrane.
doi:10.1371/journal.pone.0071100.g002

Popdc1, Caveolae and Cardioprotection
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subtracting the average Ct value of the target gene from the

average Ct value of the RpS3. Alterations in the levels of each

mRNA during the experiment were calculated in Relative

Quantity (RQ) values (calculated as 22DDCt) that were normalized

further taking a randomly selected specimen of the ‘‘basal’’ group

as 1. All mRNA scores are presented in arbitrary units. For WB,

proteins extracted from frozen heart tissues (40 mg/lane) or

sampled from sucrose gradient fractions, were resolved on 12%

(5% for Cav1.2) polyacrylamide-SDS gels, electroblotted to

Hybond-C Extra membranes and incubated with the above

listed goat anti-Popdc1, mouse anti Cav3, rabbit anti connexin43,

rabbit anti Cav1.2a (acc-003, Alomone Labs, Israel), and mouse

anti-actin (Clone C4, MP Biomedicals) primary antibodeis.

Reactive bands were detected by AlexaFluor 680 Rabbit anti-

goat, DyLight 800 goat anti rabbit or DyLight 800 goat anti-

mouse secondary antibodies (Jackson Laboratories) as appropriate

and quantified by the OdysseyTM Infrared Imaging System (Li-

Cor Biotechnology, USA). A 10–170 kDa protein ladder (PageR-

ulerTM Prestained Protein Ladder, Fermentas/Thermo Pierce)

was present in every gel to estimate the molecular weights of

reactive bands.

Isolation of caveolin-rich fractions (caveolae)
Caveolin-enriched fractions were isolated as described by Kim

et al. [35]. In brief, hearts were homogenized in 1% TritonX-100,

25 mM HEPES pH 6.5, 150 Mm NaCl, 1 mM EDTA, 1 mM

Phenylmethylsulfonyl fluoride (PMSF), and protease inhibitor

cocktail (Roche). Equal amounts of protein were brought to 40%

sucrose, transferred to ultracentrifuge tubes and overlaid with 30%

sucrose and 5% sucrose layers. Gradients were centrifuged at

28000 rpm and 4uC for 24 h and 12 equal fractions were collected

from the top and sampled for WB analysis and cholesterol

quantification (the AmplexRed kit, Invitrogen, USA). The Popdc1

reactive band was validated by mass spectrometry (The Smoler

Proteomics Center, Technion, Haifa, Israel).

Isolation of adult mouse cardiomyocytes and
measurement of [Ca2+]i

Adult heart myocytes were isolated according to published

protocols [36,37] perfusing collagenase type II (Worthington

Biochemical Corporation, USA) and hyaluronidase (Sigma, USA)

as the dissociating enzymes in the presence of 12.5 mM CaCl2.

The calcium concentration was gradually restored to 1 mM and

the cells were taken for immediate use. Intracellular free calcium

Figure 3. Popdc1 density sedimentation in discontinuous sucrose gradients. (a) Western blot analysis of gradient fractions. Fraction 1 and
fraction 12 represent the lowest and highest density, respectively. [+/+], WT; [2/2], Popdc1-null; MbCD, methyl-b-cyclodextrin; I/R, ischemia/
reperfusion; Cx43, connexin43. The molecular weights of the reactive bands were ,68 kDa, ,22 kDa, and ,43 kDa, for Popdc1, Cav3, and Cx43,
respectively. (b) The relative distribution of cholesterol and Cav3 throughout gradient fractions 1–9. *P,0.05, Cav3 in fraction 5, Popdc1-null vs. WT;
#P,0.05, cholesterol in fraction 5, Popdc1-null vs. WT.
doi:10.1371/journal.pone.0071100.g003

Popdc1, Caveolae and Cardioprotection
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[Ca2+]i was measured in individual cardiomyocytes using the

indicator Indo-1-AM and a Zeiss epi-fluorescence inverted

microscope as previously described [38,39]. A fluorescence ratio

of 410 nm/490 nm, which is proportional to [Ca2+]i, was

acquired every 10 ms and the time integral of Ca2+ inux was

calculated [38].

