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Abstract
Several directly-acting and host-targeting antivirals that inhibit hepatitis C virus replication have
entered clinical trials. Amongst the most advanced of these are RG7128, an inhibitor of the NS5B
polymerase; BMS-790052, an inhibitor of NS5A; and alisporivir, an inhibitor of human
cyclophilins. These agents have potent antiviral activity in chronic HCV patients, act additively or
synergistically with inhibitors of the HCV NS3/4A protease, and improve the rate of virologic
response produced by traditional pegylated interferon plus ribavirin therapy. No cross resistance
has been observed; moreover, nucleoside NS5B and cyclophilin inhibitors appear to suppress
resistance to non-nucleoside NS5B and NS3/4A inhibitors. Several recent reports of virologic
responses produced by combinations of agents that inhibit HCV replication in the absence of
interferon provide optimism that eradication of HCV will be possible without interferon in the
future.

Introduction
Hepatitis C virus (HCV) is a small enveloped RNA virus that currently infects over 170
million individuals worldwide, making it a leading cause of liver disease. Infection with
HCV has a high rate of chronicity, estimated to be in the range of 75-85%. Chronic HCV is
associated with significantly increased risk for chronic liver disease, cirrhosis, and
hepatocellular carcinoma. Pegylated interferon and ribavirin (PEG-IFN/RBV), mainstays of
chronic HCV therapy and until recently the standard of care (SOC), are poorly tolerated and
have variable efficacy across the seven major HCV genotypes with particularly low success
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rate against genotype 1. Unlike many other chronic viral infections, however, chronic HCV
is a curable disease. Recently approved drugs targeting the HCV NS3/4A protease (PIs) are
a major step toward the goals of improving the percentage of patients who experience a
sustained virologic response (SVR) and decreasing treatment time. These and other directly-
acting antivirals (DAAs) and host-targeting antivirals (HTA) that act via independent
mechanisms are needed in order to combat protease inhibitor resistance, to improve efficacy
across all HCV genotypes, and to advance antiviral therapy towards the ultimate goal of an
interferon-free cure. The goal of this review is to provide an overview and summary of non-
protease HCV inhibitors currently in the clinical pipeline. Due to space limitations, specific
inhibitors have been chosen as foci for our discussion with the goal of highlighting the major
targets, mechanisms of action, and resistance studies carried out to date.

Directly-Acting Antivirals (DAAs) and Host-Targeting Antivirals (HTAs)
The plus-sense RNA genome of HCV is translated as a single polyprotein that is processed
into ten individual proteins (core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B)
by a combination of host and viral proteases. Replication of HCV is mediated by a
combination of viral and host factors (Figure 1), and candidates in the current clinical
pipeline include agents against both types of targets (Table 1). As indicated in Figure 2 and
Table 1, directly-acting antivirals (DAAs) targeting the NSS3/4A protease, NS4B, NS5A,
and NS5B polymerase are currently in various stages of clinical development. Agents that
target host factors essential for HCV replication are also under development and may have
higher genetic barriers to resistance compared to DAAs. The goal of these host-targeting
drugs (e.g., alisporivir, SPC3649) is to interfere with host factors that support viral
replication, a therapeutic strategy distinct from agents that modulate the host innate immune
response (e.g., alternative interferons, nitazoxanide). Compounds targeting the NS5B
polymerase, NS5A, and the cyclophilins are the most likely to be approved in the near-term
for treatment of chronic HCV and are the major focus of this review.

