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Abstract
Selective or Multiple Reaction monitoring (SRM/MRM) is a liquid-chromatography (LC)/tandem-
mass spectrometry (MS/MS) method that enables the quantitation of specific proteins in a sample
by analyzing precursor ions and the fragment ions of their selected tryptic peptides.
Instrumentation software has advanced to the point that thousands of transitions (pairs of primary
and secondary m/z values) can be measured in a triple quadrupole instrument coupled to an LC, by
a well-designed scheduling and selection of m/z windows. The design of a good MRM assay relies
on the availability of peptide spectra from previous discovery-phase LC-MS/MS studies. The
tedious aspect of manually developing and processing MRM assays involving thousands of
transitions has spurred to development of software tools to automate this process. Software
packages have been developed for project management, assay development, assay validation, data
export, peak integration, quality assessment, and biostatistical analysis. No single tool provides a
complete end-to-end solution, thus this article reviews the current state and discusses future
directions of these software tools in order to enable researchers to combine these tools for a
comprehensive targeted proteomics workflow.
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1. Introduction
A large body of research suggests a relatively poor correlation between protein and mRNA
expression [1]. Since the biological effector molecule is usually the protein and not the
mRNA that encodes it, and since mRNA microarray expression analysis is unable to detect
differential levels of protein post-translational modification (PTM) (e.g., phosphorylation),
there is a very substantial demand for quantitative protein profiling technologies. Proteomics
technologies can be broadly divided into two categories: discovery and targeted proteomics.
Discovery proteomics experiments (e.g. multidimensional protein identification technology
(MudPIT) [2], difference gel electrophoresis (DIGE) [3], isotope-coded affinity tags (ICAT)
[4], multiplexed isobaric tagging technology for relative and absolute quantitation (iTRAQ)
[5], stable isotope labeling by amino acids in cell culture (SILAC) [6], and LC-MS/MS
label-free quantitation [7]) often require large sample quantities and multi-dimensional
fractionation, which diminishes throughput. Furthermore, approaches to improve the
sensitivity and throughput of protein quantification limit the number of peptides that can be
monitored per MS run. For this reason, discovery proteomics optimizes protein
identification by spending more time and effort per sample and reducing the number of
samples analyzed. In contrast, targeted proteomics strategies limit the number of features
that will be monitored and then optimize the chromatography, instrument tuning and
acquisition methods in order to achieve the highest sensitivity and throughput for hundreds
or thousands of samples. Discovery proteomics relies on stochastic precursor-ion selection,
thus making run-to-run peptide identifications variable. In addition, the software and
technical expertise needed to run and analyze these methods remains challenging. Discovery
proteomics results in MS/MS sequencing of many more peptides (>3) than are needed to
identify the parent protein. With complex mixtures this approach also must be coupled with
off-line fractionation which results in numerous LC-MS/MS runs that require tens of hours
of MS instrument time to detect and quantify hundreds to thousands of proteins in a complex
mixture. As an example of the enormous duplication of effort with this approach, since 2007
the MS/Proteomics Resource at Yale University has sequenced and stored 41,938,125
peptides (with an FDR of 0.01) in the Yale Protein Expression Database (YPED) [8, 9] with
only 2,895,792 distinct sequences or 6.9% of all YPED data. If we continue to use the same
LC-MS/MS approach, then 93% of our instrument time will be wasted by resequencing the
same abundant peptides in each experiment. Given the challenges inherent in quantitative
analysis of highly complex proteomes, it is not surprising that many proteomic laboratories
are moving away from “complete proteome” analysis to a more targeted analysis of protein
expression as clinicians seek the biomarkers that may provide valuable insight into the
understanding, diagnosis, and personalized treatment of many human diseases.

Targeted Proteomics was just recently selected as Nature Method of the Year and is
recognized as the most sensitive and specific way to detect pre-selected components in a
complex matrix such as a proteolytic digest of a plasma or tissue extract[10-12]. Multiple
Reaction Monitoring (MRM) utilizes a triple quadrupole mass spectrometer carrying out
sequential rounds of Selective Reaction Monitoring (SRM), to concurrently quantitate
multiple analytes as schematically depicted in Figure 1.

A quadrupole mass analyzer is a type of mass filter which typically consists of four parallel
metal rods. Ions of a certain mass-to-charge ratio as determined by the applied potential to
the rods will travel between the rods and reach the quadrupole’s detector. Triple quadrupole
mass spectrometers consist of two quadrupole mass analyzers in series, with a (non mass-
resolving) radio frequency (RF)- only quadrupole between them to act as a collision cell for
collision-induced dissociation. The first (Q1) and third (Q3) quadrupoles serve as mass
filters, whereas the middle (Q2) quadrupole serves as a collision cell. SRM analysis in the
triple quadrupole mode is performed by setting the Q1 window to the precursor m/z value
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(Q1 is not scanning), and Q3 set to the specific m/z value corresponding to a specific
fragment of that peptide. In SRM reactions, precursor / fragment ion transitions are
monitored while the collision energy is tuned to optimize the intensity of the fragment ions
of interest. In the MRM mode, a series of SRM reactions are measured sequentially, and the
cycle (typically 1-2 sec) is looped throughout the entire time of the HPLC separation. SRM
transitions are determined from the MS/MS spectra of the existing peptides. Typically,
doubly (sometimes triply)-charged precursors are selected Multiple transitions per peptide,
corresponding to high intensity fragment ions, are then selected and the collision energy
optimized to maximize signal strength of MRM transitions by using automation software.
The principles upon which the MRM approach rests are based on a very robust MS
technology[13] that has been used for many years to quantify a wide range of small
molecules in clinical samples ([14]). This high-throughput MS method has a wide linear
dynamic range of up to five orders of magnitude and also has a very high sensitivity that
allows detection of ng/ml amounts of peptides in biological fluids and cell or tissue protein
extracts. [15-17]