Mitochondria permeability transition pore (mPTP)
opening and pharmacological preconditioning (PPC)

Permeability of the inner mitochondrial membrane to the

fluorescent dye calcein-AM indicates mPTP opening in intact cells

[36,40]. Adult heart cardiomyocytes were isolated as above with

the addition of 10 mM 2,3-Butanedione monoxime (Sigma) to the

perfusion buffer. To obtain PPC, cells were incubated with 1.5%

isoflurane (Priamal Healthcare, India) in perfusion buffer for

30 min at 37uC. At the end of preconditioning, the cells were

loaded with 1 mM calcein-AM (Invitrogen, USA) and 1 mM

cobalt chloride (Sigma, USA) and distributed into 96-well

FLUOTRAC 600 black polystyrene plates (USA Scientific,

USA). Oxidative damage was induced by the addition of H2O2

(200 mM) and the decay of calcein fluorescence was monitored for

30 min at 480 nm excitation and 528 nm emission using the

Synergy-HT Multidetection Microplate Reader (BioTek, USA).

Figure 4. Popdc1 and Cav3 distribution in normal, mutant and injured hearts. Confocal microscopy images depicting Popdc1 (red) and
Cav3 (green); co-localization sites appear in yellow. Note the low staining intensity of Cav3 cross striations in the Popdc1-null and MbCD-treated
hearts, and the disappearance of Popdc1 and Cav3 co-localization following I/R.
doi:10.1371/journal.pone.0071100.g004

Popdc1, Caveolae and Cardioprotection
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Statistics
Results are expressed as mean 6 SEM unless otherwise

indicated. Differences between experimental groups were evalu-

ated for statistical significance using 2-tailed Student t- test for

unpaired two group comparison. Response over time was analyzed

by ANOVA for repeated measures. Probability value of p,0.05

was considered statistically significant.

Results

Popdc1 is a caveolae-associated protein
We sought to identify Popdc1 within membrane domains that

may indicate its role in the myocardium. Employing immuno-

confocal microscopy we detected Popdc1 along the lateral

sarcolemma and in the intercalated discs, as well as in transverse

intracellular striations (Fig. 1a). Co-localization of Popdc1 with

Cav3 suggested its association with sarcolemmal and T-tubular

caveolae (Fig. 1b, c), while co-localization with vinculin implicated

association of Popdc1 with the T-tubules and costameres (Fig. 1b)

[41]. Lack of co-localization with myosin and alpha actinin

excluded a structural relationship with the sarcomeres (not shown).

Three dimensional surface analysis based on confocal Z-stack

pictures confirmed the co-localization of Popdc1 with Cav3 and

vinculin in periodic striations perpendicular to the long axis of the

cell at approximately 2 mm intervals corresponding to the Z-disc

alignment (Fig. 1b, lower panel). Co-localization with Cav3 was

found also in cylindrical freshly isolated adult cardiomyocytes, in

cultured neonatal cardiomyocytes and in COS7 cells co-transfect-

ed with Popdc1 and Cav3 expression vectors (Fig. 1c). In the

cultured cardiomyocytes and COS7 cells, Popdc1 and Cav3 co-

localization was found at sites of cell-cell contact, at points of cell

adhesion and inside the cells but no striated organization could be

seen (Fig. 1c).

The overlap of Popdc1 and Cav3 observed in the confocal

images suggested close localization and possible interaction of the

two proteins. To test that, we attempted the co-immunoprecip-

itation of Popdc1 and Cav3 from cell extracts. As shown in Fig 2a,

Popdc1 was precipitated from neonatal cardiomyocytes using

antibodies against Cav3 while Cav3 was precipitated from the

same cell extracts by antibodies against Popdc1. The co-

immunoprecipitation indicated close association, if not direct

interaction, of the two proteins in primary cardiomyocytes. Then,

Figure 5. LTCC density sedimentation and [Ca2+]i transients in Popdc1-null cardiomyocytes. (a) Representative WB depicting the
sedimentation pattern of LTCC (Cav1.2a, ,200 kDa) and Cav3 (,22 kDa) in membrane preparations of WT [+/+] and Popdc1-null [2/2] hearts. (b)
Quantification of the relative distribution of LTCC and Cav3 in gradient fractions 5 (Fr5) and 6 (Fr 6) of the two genotypes. The results summarize, in
arbitrary units (a.u.), three and five independent experiments for LTCC and Cav3, respectively. *P,0.05, fraction 5 vs. fraction 6 within each genotype.
(c) Left, [Ca2+]i transients in representative cardiomyocytes; Right, summary of the measurements performed; n = number of cells; Mean 6 SEM.
doi:10.1371/journal.pone.0071100.g005