NS5B Polymerase Inhibitors
Replication of the HCV genome is catalyzed by non-structural protein 5B (NS5B), an RNA-
dependent RNA polymerase (RdRp), which forms an active replicase when complexed with
other viral and cellular proteins. NS5B is highly conserved across HCV genotypes and
adopts a right-handed three-dimensional structure with fingers, palm, and thumb domains
(PDB IDs 1C2P and 1CSJ) analogous to those of the RdRps of other RNA viruses. Current
NS5B inhibitors are classified in two major groups: the nucleoside and nucleotide inhibitors
(NIs) that bind in the polymerase active site and the non-nucleoside inhibitors (NNI) that
bind in one of four allosteric binding sites on the polymerase (NNI sites 1-4). Due to the
high degree of conservation in the NS5B active site, NIs of NS5B generally exhibit broad
spectrum activity against the HCV genotypes with high barriers to resistance due to the
fitness costs associated with the mutations that confer resistance [1**-3*]. Compared to NIs,
NNIs exhibit more variable activity across HCV genotypes [4], consistent with the reduced
sequence conservation at the allosteric sites. Resistance to NNIs develops rapidly in vitro
[2,5,6], and the presence of naturally occurring mutations that confer resistance to NNIs in
treatment-naive patients [7**,8*] has been correlated with resistance in vivo [9*]. We will
focus here on RG7128 (Pharmasset/Roche), the NS5B inhibitor which has progressed
furthest in clinical testing to date. Although space limitations preclude an in depth
discussion of the many NIs and NNIs in development, we refer readers to the excellent
review by Legrand-Abravanel and colleagues [10].

RG7128 (R7128, mericitabine), a prodrug, is hydrolyzed in vivo to produce PSI-6130. [11]
(Figure 3). Following activation by cellular kinases to the 5′-triphosphate, PSI-6130 acts as a
non-obligate chain terminator [12]. In early results from a Phase 2b study (JUMP-C) of
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RG7128 with PEG-IFN/RBV in genotype 1 and 4 patients, 60% of patients achieved an
extended rapid virologic response (eRVR, defined as undetectable HCV RNA from weeks 4
to 22) versus 13% for the SOC group; moreover, of the 49 patients who achieved eRVR on
RG7128 with PEG-IFN/RBV, 37 went on to achieve a sustained virologic response with
undetectable HCV RNA at 12 weeks post-treatment (SVR12) [13]. In addition, of 20
genotype 2 and 3 non-responders treated with RG7128 and SOC, 18 achieved RVR and 13
achieved SVR12 [14]. In an ascending dose Phase 1 trial (INFORM-1), treatment naïve
patients infected with HCV genotype 1 who were given the combination of RG7128 and
RG7227, an HCV NS3 protease inhibitor, experienced a median change from baseline HCV
RNA of ~5.0 log10 IU/mL at the highest doses tested, with 5 of 8 naïve patients achieving
HCV RNA below the limit of detection (< 15 IU/mL) [15**]. Importantly, 2 of 8 patients
who were null responders with prior PEG-IFN/RBV achieved undetectable HCV RNA
during this short-term trial. Interestingly, the effects of RG7128 and RG7227 in combination
were greater than the sum of their effects as monotherapies. This study provided the first
demonstration that two DAAs can be combined safely to suppress HCV replication in HCV
patients and provides the foundation for Phase 2 trials assessing RVR and SVR in patients
infected with genotype 1 who have previously not responded to SOC.

In vitro studies have established that Ser282Thr confers resistance to RG7128 and other
2’C-methyl nucleoside NIs [16,17], but resistance to RG7128 and other NIs in vivo has not
yet been observed [1*]. Second generation nucleotide inhibitors of NS5B, such as the purine
analogues PSI-879 and PSI-938, are active against the S282T-resistant variant selected in
vitro by RG7128, a pyrimidine [18*]. This suggests that it may be possible to use purine and
pyrimidine NIs of NS5B in combination with each other as well as in combination with
NNIs, DAAs against other viral targets, host-targeting antivirals, and PEG-IFN/RBV in the
future.