For developing a targeted proteomics assay, first the targeted proteins must be chosen, and
this is often based on previous experiments such as iTRAQ, DIGE, SILAC, label-free LC-
MS, DNA-based microarray technologies (with the caveat that the level of mRNA and
protein expression may differ), or on general knowledge of the disease or tissue being
studied. Once the protein is selected, a user must select a peptide that is unique to each
protein from databases of experimentally identified peptides, or use an algorithm [18] that
analyzes the sequence of each targeted protein to predict the best tryptic peptides for
analysis. Numerous recent publications outline the advantages and reasons for utilizing
MRM analysis. Examples include a recent comparison of MRM analysis to traditional
discovery proteomics [19] where they used information-dependent data acquisition (IDA) to
monitor 222 peptides from a complex sample, highlighted the improved sensitivity and
dynamic range capability of MRM by showing that the number of proteins identified in all
samples increased significantly from 34% (IDA) to 88% (MRM). MRM analysis has also
been equally applicable to quantifying unmodified as well as modified proteins, such as
phosphorylated, ubiquitinylated, methylated, acetylated, etc. proteins. Anderson and Hunter
[20] also showed the applicability of this method in plasma when they developed a method
to monitor 50 plasma proteins via MRM quantitation. Xiao et. al. [21] have shown that
MRM analysis is at least 50 times more sensitive than parent ion monitoring. Carr and
researchers from 8 laboratories demonstrated the level of accuracy and precision that MRM
assays could achieve by running a multi-site analysis of human plasma [22]. Aebersold and
colleagues were able to show the ability of MRM to quantitate proteins over the full
dynamic range of yeast. [23]. The results obtained from MRM analysis also have been
shown to match antibody-based assays, such as ELISA [24-27]. For absolute quantification
of proteins, peptides, and/or their modification states, researchers have utilized stable
isotope dilution (SID)[16] as a means to precisely and quantitatively measure the absolute
levels of proteins after proteolysis[28]. These stable isotopes can be generated via synthesis
of stable isotope peptides (termed AQUA peptides[29]), metabolic labeling of a protein
consisting of concatamers of peptides (termed QconCAT[30]), or full length isotope labeled
proteins (termed PSAQ [31]).

For detection of low abundance proteins in biological fluids, researchers have employed an
approach termed SISCAPA [32]. SISCAPA is a combined assay using a signature peptide
and its associated stable isotope-labeled internal standards that are enriched from sample
digests by anti-peptide antibodies for a targeted LC-MS readout. Briefly, a synthetic peptide
is used to generate a highly specific anti-peptide antibody whose role is to enrich the
signature peptide in a complex mixture. The protein digest spiked with a stable isotope-
labeled form of this peptide is subjected to affinity chromatography using the anti-peptide
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antibody immobilized on magnetic beads. After affinity enrichment, both the native peptide
and stable isotope-labeled peptide are eluted and analyzed by mass spectrometry.

A common feature of the above-mentioned publications is the effort and time required to
develop large-scale MRM-based assays. Often these steps include the need to run discovery
experiments, generate synthetic peptide standard, and calibrate retention time between
samples, thus limiting the throughput of large-scale MRM assays and the time to obtain
results. In efforts to make the MRM assay development and instrument usage more efficient,
comprehensive software tools and automated workflows have been developed. This
manuscript aims to outline these software tools in hopes that future researchers developing
large-scale targeted proteomic assays will be able to effectively utilize these tools to reduce
the time and effort required for performing large-scale MRM assays on complex proteomic
samples.

Targeted proteomic assay development can be divided into three stages: assay development,
data collection and data analysis (Figure 2). Often numerous software tools are required to
go through all three stages. Given the emerging nature of targeted proteomics, many of these
tools are rapidly evolving in efforts to provide a more robust and comprehensive workflow.
Recent reviews have covered the MRM software used for both the assay development [33]
and downstream data analysis[34]. In this article, we review available commercial and open-
source software tools (Table 1) that, when put together, can provide researchers with a
complete workflow for developing, collecting, integrating, and analyzing large-scale
proteomic MRM assays.

2. Assay development
The goal of MRM assay development is to effectively choose peptides and transitions that
serve as proxy for the total protein amount. With this in mind, selection of peptides can be
challenging since the process of trypsin digestion can lead to a miscleavages or partial
cleavages, thus creating multiple forms for a given peptide sequence. Peptides can also be
non-unique, in that their sequence is shared among multiple proteins. Finally, peptides can
contain various post-translational modifications such as oxidation, phosphorylation, etc.
Those variations split the amount of peptide into multiple forms making detection more
difficult; also, all forms of this peptide would need to be monitored in order to accurately
correlate the amount of peptide measured with the protein concentration. Due to these
reasons, the software tools often contain rules and parameter settings to avoid peptides
which suffer these disadvantages. For example, the software will often remove all
methionine-containing peptides under consideration due to the effect of oxidation.

Another feature in some of the assay development software is the ability to make inference
in the MRM peptide/fragment ions. For example, discovery data is often collected on high
resolution mass spectrometers, while Triple Quadrupole Mass Spectrometers often have
“unit” m/z resolution (e.g., 0.7 Th full width half max), with the consequence that precursor/
product ion pairs can overlap and result in incorrect signal measurements. Therefore,
researchers often need to predict or query the fragments of all peptides in a given proteome
in order to avoid choosing a Q1/Q3 pair that contains multiple simultaneously detected ions.
Given this potential for interference, researchers often choose multiple (2-5) transitions per
peptide so that downstream peak integration algorithms can group these for accurate peak
integration. An advantage of monitoring multiple MRM transitions is the potential to assess
the quality of the peaks based on their relative intensities, thus allowing detection of
interference and dropping the problematic transition(s) or the whole peptide from future
assays. [35] For MRM assays with only a few transitions, these interference spectra can be
determined via visual inspection. For larger-scale assays the relative ordering of peaks can
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be evaluated quantitatively as a dot-product of the expected peak heights and the observed
peak heights, similarly to what has been used in GC-MS[36]. Often the software packages
can generate a dot-product score and flag questionable transitions for manual review.

Choosing peptides with the strongest signal is essential for developing high-sensitivity
MRM assays, because peptides from the same protein can differ by as much as 100 fold in
ionization intensity. [37] Thus, selecting peptides based on the observed signal response
maximizes sensitivity and has the added benefit of minimizing the effect of interference. In
order to maximize the number of MRM transitions that can be monitored in a liquid
chromatography multiple-reaction monitoring assay (LC-MRM), one can schedule the mass
spectrometer to collect subsets of peaks based on their retention time (RT) on the column.
Thus, many of the software applications have features which predict/calculate RT to
generate an MRM method containing, Q1, Q3, and RT values for each peptide. Software
such as the sequence-specific retention calculator SSRCalc can calculate a retention time
based on peptide sequence and the reversed phase analytical column properties [38-40]. An
alternatative method for determining peptide retention times is to run a set of standard
peptides or recombinant protein sequences mixed with the sample, thus allowing one to
express the RT of the peptides in terms of that of internal standards and generate an
empirical retention time. [41] The benefit of using isotopic internal standards in MRM
assays is that if the exact concentration of the heavy isotopic peptide is known, the absolute
quantitation of that particular peptide can be determined. Another approach to scheduling
MRM assays is to use the identical chromatographic setup for discovery MS and targeted
MS instrumentation, thus ensuring identical elution times.