Figure 6. Caveolae are altered in Popdc1-null hearts. Electron micrographs showing caveolae (arrows) in WT and Popdc1-null hearts. Scale bar,
0.5 mm. In the bottom panel, summary of caveolae abundance and size measured along 680 and 660 mm membrane length in WT and Popdc1-null
hearts, respectively; n = 3/genotype; Mean 6 SEM; *P,0.00001.
doi:10.1371/journal.pone.0071100.g006

Popdc1, Caveolae and Cardioprotection
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we examined the importance of the putative caveolin binding

motif found within the Popeye domain for the interaction of

Popdc1 with Cav3. We co-transfected COS7 cells with expression

vectors for Cav3 and for Myc-tagged wild-type or deletion-

mutated Popdc1 and looked for the immunoprecipitation of Cav3

by anti-Myc antibodies. Fig 2b demonstrates that wild type and

deletion D92 Popdc1, which contained the putative caveolin

binding motif, interacted with Cav3 in a manner that allowed the

immunoprecipitation of Cav3 with antibodies specific for the Myc-

tagged Popdc1. However, when the Popdc1 sequence lacked the

putative caveolin binding motif (deletion D116), Cav3 was not co-

precipitated, indicating that the caveolin binding motif is required

for the interaction of Popdc1 with Cav3 and that the two proteins

may interact directly with each other.

The microscopic colocalization of Popdc1 with Cav3 and the

ability to bind Cav3 pointed to the caveolae as a possible site for

Popdc1. To examine that, we followed the sedimentation pattern

of Popdc1 in density-gradient centrifugation of membrane

preparations and found it within the Cav3-rich fractions (fractions

5 and 6) that represent the caveolae (Fig. 3a). Chemical disruption

of the caveolae by cholesterol removal with MbCD redistributed

Cav3 to fractions of higher density while Popdc1 distribution was

below detection. Caveolae are dynamic structures susceptible to I/

R injury [42]. In membrane preparations from I/R hearts

undergoing 60 min reperfusion (see below) we found that the

Cav3 rich fractions were redistributed to fractions 6–7 and 11–12

and that Popdc1 was shifted to the same fractions (Fig. 3a). The

immunohistochemical analysis of cardiomyocytes in hearts sub-

jected to MbCD infusion or the I/R protocol revealed no co-

localization of Popdc1 with Cav3 (Fig. 4), suggesting that caveolae

disruption by either chemical or physiological means altered the

organization Popdc1 and Cav3 relative to each other.

Density sedimentation of membrane preparations from Popdc1-

null hearts revealed a shift of the Cav3-rich fractions towards a

lower buoyant density, suggesting alterations in the caveolae

profile in the mutant hearts (Fig. 3a). Other caveolae-associated

proteins such as connexin43 or the L-type calcium channel were

shifted, together with Cav3, to the lower density fractions (Fig. 3a,

Fig 5). Calculation of the relative distribution of cholesterol and

Cav3 throughout the sedimentation gradients demonstrated

differences between the two genotypes (Fig. 3b). In WT hearts,

cholesterol and Cav3 spanned fractions 5 and 6 while in Popdc1-

null hearts both cholesterol and Cav3 peaked in fraction 5,

reflecting reduced size-variation and lower buoyancy of the

caveolae population in the null mutant hearts.

The assessment of caveolae number and size by electron

microscopy revealed a significantly lower abundance of caveolae

per micrometer membrane-length (,30%), and a significantly

larger caveolae average size (,12%), in the mutant compared with

WT hearts (Fig. 6, P,0.00001 in each of the comparisons). It is

suggested that Popdc1 plays a role in the maintenance of caveolae

number and size. These alterations in the caveolae characteristics

did not affect markedly the immunoconfocal presentation of Cav3,

except for a small reduction in the labeling intensity of the t-

tubular Cav3 (Fig. 4).

The results indicated that Popdc1 is a caveolae-associated

protein involved in the maintenance of the distinctive density

sedimentation of Cav3 and the proper caveolae number and size.

It was, therefore, expected that cardiomyocytes and hearts lacking

Popdc1 would display impairment of caveolae regulated functions.