NS5A inhibitors
NS5A is a multifunctional phosphoprotein required for several stages of HCV replication
[19]; however, with no known enzymatic activities, NS5A’s precise role in the HCV life
cycle is poorly understood. Several NS5A inhibitors with picomolar potency in HCV
replicon-based assays have been reported [20-27], and impressive anti-HCV effects have
been observed in clinical studies with BMS-790052 (Bristol-Myers Squibb) [28**],
GS-5885 (Gilead) [29], and PPI-461 (Presidio) [30]. In vivo effects have correlated well
with in vitro replicon activity [31]. Of these, BMS-790052 is the most advanced in
development and the focus of this review. BMS-790052 (Figure 3) is a replication complex
inhibitor with broad genotypic coverage [28**]. Its development was based on a screening
hit, BMS-824, that was identified in a cell-based HCV replicon assay and that was found to
undergo an intermolecular, radical-mediated dimerization in cell culture [32]. Although the
precise mechanism by which BMS-790052 inhibits NS5A function is not known, it is clear
that this series of NS5A inhibitors can block HCV RNA replication [28**,32]. The ability of
BMS-790052 to potentially inhibit both cis- and trans-functions of NS5A strongly suggests
that NS5A has more than one function required for viral RNA replication [33]. The C2-
symmetry of BMS-790052 and related compounds complements the structure of the N-
terminus of domain-1 of NS5A, which crystallizes as a dimer [34,35]. The exceptional in
vitro potency of BMS-790052 has translated to a robust anti-HCV effect in the clinic. In a
single ascending dose trial conducted in patients chronically infected with HCV, a 1 mg
dose of BMS-790052 resulted in a 1.8 log10 IU/mL reduction in mean viral load measured at
24 hours post-dose, while a 100 mg dose produced a 3.3 log10 reduction in viremia [28**].
In a Phase IIa study, BMS-790052 (3, 10, and 60 mg) combined with PEG-IFN/RBV
generated SVR12 rates of 42% (5 of 12), 92% (11 of 12), and 83% (10 of 12), respectively,
compared to 25% (3 of 12) for the placebo control [36*].
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Almost all subjects treated with BMS-790052 in a 14-day monotherapy study experienced a
robust initial decline in HCV RNA; however, viral RNA was detectable in all genotype 1a
and some genotype 1b subjects by the end of the treatment period [37]. Genotypic and
phenotypic analysis of clinical specimens showed the emergence of resistant variants
[38**]. In general, the resistance profile observed in the clinic is similar to the profile
observed in vitro: (i) substitutions associated with resistance map to the first 100 amino
acids of NS5A; (ii) major substitutions occur at residues Met28, Gln30, Leu31 and Tyr93
for genotype 1a and at residues Leu31 and Tyr93 for genotype 1b; (iii) single amino acid
substitutions in genotype 1b NS5A generally yield low levels of resistance (<30-fold), while
single amino acid substitutions in genotype 1a NS5A and combinations of two amino acid
substitutions in either genotype generally yield a much higher level of resistance (>300-fold)
[36**,38**,39*]. Importantly, HCV variants resistant to BMS-790052 remain fully sensitive
to IFN and small molecule inhibitors of the HCV protease and polymerase [38**,39**].

Host-targeting Antivirals: Cyclophilin inhibitors
The cyclophilins (CyPs), a family of highly conserved cellular peptidyl-prolyl cis-trans
isomerases (PPIases), are involved in many cellular processes such as protein folding,
protein trafficking, and multi-protein complex assembly. CyPs are required for HCV
replication, and both pharmacological inhibition of CyPs and RNAi-mediated “knock-
down” of CyPs have been shown to block HCV replication in vitro [40-44]. CyPA (and
possibly CyPB) interacts directly with NS5A (and possibly NS5B) [41,42,45-49]. CyP
PPIase activity is required for efficient HCV replication [40,42,43,50]; moreover, genetic
[51-54]; and biochemical data [45,54-56] suggest that HCV proteins are substrates for CyP.
Although the functions of CyPs in HCV replication remain to be further elucidated, roles in
the correct folding and trafficking of viral proteins to replication complexes (RCs) as well as
in the modulation of RNA binding and or RNA synthesis by NS5B have been proposed
[40,41,46,47,49,50,52]. The most common concern of targeting host factors is the potential
side effect that may be incurred by inhibiting their normal cellular functions. While Cyp A is
one of the most abundant cytosolic proteins, it does not appear to be essential to cells: the
main defect of Cyp A knock-out mice was allergic blepharitis, which has not been noted in
humans treated with cyclophilin inhibitors.