2.1 Software for Automating Assay Development
Software and algorithms used to generate MRM assays include MRMaid, MRMpilot,
Pinpoint, and Skyline, ATAQS. The initial software packages for MRM assay development
were often single-user packages, such as MRMpilot, MRMaid, MaRiMba and they were
limited in their scope. Newer software packages such as Skyline and ATAQS aim to
integrate the entire targeted proteomic workflow.

MRMPilot software [42] is commercial software developed by AB Sciex, for developing
MRM assays on the company’s instruments. It can devise assays based on existing spectra
or can predict spectra de novo, based on chemical properties of the peptides. Assays can be
developed for peptides with chemical modifications, PTMs or heavy isotope labels. Once
the transitions are defined, MRMPilot Software then builds the Analyst® Software
acquisition method. Then it can perform iterative assay development based on experimental
results and can store and organize assay files. The software accepts input from
ProteinPilot™ Software, Mascot, Sequest, Spectrum Mill, BioML, PeptideAtlas, and
MRMAtlas. It also has support for developing MIDAS™ (MRM-triggered MS/MS)
acquisition, which utilizes an AB Sciex QTRAP mass spectrometer to trigger a MS/MS
experiment once an MRM signal is above a specified baseline, thus enabling researchers to
confirm the identification of the peptide.[43]

MRMaid [44, 45] is part of the Proteosuite software suite. It uses spectra from EBI’s PRIDE
database and sequence data from UniProt to suggest an MRM assay for a given protein. It is
a Web-based tool into which one can enter the name of one or more proteins and obtain a
list of transitions based on the entered criteria. Results can be filtered by instrument type,
amino acid, transition value, maximum number of peptides per protein and maximum
number of transitions per peptide. It considers the probability of observing each peptide and
each transition based on data in PRIDE; it calculates the retention time, and the product ion
relative intensity to develop an MRM assay. It is not designed to create assays for post
translational modifications. It exports the transition list in csv format.
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Skyline [46] aims to be a comprehensive pipeline system for developing MRM assays. The
user can start by inputting a file of protein sequences for which to develop the assay. The
software allows users to build their own spectral library, by inputting data in various formats
such as from BiblioSpec, NIST and GPM. The program automatically generates a list of
proteolytic peptides and, for each peptide, a list of transitions. One can filter this list by
defining the type of protease (trypsin, LysC, etc.), the size and charge of precursor peptides,
the types (y, b, etc.) and charge of product ions, the types of modifications of the peptides
(static modifications like carbamidomethylation of cysteines, or heavy isotopic modification
of specific amino acids). These predicted spectra are used in conjunction with spectral
libraries obtained from a local or public repository. There are specific rules and filters that
can be selected for generating optimal transitions. Transition calculations can be made for
vendor-specific instruments. It is also possible to define retention time standards that are
used for setting up scheduled MRM. With suitable settings one can automatically generate
an optimal assay. Skyline can export transition lists into various formats, including those
specific to particular commercial instruments, as well as open formats. It is also possible to
import transition lists from another source and translate them into a different format. Skyline
also has features for MRM assay refinement based on the experimental results obtained.

Pinpoint is a commercial package from ThermoScientific which simplifies the creation of
targeted quantitative assays and vendor-specific intelligent-SRM (iSRM) assays. The
software is designed to automate the preliminary selection of MRM transitions by predicting
proteotypic peptides and determining the best MRM transitions. iSRM assays enable you to
collect a primary set of transitions for peptide quantitation and trigger secondary transitions
at very short dwell times for peptide confirmation without greatly increasing cycle time.
Pinpoint methods can then be exported to a Thermo Scientific instrument for data collection.
Like MRMPilot, the Pinpoint workflow is iterative in that a preliminary method is used to
acquire data, which is in turn used to refine the method. Pinpoint software also provides
tools for evaluating this preliminary data and verifying peptide candidates.

ATAQS (Automated and Targeted Analysis with Quantitative SRM) [47] is a software
pipeline tool that contains modules to design, manage, analyze and validate an MRM assay.
The modular design allows users to begin and end the analysis at any point in the workflow
and also to write plug-ins to customize their analysis algorithms. The modules support
project management in general, as well as target selection, transition optimization and post-
acquisition data analysis. The software is Web-based and allows multiple users to work on a
project. ATAQS uses FireGoose [48] to connect to various Web services. Among these Web
services are PeptideAtlas (used to select peptide spectra [49]), TIQAM (to generate in-silico
peptides for a given protein [50]), PIPE2 (to generate a list of proteins to design an MRM
assay as well as for various analysis tasks), and PABST (Peptide Atlas Best SRM
Transition) (to generate optimal transitions). The user has the option to generate decoy or
heavy-light pairs of data. mProphet[51] is used for validating selected transitions in their
ability to correctly identify a protein. An assay document can be generated in TraML format
[52] to share with other investigators.

MassHunter Optimizer is part of the MassHunter Workstation, a commercial software
package from Agilent for triple quadrupole LC-MS. It allows fast, sensitive compound
identification and confirmation that helps design triggered MRM (tMRM) acquisition.
Triggered MRM is a more sensitive form of MRM because only the primary quadrupole is
set to monitor for a desired peptide until its detection, after which the monitoring of the
secondary transitions begins. The software allows for the selection of ten transitions which
can be any combination of primary and secondary types. MassHunter also enables the
optimization collision energy as well as select the best transitions from empirical data
generated on the Agilent platforms using Optimizer-designed methods.
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TargetLynx™ Application Manager is available from Waters Corporation automates sample
data acquisition, processing and reporting for quantitative results from their instruments. The
software can be used to flag peaks that are above a certain threshold, within an m/z window.
It can also flag data that does not satisfy certain quality control criteria. The QuantOptimize
Application Manager automates MRM method set-up. Up to five MRM transitions can be
automatically and individually selected and optimized for collision energy.