To test that we measured [Ca2+] transients in adult cardiomyo-

cytes, LV functional recovery in isolated heart preparations, and

the ability of hearts and cardiomyocytes to attain preconditioning.

Impaired [Ca2+] transients in Popdc1-null cardiomyocytes
Caveolae disruption has been shown to impair [Ca2+]i transients

and Ca2+ sparks in cardiomyocytes [26,27]. In the mutants, we

detected a shift in the density sedimentation of the LTCC

(Cav1.2a), which accompanied Cav3 in its sedimentation at a

lower buoyancy (Fig. 5a, b), indicating its presence in the mutant

caveolae. Therefore, we examined the importance of Popdc1 for

calcium handling measuring the cytosolic Ca2+ in individual

contracting cardiomyocytes. A significantly lower rates of rise

(P = 0.00001) and of decay (p = 0.0566), and a smaller peak

amplitude (P = 0.0007) of the [Ca2+]i transients were measured in

the Popdc1-null cells (Fig. 5c). This indicated reduced [Ca2+]i

transients in the absence of Popdc1, an expected outcome in the

case of caveolae impairment [26].

Impaired functional recovery in Popdc1-null hearts
We hypothesized that, in the mutants, the absence of Popdc1 and

the related caveolae impairment will increase the heart vulnera-

bility to stressful conditions such as I/R injury and will abolish

ischemic preconditioning (IPC). Hearts of WT and mutant

heterozygotes and homozygotes were subjected to an I/R protocol

of 30 min normoxic stabilization, 30 min global ischemia and

90 min reperfusion. No differences in LV function were detected

between the three genotypes at the end of 30 min stabilization

indicating normal basal cardiac performance in the absence of

Popdc1 (Table 1). Therefore, the hemodynamic parameters

registered for each individual heart at this point were considered

100% performance. As shown in Figure 7, inferior functional

recovery was found in the Popdc1-null compared to WT hearts

following IR. The inferior recovery was evident from the

first minute of reperfusion where the difference in the percent

LVP recovery between mutant and WT hearts was ,13%

(P,0.05, Fig. 7a). The difference almost doubled as reperfusion

advanced reaching 28% and 60% of LVP recovery at 30 min

reperfusion that emphasized the importance of Popdc1 for the

functional recovery. The same pattern of lower recovery was

observed in dP/dt, -dP/dt, and RPP (P,0.05), whereas the heart

rate (HR) was similar and stable in all the genotypes (Fig. 1b). The

Table 1. Basal heart performance.

Genotype LVP (mmHg) +dP/dt (mmHg/sec) 2dP/dt (mmHg/sec) HR (beats/min) RPP (mmHg x beats/min) CF (ml/min)

Popdc1[+/+] (13) 86.569.2 28646337 21646274 337.5615.3 2940263560 2.660.2

Popdc1[+/2] (18) 77.163.8 23456152 18006123 314.4610.3 2437061589 2.960.1

Popdc1[2/2] (15) 84.566.2 26706200 19716151 345.7616.6 2902162327 2.860.1

Measurements taken at 30 min of normoxic Langendorff-perfusion (stabilization). LVP, left ventricular developed pressure; +dP/dt, rate of pressure development; 2dP/
dt, rate of pressure relaxation. HR, heart rate; RPP, rate?pressure product; CF, Coronary flow; Brackets, number of animals. Mean 6 SEM.
doi:10.1371/journal.pone.0071100.t001
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coronary flow did not vary between the three genotypes at any

given time of I/R (data not shown), therefore, the differences in

LV hemodynamics were not the outcome of impaired oxygen and

nutrient supply and likely reflected intrinsic variation in the

myocardial response to I/R. Of notice, the heterozygotes

recovered similarly to WT hearts during the first 30 min of

reperfusion; however, beyond that point, their LVP declined to

values closer to those of the homozygote mutants (Fig. 7a).

Corresponding to the functional analysis, a significantly greater

infarct size was measured in hearts of Popdc1-null mice as

compared to WT (P,0.05, Fig. 7c). The necrotic damage in hearts

of heterozygotes was larger than in WT and smaller than in

homozygotes, yet each of the comparisons did not reach statistical

significance.

The expression level of Popdc1 was significantly reduced in WT

hearts following I/R while no effect was observed during the

stabilization period (P,0.05, Fig. 8a, c). A significant and

comparable reduction in transcript levels was measured for

Popdc2 and Popdc3 mRNAs, both in the WT and the Popdc1-

null mutant (P,0.05, Fig. 8a, b), indicating the susceptibility to I/

R of all the three Popdc transcripts and no influence of Popdc1

ablation on the regulation of the other family members (see also

Table S2 in File S1). By contrast, the abundance of the LacZ

mRNA remained unaffected by I/R (Fig. 8b) as was the

distribution of nuclei positive for b-galactosidase (b-gal) activity

(Fig. 8d). The cytochemical staining of cardiomyocyte nuclei for b-

gal that reports on Popdc1 expression was evenly distributed

throughout the myocardium of the Popdc1-expressing mutants

and higher staining intensity was observed in subendocardial cells

that correspond to the conduction tissue (Fig. 8d).

Popdc1 is essential for ischemic and pharmacologic
preconditioning (IPC, PPC)

Considering the fact that Popdc1-null hearts displayed inferior

recovery from I/R and the available knowledge that no IPC and

PPC can be obtained when caveolae are disrupted [43,44], we

hypothesized that Popdc1-null hearts and cardiomyocytes will

display impaired preconditioning. To induce IPC, WT and

mutant hearts were subjected to Langendorff perfusion whereby

5 min ischemia and 10 min normoxic perfusion preceded I/R

injury and LV performance was recorded prior to and during

reperfusion. Compared with controls, IPC significantly improved

post-ischemic LV function in WT hearts (P,0.05) and no

improvement was observed in the Popdc1-null hearts (Fig. 9a),

indicating that Popdc1 is pivotal for IPC protection.

At the cellular level, the induction of oxidative injury in isolated

cardiomyocytes, by H2O2, caused a significantly greater decay in

calcein fluorescence in the mutant compared to WT cells (P,0.05)

that indicated increased susceptibility for mPTP opening in

cardiomyocytes lacking Popdc1 (Fig. 9b). Furthermore, the

induction of PPC by the addition of isoflurane to the isolated

cardiomyocytes attenuated the decay in calcein fluorescence

(mPTP opening) in the WT (P,0.05) but not in the mutant cells

that were not protected against the H2O2 injury (Fig. 9b). We

conclude that similar to the whole hearts, the Popdc1-null

cardiomyocytes displayed higher vulnerability to oxidative stress

and failed to activate preconditioning.

Discussion

Whereas Popdc1 (Bves) has been extensively studied in normal

and transformed epithelial cells of various origins [4–6,8–

12,15,17,19], there have been fewer reports regarding the function

of Popdc1 in muscles although these tissues are the predominant

site of Popdc1 expression. In this work, we demonstrate that Popdc1

is a caveolae-associated protein essential for the maintenance of

caveolae number and size and that Popdc1 deficiency impairs Ca2+

handling, reduces the tolerance of I/R and oxidative stress, and

abolishes ischemic and pharmacologic preconditioning.

Popdc1 is a caveolae-associated protein
The caveolae serve as a dynamic structural platform that

organizes and modulates the activity of distinct ion channels,

receptors and signaling molecules through their interaction with

Figure 7. Heart function and infarct size. Hearts were subjected to
Langendorff-perfusion as detailed in the Methods. (a) The LVP recovery
during reperfusion starting at 1 min reperfusion. (b) Summary of LV
function parameters at 30 min reperfusion. (c) Infarct size expressed as
percent of the area at risk. *P,0.05, Popdc1[2/2] vs. Popdc1[+/+];
#P,0.05, Popdc1[2/2] vs. Popdc1[+/2]. In the curve comparison (ANOVA
with multiple repeats), "P,0.05, Popdc1[+/+] vs. Popdc1 [2/2] and
1P,0.05. Popdc1 [+/2] vs. Popdc1[2/2]. Mean 6 SEM; in (a) and (b)
N = 12/group; in (c), N = 5/group.
doi:10.1371/journal.pone.0071100.g007
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caveolin [24,45]. In the heart, the caveolae were shown to regulate

Ca2+ homeostasis, ischemia tolerance, hypertrophy, stretch

response and more [46]. While I/R injury reduced caveolae

abundance and IPC increased their number [47], caveolae

disruption abolished ischemic or pharmacologic preconditioning

[48,49] and Cav3 overexpression mimicked IPC by increasing

caveolae number and improving I/R resistance [47].