Other tools exist that identify peptides that are likely to be suitable for an MRM assay, but
the software pipelines described above appear to have greater utility at this time. TIQAM
(Targeted Identification for Quantitative Analysis by MRM is a software suite for peptide
selection, transition selection and validation [50]. MaRiMba [53] generates and validates a
transition list based on input spectra and protein sequences. MRMer [54] calculates
transitions and their peak intensities and allows comparison of predicted results with actual
results. SRMCollider [55] can calculate ion signatures for a given protein mixture and
identify those that can create interference with an MRM assay. Numerous software tools for
evaluating the best MRM peptides have emerged such as PeptideSieve[18], ESP
predictor[56], and STEPP[57]. These software use different algorithms that consider
sequence features and predicted physico-chemical properties of peptides to classify them as
“proteotypic”, that is, found in only a single known protein and therefore serves to identify
that protein.

2.2 Public Databases
With the emergence of MRM technologies, databases/repositories are needed for capturing
MRM data. Current proteomics repositories such as PRIDE[58, 59], GPMdb [60] and
PeptideAtlas[61-63] have been based on shotgun proteomics data. These resources do not
provide the user with the ability to store, annotate, and query MRM data. While it is possible
to develop a new MRM database from scratch, the other alternative is to extend an existing
proteomics database/repository to handle MRM data. Databases like GPMdb [60] [64],
Peptide Atlas [63], MRMAtlas [65], EBI’s PRIDE[66], NIST (http://peptide.nist.gov/), and
YPED [8, 9] are candidates that have the potential for such an extension. The advantage of
this approach is that one can leverage existing informatics resources and expertise to
integrate targeted and shotgun proteomics data. In addition, many of the existing
components, including sample annotation, project-based grouping of samples, and data
publication can be reused for MRM purposes. New modules will need to be constructed to
allow these databases to accept data from the MRM pipeline as well as to provide new user
interfaces to browse and visualize MRM data. It will also be necessary to incorporate the use
of standard proteomic data formats such as mzML [67] and TraML [52] for disseminating
raw and processed MRM data to the scientific community. For example, Skyline users can
now use Panorama[68] Server to be automaticaly upload and sharing Skyline files via a web
browser interface.

Another benefit of using existing proteomic databases lies in the selection of transitions for
developing MRM assays. Selection of the correct transitions is greatly facilitated if a
product ion has been previously observed. Public repositories in which mass spectrometry
proteomic data is deposited as described above can be used in the development of MRM
assays. The SRMAtlas [37] contains spectrum libraries for a significant number of crude
peptides that were synthesized on a large scale. MacCoss and colleagues developed a high-
throughput workflow based on in vitro-synthesized proteins [69]. Such MRM assay atlases
can be expected to make the measurement of protein levels a more routine undertaking.
PABST is a search tool for the best peptides to identify proteins by mass spectrometry [47].
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2.3 Standardization and Data formats
Because laboratory instruments and analysis software output data in various and sometimes
proprietary formats, it has become important to devise standard data formats that can be
produced and recognized by tools used by the proteomics community. For example,
mzXML format developed by the Sashimi project (http://sashimi.sourceforge.net/) and the
mzData developed by the Human Proteome Organization (http://hupo.org) allow peptide
identifications by different software to be combined by integrative programs. Application-
specific file formats such as Mascot dat and mgf files, SEQUEST result and dat files, MS2
and DTASelect formats can be converted into XML-based formats such as mzXML [70],
mzML [67], pepXML [71], protXML [71], mzIdentML [72], mzQuantML (http://
www.psidev.info/mzquantml), X! Tandem XML [73], PRIDE XML (www.ebi.ac.uk/pride/).
All these formats are based on the Extensible Markup Language (XML) and can be
validated by various standard tools. TraML is the data standard proposed for MRM assay
files [52]. It can be used for MRM assays developed for small compound studies as well as
for proteomics studies. The format can contain up to 10 types of information sources,
ranging from metadata about the file itself to instruments, people, publications, compounds,
transition data, and an inclusion and/or exclusion list. Overall, there has been an increasing
effort by the ProteomeXchange project to develop a single point of submission to
proteomics repositories, and encourage the data exchange and sharing of identifiers between
the repositories so that the community may easily find datasets in the participating
repositories. [74]

3. MRM data collection
For large scale MRM analysis, the “learned” peptide sequences and their transitions
described above are transformed into LC-MRM assays that are run on a triple quadrupole
mass spectrometer.

Quantitation of targeted proteins is often accomplished by quantifying and averaging
together the yields of 2-3 tryptic peptides from each targeted protein. The specificity and
sensitivity of detection is enhanced by fragmenting each of these tryptic peptides and by
then selecting two (or more) of the most intense fragment ions from each tryptic peptide to
quantify. Hence, quantitation of each targeted protein is typically based on multiple data
points (e.g. 2 peptides × 3 transitions/peptide). This results in an LC-MRM method which
collects hundreds to thousands of SRM transitions representing quantitative results for
50-100 proteins in parallel. LC-MRM data is collected by sequentially cycling through
hundreds to thousands (depending on the instrument) of transitions at regular intervals,
termed cycle time, with each SRM transition requiring a specific amount of data collection
time, termed dwell time. As the number of transitions in the assay get larger, the challenge
with expanding these assays is that one is forced to reduce both cycle and dwell time, which
greatly reduces signal-to-noise ratio and data quality, respectively. For downstream peak
detection and integration to be effective, a high-enough peak sampling rate is needed so that
the number of points collected represents the signal being measured. Extracting the height of
the signal over time generates a Gaussian peak as shown in Figure 1. To define a Gaussian
the rule of thumb is that at least 3 points above full-width a half max (FWHM) are needed,
but in practice 3 points is not enough to distinguish the peak from noise (in frequency
domain). [75] For good statistical practice, collecting at least 5 points above PWHH enables
good peak deconvolution and thus produces adequate signal for downstream fold-change
analysis. For example, in typical nanoflow chromatography the PWHH is typically 10-15
seconds, thus the implication is that the an LC-MRM analysis must collect signal for each
transition every 2-3 seconds in order to obtain enough points to effectively fit and model a
peak. Therefore, researchers have built more intelligence into the MRM acquisition logic to
improve data quality and assay robustness. Figure 3 outlines the various methods, which
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have been utilized to collect MRM transitions. The simplest approach is to cycle through the
monitoring of all transitions during the entire time of the HPLC elution. For example, Figure
3A illustrates the data collection scheme for a twelve-transition MRM assay based on three
peptides with four transitions per peptide. The second approach, often termed “scheduled
MRM” (Figure 3B) is based on a peptide retention time and a scheduling window during the
LC-MRM run for which each set of transitions from a given peptide a monitored. [76] As
more peak detections are multiplexed, these experiments are challenged by the fact that
different compounds have different peak widths and different RT stabilities. Having even
more intelligence built into the MRM scheduling logic can greatly improve result quality
and assay robustness. A third approach, called triggered MRM, combines both scheduling
and baseline-triggering (Figure 3C) and is termed xMRM [77] or SRM-triggered SRM [78].
In this method a single MRM transition is scheduled to be collected within a RT window,
but when the signal of that particular MRM transition goes above a specified baseline, this
triggers additional transitions from that same peptide to be scheduled for monitoring.
Utilizing a triggered MRM approach as shown in Figure 3C can effectively maximize both
cycle and dwell time while maintaining accurate and quantifiable areas for both primary and
secondary transitions. As illustrated in Figure 3, the first approach results in the collection of
fewer data points above the PWHH, compared to the second and third approaches.

4. Data analysis
4.1 Peak Detection and Integration

The post-acquisition workflow can entail four major steps. The first step is peak detection,
integration, and quantification; the second is data quality assessment and data filtering; the
third is data visualization and exploratory analysis, and the last is fold-change and/or
statistical significance analysis. Currently no individual software package performs all these
steps. For peak detection and integration, researchers commonly utilize Skyline, Multiquant,
Pinbpoint, MRMer, and ATAQS.

Skyline’s peak integration module can import various types of MRM mass spectrometer
files including Agilent, ThermoScientific, AB Sciex, Bruker, and Waters. It also supports
mzXMl and mzML open source formats. The windows based application also supports
multiple quantitation workflows including label free MS, data-independent, isotope labeled,
multiple labeling strategies [uniformly labeled 15N, 13C/15N, etc] for a single peptide, and
post-translational modifications. Skyline incorporates peptide identifications from MS/MS
spectrum for retention time selection and grouping based on precursor ions. For peak
detection and alignment Skyline uses the CRAWDAD [79] for chromatogram retention time
alignment and warping. CRAWDAD uses a dynamic time warping (DTW) algorithm to
determine retention time shifts and correct for chromatographic variance between replicate
runs. The algorithm is applied to the extracted ion chromatograms after signal smoothing by
an 11-point second-order Savitsky Golay filter [80] to detect the boundary of the peak. Peak
areas are calculated using total integrated area subtracted by background area where the
background area is determined by a rectangular area between peak boundaries and
background boundary. The software provides a graphical display of chromatogram graphs
so manual adjustments can be made and missed integrations can be corrected. The results
can then be exported in a comma-separated format for further analysis.

MultiQuant is a commercial software developed by AB Sciex to detect and quantify MRM
peak intensities for AB Sciex wiff files. MultiQuant supports both relative and absolute
quantitation experiments as well as unlabeled or stable isotope-labeled peptide internal
standards. It can process MIDAS Workflow datasets (MRM-triggered MS/MS) [43] [81] in
addition to MRM-only datasets. It contains two different peak integration algorithms, MQ4
and SignalFinder, and the user interface has simplified parameter selection to save operator
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time and to remove operator bias. The MQ4 algorithm has the ability to group transitions for
peak detection and integration. MQ4 can perform Gaussian smoothing, baseline subtraction,
peak splitting, and calculation of noise percentage. It also contains parameters useful for
scheduled MRM experiments such as peak width and retention time window.
SignalFinder™ utilizes a confidence-based iterative algorithm that can adapt to varying
quantities such as changes in peak shape, baseline and noise. For each transition, a Gaussian
curve is fitted to detect baseline level, calculate peak intensity and confidence score. This
step is repeated until the confidence score converges. [82] Quantitation methods can be
imported or exported as a text file and data results can be exported as either AB Sciex
MarkerView™ format or text files. For absolute quantitation experiments, MultiQuant
generates standard curve on heavy isotope peptides which can be then applied to unknown
samples containing both endogenous and heavy peptides. After calibration is applied by
MultiQuant, a concentration and accuracy is computed.

Pinpoint [83] is a commercial software package from Thermo Scientific. It can be used for
generating MRM or scheduled MRM assays termed iSRM. It also provides post-acquisition
data processing. It supports all Thermo MS platforms including TSQ, Orbitrap, and ion trap.
Peptides are quantified by single-point, normal curve, and reversed curve approaches.
Single-point quantitation is designed for labeled experiments and provides relative
quantitation of endogenous peptide to heavy isotope-labeled peptide. This method is based
on the assumption that the same amount of light and heavy-labeled peptides produces an
equal signal. A normal curve approach can be applied when a sample has a low amount of
endogenous peptides. The reversed-curve approach uses light peptide as internal standards
[84].

Waters provides TargetLynx software for sample quantification and confirmation analysis of
data collected form Waters Mass Spectrometers. Peak integration is performed by
ApexTrack™. ApexTrack™ determines peaks and baselines based on tail, shoulder, and
skewness characteristics. TargetLynx develops calibration curves using standard samples.
Various types of polynomial curve fitting is available to quantify samples with unknown
concentration [85].

Agilent MassHunter software can integrate and process Agilent LC/MS, GC/MS, and ICP-
MS instrument files. Similar to other software described above, MassHunter can perform
relative and absolute quantitation experiments as well as unlabeled or stable isotope-labeled
peptide internal standards. Final reports are stored in XML format or can be exported to
Microsoft Excel.

TIQAM is a stand alone open source software from ISB that has since been superseded by
ATAQS. ATAQS utilizes mzXML or mzML files to detect all the peaks above background
noise of a targeted peptide. Signals from these peaks are smoothed by discrete Fourier
transformation and integrated using mQuest [51]. A peak group is determined by collecting
the nearest peaks and validated by examining the peak group characteristics such as the
number of transitions, total intensities, and retention time deviation. For the correct peak
group, ATAQS further provides peak scores including deviation from expected retention
time, the number of matched heavy and light transitions, and the dot product between
matched heavy and light intensities. The output of the ATAQS can be sent to the mProphet
[51] for peak quality assessment.