Our conclusion that Popdc1 is a caveolae-associated protein is

drawn from several observations that link it with Cav3, the

caveolae scaffold protein: (a) Popdc1 co-localized with Cav3 in

immuno-stained tissues and cells, (b) Popdc1 co-sedimented with

Cav3 in equilibrium density gradients, and (c) Popdc1 co-

immunoprecipitated with Cav3 from primary cardiomyocytes

and from a transfected fibroblast-like cell line, COS7. While the

precipitation of Popdc1 from cardiomyocytes by anti Cav3

antibodies could be indirect through Popdc1 binding to an

intermediary protein within the Cav3 complex with no direct

binding to Cav3, evidence from the transfected COS7 cells

strongly supports a direct physical interaction of Popdc1 with

Cav3. This view is mainly based on the fact COS7 cells only

express Popdc1 and Cav3 when they were co-transfected with the

corresponding coding sequences. Moreover the spontaneous

interaction of the two proteins was lost when the putative

caveolin-binding motif at the Popdc1 C-terminus was deleted.

The latter indicates clearly that the Cav3 target sequence in

Popdc1 is functional and necessary for the binding of Podpc1 to

Cav3 and strongly supports a direct interaction of the two proteins.

In intact heart tissues, the appearance of Popdc1 in intracellular

transversal striations and its co-localization there with Cav3 and

vinculin, indicated presence in the T-tubules and the costameres.

In cardiomyocytes, each of these structures has been shown to

contain Cav3 and vinculin, and align with the sarcomeric Z discs

[28,41]. While freshly isolated adult ventricular cardiomyocytes

that possess T-tubules display Popdc1 in transversal striations,

neonatal cardiomyocytes and COS7 cells that lack T-tubules, do

not. Previous studies that reported immunohistochemical labeling

of Popdc1 in the heart did not show the ‘‘ribbed’’ staining either

because the tissues were not of sufficient maturity or else, the

antibodies used were not adequate or the microscopy was not

optimal in terms of magnification, resolution or tissue preparation.

The co-localization of Popdc1 and Cav3 disappeared when

caveolae were disrupted chemically (MbCD) or physiologically (I/

R), suggesting an alteration in their alignment relative to each

other. In the null-mutants, the distribution of Cav3 and other

caveolae proteins to a lower buoyant density pointed to caveolae

modification in these cells. The importance of Popdc1 for caveolae

Figure 8. Popdc1 is down regulated by I/R. (a) and (b) RT-qPCR of Popdc1-3 and LacZ mRNAs from hearts isolated upon heart removal (Basal), at
the end of stabilization (Stab) and at 90 min reperfusion (I/R). N = 5/group. AU, arbitrary units, Mean 6 SEM; *P,0.05 compared to Basal. (c) Western
blots of Popdc1 in WT hearts (Popdc1, ,68 kDa; Actin, ,42 kDa). (d) Cytochemical staining of LacZ activity (blue nuclei). Note, a higher intensity in
subendocardial cells (white asterisk). Eosin counterstaining illustrates the general morphology. Images were captured at X50 and X100 magnification,
as specified.
doi:10.1371/journal.pone.0071100.g008
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integrity was emphasized by a striking reduction in caveolae

number and a larger average size of the remaining caveolae

(measured within the consensus 50–100 nm size range) in the

hearts lacking Popdc1. Whether this caveolae population represents

aberrant caveolae or a normally existing subtype of Popdc1-free

caveolae is as yet unclear. Nonetheless, the distinct Podpc1-deficient

caveolae seem to be sufficient to sustain the heart as long as it is

unstressed. Reports on caveolae classification according to size and

function are scarce. Three caveolae subclasses have been

characterized in adipocytes that differed in density, cholesterol

content, and distinct subsets of specific proteins engaged in

different functions in the plasma membrane such as fatty acid

uptake or cholesterol metabolism [50]. Caveolae sub-populations

that segregate according to their sarcolemma or T-tubule location

and their occupant modulators of Ca2+ signaling to the

sarcoplasmic reticulum have been described in the heart [51].

The larger, Popdc1-deficient caveolae may differ in their

functional capabilities due to variations in the amount and

repertoire of the proteins clustered by them. The lower abundance

of these caveolae suggests a decrease in caveolae formation and/or

stability.