MRMer [54] performs both peak integration and heavy/light ratio calculations on mzXML
input files [70]. MRMer detects precursor/product groups based on a specified mass
tolerance. It then determines group start and stop time, and calculates peak area for each
product ion using a trapezoidal approximation. The software enables visual inspection of the
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result and users can alter the start and stop times if necessary. If samples contains heavy and
light transition pairs, a separate input file is required to specify which amino acid residues
are isotopically labeled. In this case, the software calculates a heavy/light ratio based on
their peak areas. If precursor ion scans are available the MS1 data can be used for peak
detection. Finally, data is exported in a tabular format for downstream analysis.

4.2 Data Structure and Peak Quality Assessment
The MRM experiment records various transition-level characteristics, including retention
time, signal-to-noise, and peak intensity. For analysis, each characteristic (e.g., intensity)
can be structured in the form of a matrix. Figure 4 illustrates examples of data structures
obtained by label-free and stable isotope-labeled experiments with three technical runs for
each sample. Each peptide contains multiple transitions, with the label-free quantitation
having 5 transitions for each endogenous peptide. For a stable isotope-dilution experiment as
shown in the figure, the data is represented as each peptide having three transitions matched
for both the endogenous and stable isotope-labeled peptides. Each row and column of the
data matrix corresponds to a transition and replicate run, respectively. Observation from one
transition and a given sample is recorded as an element of the matrix. The rows and columns
of the matrix are often grouped according to precursor peptide sequences and biological
samples.

Peak quality assessment is essential for large-scale MRM/SRM experiments since the
number of transitions in a complete datasets can easily exceed 10,000 individual peak areas
or peak area ratios. In efforts to automate this process, software packages include various
scoring algorithms that provide data metrics for assessing the quality of each transition.
Software packages such as Skyline, TCorr, and Pinpoint evaluate peak integration quality by
a utilizing a score based on the dot-product of the observed intensities and a spectral library.
Skyline additionally provides a downstream filtering algorithm to eliminate peptides with
low intensity and large interferences. Pinpoint calculates percent CV and retention time
reproducibility. TargetLynx provides various quality measures based on user-specified
thresholds. Peak qualities are assessed by using signal-to-noise ratio, retention time
deviation, and the coefficient of determination from the calibration curve. In mProphet, peak
quality is determined from various subscores of transition peak groups including the ion
intensities or retention time deviation for the sensitive recovery of true peak groups. The
algorithm calculates a linear combination of subscores that best separates true and false peak
groups by iterative linear discriminant analysis. In particular, mProphet adopts a semi-
supervised learning algorithm which requires decoy transitions as negative controls. Decoy
transitions are designed to represent false peak groups and can be generated by reversing the
peptide sequences or adding a random value to Q1- and Q3-measured masses. They are
further used to generate a null distribution to evaluate the false discovery rate [51]. The
mProphet algorithm has also been integrated into the ATAQS pipeline. AuDIT (Automated
Detection of Inaccurate and imprecise Transitions) detects inaccurate transitions due to
signal interference or inconsistency among replicate samples. The algorithm is designed for
experiments utilizing stable isotope-labeled internal standards (SIS) with technical
replicates. It flags problematic peptides by two criteria. For the first criterion, the algorithm
focuses on the relative ratio of the peak areas for any pair of two transitions from the same
precursor. Significant difference between the ratios for a pair of analytes (analyte1/analyte2)
and the ratios for the SISs (SIS1/SIS2) are determined using the t-test. The second criterion
is that, in each transition, the coefficient of variation is evaluated from the ratio of analyte
and SIS peak areas peak area ratios (analyte1/SIS1 or analyte2/SIS2) across all replicates
[86]. QuaSAR[87] (Quantitative Statistical Analysis of Reaction Monitoring Experiments) is
a web-based module associated with Broad Institute GenePattern server which provides
coefficient of variation (CV), regression slope and intercept (with confidence intervals),
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interference detection, and limits of detection (LOD) and quantification (LOQ) for MRM
data analysis. The software does require a calibration curve and that both an analyte (light)
and an internal standard (IS) (heavy) have been measured for each transition. MultiQuant
software calculates a signal-to-noise ratio based on a Relative Noise (RN) value [88]. RN is
a single number that expresses the ratio of the actual noise relative to that predicted from the
noise model of an instrument. Once determined it can be used to calculate the noise
expected at any data point, including under the peak itself, and can be used in a variety of
ways, such as to assess whether a data point is real or likely due to noise, and to
reproducibly and robustly define the noise in a particular system and, hence, the signal/noise
ratio.

In efforts to improve the current peak quality data metrics Colangelo et. al. (unpublished)
with AB Sciex research team to develop an additional metric which has been incorporated as
a query in MultiQuant, termed Normalized Group Area ratio, which calculates a group area
as shown in Figure 5. For each transition the query calculates the ratio of the area of a
transition to the area of the first transition for the corresponding group. It then divides by the
average of this ratio for all samples (for a given transition). The net result is that the reported
value should be close to 1.0 if the ratio of a transition to the first is constant across the
samples. If not, one (or both) of the peaks either didn’t integrate well or has an interference
(or something odder).

Most software programs provide a graphical interface for data visualization and manual
peak adjustment. For example, Skyline, ATAQS, MultiQuant, PinPoint and TargetLynx all
enable one to examine the peak intensities across transition for each given peptide. In
addition, most provide an extracted ion chromatogram trace plot for transitions within a
given peptide. Users can adjust parameters such as peak start- and end-points, and baseline,
and the software will automatically reprocess the peak area and/or peak area ratios. Most
software packages have filtering functions to remove poor quality data. Regarding the
quality assessment, graphical summary report is available in most packages. For example in
mProphet one can generate a histogram of mProphet scores for target and decoy transitions,
the FDR and sensitivity curves across mProphet discriminant score cutoffs, and ROC curve
for the data. SRMstats provides summary reports on missing data and graphics for the
endogenous and reference peak intensities across all MS runs.