Popdc1 contains two cholesterol interaction/recognition amino

acid consensus sequences (CRAC), at the boundary of the 3rd

transmembrane domain and the cytoplasmic region (LSYL-

LYKKRPVK, a.a. 108–119), and at the top of the Popeye

domain (LGGVYHR, a.a. 124–130), as well as a caveolin binding

motif (FLYEIFRY, a.a. 244–251) located within the Popeye

domain. The CRAC motif is present in caveolins and in proteins

targeted to lipid rafts or regulating cholesterol metabolism and

transport [52]. The caveolin binding motif is found in proteins that

interact with the caveolin scaffolding domain [45]. Together, these

motifs point to the potential involvement of Popdc1 in cholesterol

recruitment and in caveolae formation or stabilization. It has been

recently questioned whether a caveolin-binding motif, which

consists of a number of aromatic amino acid residues is indeed

functionally implicated into caveolin interaction since in most

proteins this motif was found to be non-accessible [53]. Our own

structural analysis of the location of the caveolin-binding motif in

Popdc1 suggests that the caveolin binding site is part of an alpha-

helix at the end of the Popeye domain and appears to be fully

accessible since it is predicted to be on the protein surface.

Popdc1 maintains caveolae-dependent functions
Much experimental evidence has established the importance of

intact caveolae population for different cellular functions within

the cardiomyocyte [22,24,44,45,47–49]. In this report, three

known caveolae-dependent functions, including calcium homeo-

stasis during contraction, the recovery from I/R injury and the

capability of preconditioning were impaired or lost in hearts and

cardiomyocytes lacking Popdc1, supporting the notion that

Popdc1 acts to maintain caveolae-dependent functions. [Ca2+]i

cycling during contraction is regulated by the voltage dependent

L-type Ca2+ channels and the Na+/Ca2+ exchanger, both are

present in the caveolae, thereby facilitating Ca2+ signaling to the

sarcoplasmic reticulum and Ca2+ extrusion through the sarcolem-

ma [27,54,55]. Our findings of reduced [Ca2+]i transient

amplitude and slower rates of [Ca2+]i rise and decay in Popdc1

deficient cardiomyocytes are compatible with the changes in

[Ca2+]i transients and Ca2+ sparks reported in MbCD treated

cardiomyocytes [26,27]. In the mutants, the shift of the L-type

calcium channel, together with Cav3, to fractions of lower

buoyancy suggested its distribution with the distinct Popdc1-

deficient caveolae that might eventually affect the Ca2+ fluxes.

Whereas under basal conditions the Popdc1-null hearts displayed

normal LV function, the importance of this highly conserved gene

became visible under the stress of I/R when compensatory

mechanisms failed to maintain the normal functional capacities.

Perturbation of [Ca2+]i cycling might be responsible for the

depressed left ventricular contractility (6dP/dt) of the Popdc1

deficient hearts following I/R [56]. The inferior functional

recovery and greater infarct size in the Popdc1-null hearts provided

clear evidence that this protein plays a role in the response to

ischemia or in the recovery process. In the same line, the

experiments in adult cardiomyocytes demonstrated that Popdc1

deficiency increases the susceptibility to oxidative stress since cell

exposure to H2O2 induced a greater damage to the Popdc1-null

compared with WT cardiomyocytes.

Regarding the heterozygote I/R hearts, impaired recovery was

detectable only after 30 min of reperfusion when the LV

Figure 9. No preconditioning in Popdc1-null hearts and
cardiomyocytes. (a) WT and mutant hearts underwent I/R perfusion
with and without IPC. Parameters of LV function registered at 30 min
reperfusion are shown. Labels are as in Figure 1. Mean 6 SEM; *P,0.05,
I/R vs. IPC-I/R within a genotype. (N = 5–9/group). (b) Wild type and
mutant cardiomyocytes were preconditioned with isoflurane (1.5%) or
left untreated, then loaded with calcein-AM and exposed to H2O2

(200 mM). The change in calcein fluorescence with time of H2O2

treatment is shown. Summary of three experiments performed in
triplicates. *P,0.05, WT (Popdc1 [+/+]) cells, isoflurane vs. untreated
control. #P,0.05, control Popdc1 [2/2] vs. control Popdc1 [+/+]

(isoflurane-untreated cells, open symbols). In the curve comparisons
(ANOVA with multiple repeats), 1P,0.05, Popdc1 [+/+] isoflurane vs.
Popdc [+/+] control; ¥P,0.05 Popdc1 [+/+] control vs. Popdc1 [2/2] control.
doi:10.1371/journal.pone.0071100.g009
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performance dropped from WT levels to nearly the null mutant

levels as if some resources, structural or others, were depleted. This

observation and the intermediate infarct size – between WT and

the null mutants – suggest that the degree of functional

impairment corresponds to the expression level of Popdc1. Namely,

a partial deficit due to haploinsufficiency is enough to unmask the

importance of Popdc1 in the response to I/R.