4.3 Downstream Statistical analysis
MRM peak integration results can be used for both differential expression analysis as well
as estimating either relative or absolute abundance of each protein in any given sample.
Differential expression analysis is the most common of these two steps but often proper data
normalization is essential to remove technical artifacts before biological ones. The objective
of data normalization is to remove intensity-dependent errors and make the distribution of
intensities comparable across biological samples and technical runs. Many of the data
normalization methods developed for microarray data analysis are applicable to MRM data.
For example, median adjustment is utilized in SRMstats[89], this makes the median of log-
scaled intensities for heavy isotope-labeled transitions identical. Quantile normalization can
be an alternative option but can be very sensitive to strong intensity variables [90]. Another
factor to consider before differential expression analysis is to examine any non-biological
effect due to experimental setup. For example, sample preparation protocol or date may
introduce unwanted variation. This can be particularly critical if the batch effects are
correlated with the main effect of interest[91]. During the experiment, it is helpful to record
information, such as laboratory conditions, technicians, or reagent lots. When a batch effect
is present, it can be adjusted by various approaches including a linear model framework
commonly used for microarrays[92].

Colangelo et al. Page 12

Methods. Author manuscript; available in PMC 2014 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The second part of downstream statistical analysis of MRM data is to quantitate the
estimated amount of each protein in any given sample. SIS peptides have been utilized for
absolute quantitation, but to synthesize, purify, and quantitate enough heavy standards for
large scale MRM assays makes this approach not cost effective. Thus, in order to estimate
the protein abundance without SIS peptides, researchers use the transition level data to infer
both the peptide and protein expression abundance. Due to the MRM transitions being
surrogates, it is possible to have potential for interference or background in each of these
transitions. In order to minimize this effect a common approach is to use the top n most
intense signals. The protein level intensities are calculated by summing or averaging the
most intense signals. It is based on the empirical discovery that the MS signal for the three
most intense tryptic peptides per mole of protein is approximately constant to the protein
concentration [93]. Silva et. al. utilized this finding to estimate the absolute protein
concentration which allows one to perform quantitative protein comparison within the same
sample. The quantification requires a known quantity of intact protein to determine a
universal signal response factor. They characterized the absolute quantity by spiking the
internal standard proteins into the protein mixture of interest. Extending this model further
Ludwig et al. [94] proposed the use of anchor point proteins whose concentrations are
known for the MRM framework. This approach requires monitoring the MRM peak
intensities of the anchor proteins along with the proteins of interest. They estimate the
protein abundance by using the two most intense transitions of the three best flyer peptides
for each protein. Absolute abundance is then predicted from the linear relationship between
the MRM protein abundance of anchor proteins and their concentration.

For MRM data, two packages have been developed to provide statistical inference of
differential expression. The first is an open-source R package, SRMstats [89], that provides
normalization for stable isotope-labeled MRM experiments. It normalizes the data based on
the median of reference transition intensities across all runs. After filtering out missing
transitions, it performs a test for significant difference of a protein expression between
multiple experimental conditions or time points. Intensities of endogenous and reference
transitions are paired and tested for differential expression using linear mixed-effect model
which accounts variations due to experimental conditions, samples, and peptide/transitions.
One can specify each effect as fixed or random, based on the experimental design. As a
follow-up, the software calculates the minimal number of biological replicates per
experimental condition required to detect a desired fold-change and minimal number of
peptides per protein and transitions per peptides for future experiments.

The second statistical workflow was outline by Bisson et. al. [95] using a Matlab application
to determine confidence levels of differential expression at peptide and protein levels.
Transition-level intensities are weighted according to their signal quality and averaged over
technical runs. Fold-change between two conditions of a given peptide is calculated by a
weighted average of transition-level fold-changes, where the weight is determined by the
confidence score for transition-level differential expression. Protein-level fold-change is
similarly calculated based on the peptide-level fold-changes. The final protein confidence
score is evaluated by combining scores of over- and under-expressed peptides, separately.

5. Interoperability between software tools
Given the numerous software tools outlined above, choosing which programs best work
together for the design, collection, and analysis of MRM experiments can seem daunting.
There are two main approaches, first if to utilize vendor developed pipeline and second is to
utilize open source packages and create a pipeline. For example, if you have a Agilent
TripleQuadrupole, utilizing the MassHunter Workstation, which includes MassHunter
Optimzer, Spectum Mill, and Mass Profiler Software packages will seamlessly enable you to
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develop, collect, and process your Agilent instrument data without having to edits method in
excel prior to acquisition or convert files to open source format in order to peak integrate. If
you have an AB Sciex Triple Quadrupole Mass Spectrometer you can have a similar
experience by utilizing AB Sciex’s software suite which includes MRMPilot, Protein Pilot,
Analyst, and Multiquant. The downside of these vendor software packages is that they are
often limited to processing their own data formats. For example, Multiquant requires a
*.wiff for input, thus limiting it to the analysis of AB Sciex mass spectrometer. Also, vendor
specific softwares often provide a black box type of analysis in their subroutines and
functions (e.g. peak integration). This can be limiting since many of the subroutines are not
fully documented (e.g. outlining which algebraic expressions are used) or peer reviewed.
The most complete open source package is Skyline, which includes modules for design,
method export, peak integration and data quality assessment. Skyline is the only open source
program which reads all native vendors file formats. Additionally SRMstats has support for
Skyline output, which makes a combined Skyline/SRMstats workflow the most efficient set
of tools currently available. Many of the other software programs such as MRMer and
ATAQS require you to convert your file to an open source format such as TraML, mzXML
or mzML. The downside of file conversion is that it adds an additional step to your analysis,
requires you to make a second version of your data file, and often requires additional
software such as ProteoWizard [96]. Additionally, vendors are constantly introducing new
mass spectrometers, which may or may not be currently supported by existing file
converters.

6. Future Development
The development of targeted proteomics assays and the publication of such experiments is
growing at an exponential rate [12]. At the same time, the software developed and currently
being utilized for MRM assay development and analysis has also greatly improved. The
challenge, however, is how to standardize these platforms between laboratories. For
instance, while targeted proteomics and discovery proteomics represent two distinct
quantitative proteomics approaches, the peptide information produced from shotgun
proteomics experiments can help identify representative peptides of the targeted proteins.
The problem with using this information is that the software pipeline utilized for discovery
phase protein identification often differs between laboratories. For example, one laboratory
might utilize MASCOT [97], whereas another might utilize X!tandem [73] or OMSSA [98].
Also, the protein identification results from these data processing algorithms contain
inaccuracies that can lead to both incorrect (false positives) and missed (false negatives)
protein identifications. Without additional statistical analysis, downstream use of this data
can suffer from missed opportunities for biological insight, the pollution of databases with
increasing numbers of incorrect identifications, and time spent by biologists investigating
false leads. Finally, there are few standardized approaches to assess the quality of peptide
identifications. A few public repositories have tried to standardize the large amounts of MS
data for different organisms, such as PeptideAtlas [61], GPMdb [64] and PRIDE[58], but
often neglect to differentiate between various mass spectrometric fragmentation platforms,
which are known to generate different product ions intensities. [99]

As an alternative to generating MRM assays via spectral libraries, recent work on theoretical
CID peak heights and fragment pattern calculations for determining transition candidates has
been available in software such as MRMPilot (from AB Sciex) and PepNovo+.[100] A more
sophisticated spectra predictor has been developed for MALDI-TOF, named PIP[101] and is
built on statistical machine learning methods that uses as its input physical attributes of
peptides such as amino acid composition, peptide length, mass, and numbers and fractions
of acidic, basic, polar, aliphatic and arginine residues. The PIP method shows a good
correlation (r around 0.6) between predicted peptide peak heights and actual peptide
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quantities, but has yet to be applied to electrospray mass spectrometry. Another predictive
method based on self organizing maps shows better performance [102]. Nevertheless, the
limited accuracy of such predictive methods has been led researchers to prefer empirical
data so far. This is still an area of active research and progress in this field should enable
selection of peptides for which experimental data is not available.

Recent methods such SWATH-MS [103], Scheduled MRMHR [104], and parallel-reaction
monitoring [105] have emerged which utilize high-resolution mass spectrometers to collect
MRM-like data. These technologies have the potential to reduce assay development time
and increase the number of protein targets. One major challenge going forward is how our
existing software tools will support these technologies.
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Abbreviations

CV Coefficient of variation

ELISA Enzyme-linked immunosorbent assay

FDR False Discovery Rate

FWHM Full width of peak at half max peak height

iTRAQ isobaric tag for relative and absolute quantitation

LC-MS/MS liquid chromatography MS/MS

MRM multiple reaction monitoring

LC-MRM liquid chromatography multiple reaction monitoring mass spectrometry

MS/MS tandem MS

MudPIT multidimensional protein identification technology

NIST National Institute of Standards and Technology

PRIDE proteomics identification database

SID stable isotope dilution

SILAC stable isotope labeling by amino acids in cell culture

SIS stable isotope–labeled internal standard

SISCAPA Stable Isotope Standards and Capture by Anti-Peptide Antibodies

SRM selective reaction monitoring

Th Thomson, unit of mass-to-charge ratio (Da/e)

YPED Yale protein expression database
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Figure 1.
Schematic Diagram of Multiple Reaction Monitoring
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Figure 2.
Workflow Diagram for MRM Targeted Proteomics
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Figure 3.
Acquisition methods utilized to collect MRM transitions for a twelve transition MRM assay
based on three peptides with four transitions per peptide. (A) MRM is the simplest approach
in that all transitions are sequentially looped throughout the entire time of the HPLC
separation. (B) Scheduled MRM is based on a peptide retention time and scheduling a
window during the LC-MRM run for which each set of transitions from a given peptide a
monitored. (C) Triggered MRM combines both scheduling and baseline triggering, where a
single MRM transition is scheduled within a RT window and when the signal of that
individual MRM transition goes above a specified baseline, the remaining transitions from
that same peptide are triggered and collected.
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Figure 4.
Data structure for label-free and SID MRM quantification with an example of two peptides.
In label-free, transition-level peak intensities are grouped according to their peptides.
Transition ID is denoted as ti, j, where i indicates a peptide (1,2) and j indicates fragment
ions. In the SID experiment, transitions are grouped separately grouped by endogenous and
isotopic labeled peptides. Asterisks (*) indicates transitions from the labeled peptides.
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Figure 5.
The diagram depicts how Normalized Group Area Ratio (NGAR) is calculated for a peptide
with five MRM transitions over three samples three samples. The NGAR algorithm takes
the peak areas for each transition within a run and calculates the ratio of the area of a
transition to the area of the first transition for the corresponding group. It then divides by the
average of this ratio for all samples (for a given transition). The net result is a NGAR that
the reported value should be close to 1.0 if the ratio of a transition to the first is constant
across the samples.
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Table 1

Current Software Tools for Development of Large Scale Targeted Proteomic Assays

Software Vendor/Lab Publication Date Platform

1. Assay Development

Databases and Spectral Libraries

PeptideAtlas Institute for Systems Biology (ISB) 2006 Web

SRMAtlas ISB 2009 Web

PRIDE Martens, EMBL/EBI 2006 Web

GPMdb Gpmdb 2004 Windows

NIST Peptide Mass Spectral Libraries NIST 2009 Web

PABST Seattle Proteome center 2006 Web

Peptide and Transition Selection and Method Export

Skyline MacCoss Lab, U Washington 2010 Windows

MRMPilot ABSciex Commercial Windows

Pinpoint Thermo Scientific Commercial Windows

MRMaid Bessant, Cranfield U. 2009 Web

ATAQS Aebersold, ISB 2011 Web

2. MRM Data Collection

iRT calculator Biognosys 2012 Web

scheduled MRM (sMRM) AB Sciex, Waters, Thermo Scientific, and
Agilent

Commercial Windows

iSRM (intelligent MRM) Thermo Scientific Commercial Windows

xMRM (triggered MRM) AB Sciex Commercial Windows

tMRM (triggered MRM) Agilent N/A Windows

3. Data Analysis

Peak Detection and Integration

Multiquant AB Sciex Commercial Windows

Skyline MacCoss Lab, U Washington 2010 Windows

MRMer McIntosh Lab, ISB 2008 Java

Pinpoint Thermo Scientific Commercial Windows

OpenMS Kohlbacher & Reinert, FU Berlin & U of
Tübingen

2008 Windows, Linux, Mac (C++
library)

ATAQS Seattle Proteome Center, ISB 2011 Web

TIQAM Seattle Proteome Center, ISB 2008 Java (Mac, Win, Linux)

mQUEST Biognosys 2011 Linux on a VM; Windows

Quaility Assessment and Data Filtering

mProphet Biognosys 2011 Linux on a VM; Windows

Audit Carr, Broad 2010 Web

Multiquant AB Sciex Commercial Windows

Fold change or statistical analysis
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Software Vendor/Lab Publication Date Platform

SRMstats Vitek Lab, Purdue 2012 Windows, Linux, Mac (R
libraries)

QuaSAR Carr, Broad N/A Web
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