In the WT hearts, the levels of Popdc1 and its mRNA were both

decreased by I/R. This could be the outcome of the acute tissue

injury but could also contribute to the concomitant reduction in

LV performance. Previously, we reported the diminution of

Popdc1 and its coding mRNA in end stage heart failure in humans

that suggested a relationship between the evolution of myocardial

dysfunction and the decrease in Popdc1 [19]. Interestingly, the

expression level of LacZ (the product of the Popdc1LacZ allele)

was not affected by I/R. Since the Popdc1-null allele was generated

by knock-in of a nuclear-targeted LacZ into the first coding exon

of Popdc1 [31], the originating transcript lacks the 39-UTR and

may resist mRNA destabilizing signals that target the 39-UTR

[57]. Besides, the nuclear localization of b-gal may rescue it from

processes that degrade Popdc1.

The third indication that Popdc1 is important for functions

governed by the caveolae was the inability of Popdc1-null hearts to

undergo ischemic preconditioning and the failure of Popdc1-null

cardiomyocytes to attain pharmacologic preconditioning. Previous

studies have shown that caveolae disruption by chemical,

physiological or genetic manipulations abolished preconditioning

and deregulated proteins in the Cav3 complex that control

cytoprotective pathways [42,43,49,58]. These proteins, including

signaling complexes that traffic from the sarcolemma to the

mitochondria [49], ion channels that modulate protection

signaling [58] and pro- and anti-survival MAP kinases [42,43],

were not investigated in this study. However, it is conceivable that

many of them would be deregulated in the Popdc1-null hearts

primarily because the caveolae are altered. The mechanism by

which Popdc1 affects the caveolae population is still to be

elucidated.

We relate much of the functional deficits of the Popdc1-null

hearts to their impaired caveolae population however, part of the

changes observed may evolve from the role of Popdc1 in other

cellular or membrane domains that have not yet been elucidated.

It has been recently shown that Popdc1 (Bves) facilitates vesicular

transport in epithelial cells [13]. Participation of Popdc1 in

vesicular transport in cardiomyocytes is possible and may or may

not involve the caveolae. Popdc1 may also participate in cellular

signaling through its recently demonstrated ability to bind cAMP

and to interact with ion channels such as TREK-1 [20,21].

TREK-1 has been shown to be cytoprotective after ischemic

insults in the brain [59], however at present it is unclear whether

TREK-1 has a similar role in the heart. Likewise it is at present

unclear to what extent the ability of Popdc proteins to bind cAMP

and to act as a signal mediator is important in the context of Cav3

binding and cardiac ischemia and preconditioning. In addition, as

caveolae play a role in skeletal muscle differentiation and myoblast

fusion [60], our findings may explain, at least in part, the

retardation in muscle regeneration in Popdc1-null mice [31].

Two main issues were addressed in this study, the identification

of sites where Popdc1 resides in the sarcolemma, and the

investigation of Popdc1 importance for myocardial protection.

The results demonstrated that Popdc1 is a caveolae-associated

protein involved in caveolae maintenance and pointed out the

importance of Popdc1 for several functions that depend on intact

caveolae, including protection. A detailed mechanistic explanation

has not been delineated in this study. Questions including the

structural or functional association of Popdc1 with different

proteins in the Cav3 complex, the involvement of Popdc1 in

caveolae formation or in the mobilization of proteins to or from

the caveolae have not been addressed and await future investiga-

tion.

Conclusions
Our data provide the first evidence to date that Popdc1 is a

protein of the caveolae and a major player maintaining their

structural and functional integrity. Ablation of Popdc1 exacerbates

myocardial ischemic and oxidative injury and abolishes precon-

ditioning protection. These observations indicate a role for Popdc1

in heart malfunction and disease pointing to caveolae mediated

mechanisms.
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