The first known cyclophilin inhibitor, cyclosporin A (CsA), is an immunosuppressive drug
used for organ transplantation. Importantly, the immunosuppressive function of CsA is
mediated by calcineurin-binding but not cyclophilin-binding [57], making non-calcineurin
binding, non-immunosuppressive cyclosporin analogs ideal candidates for HCV therapy. To
date three non-immunosuppressive cyclophilin inhibitors have shown clinical efficacy in
HCV patients [58*-60*]. Among them alisporivir (Debio-025, DEB025; Debiopharm/
Novartis) (Figure 3) is the most advanced in Phase III studies. It is about ten times more
potent than CsA in vitro but lacks immunosuppressive activity [61]. In a Phase I trial with
HIV-HCV co-infected patients, 1200 mg twice daily of alisporivir monotherapy resulted in a
3.4 log10 reduction of HCV RNA after 14 days [62**]. In the Phase IIa combination study,
600 mg daily alisporivir plus PEG-IFN-α2a led to 4.6 log10 viral load reduction after 4
weeks in genotypes 1 and 4 patients and 5.9 log10 reduction in genotype 3 patients [58*]. In
the Phase IIb trial genotype 1 treatment-naïve patients had a 76% SVR rate after receiving
alisporivir and PEG-IFN-α2a/ribavirin triple therapy for 48 weeks [63**]. Two other
cyclosporin analogs, NIM811 and SCY-635, have also shown proof-of-concept efficacy in
HCV patients either alone or in combination with PEG-IFN-α2a [57,60*,64].

It appears much more difficult to develop resistance against cyclophilin inhibitors compared
to DAAs both in vitro and in patients. Only low-level (~10-fold) of resistance was selected
in vitro after prolonged (weeks to months) incubation of replicon cells with cyclophilin
inhibitors [54,65*,66*]. Several in vitro resistance studies revealed that viral mutations are
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mainly located in the domain II of NS5A [48,52,54,66*], which is consistent with the fact
that this proline-rich region is a substrate of cyclophilin PPIase [45]. Asp320Glu in NS5A,
which may reduce the need for Cyp A-dependent isomerization of NS5A [54], was the only
mutation consistently selected in all the resistant clones. Asp320Glu confers only a modest
degree of resistance to cyclophilin inhibitors in vitro (approximately three-fold), and
although it has been observed clinically, it does not appear to be sufficient to permit viral
breakthrough in patients [67]. Importantly, no cross-resistance has been observed in vitro
between cyclophilin inhibitors and DAAs including NS5A inhibitors, which target domain I
of NS5A. The combination of alisporivir with DAAs not only led to additive to synergistic
antiviral effects in vitro but also helped to block the emergence of resistance [65*,68*]. In
patients, very low breakthrough rates have been reported with alisporivir as monotherapy or
in combination with SOC. Additional viral mutations and possibly cellular changes are
likely required to confer a more significant level of resistance.

Novel anti-HCV targets in earlier stages of the drug development pipeline
Several recently reported anti-HCV targets are also worth noting although drug development
efforts against them are at much earlier stages. HCV non-structural protein 4B (NS4B) [69]
and host phosphatidylinositol-4-kinase IIIa (PI4KIIIa) [70-75] are required for formation of
the membranous web and efficient HCV RNA replication. Although selective inhibitors of
PI4KIIIa demonstrating pharmacological inhibition of HCV via this target have not yet been
reported, proof of concept has been established for NS4B. Clemizole was identified in a
high-throughput microfluidic screen as an inhibitor of NS4B-RNA binding (EC50 ~8 μM)
that blocks HCV RNA replication in cell culture [76*]. Isolation of clemizole-resistant
variants permitted mapping of resistance to Trp55Arg and Arg214Gln mutations in NS4B
[76*]. GlaxoSmithKline very recently disclosed that GSK-8853, a potent NS4B inhibitor
(EC50 0.74 nM in genotype 1a replicon assays) caused a mean viral load reduction at nadir
of 4.23 log10 when given orally at 100 mg/kg twice daily for 7 days in the human uPA/SCID
mouse model [77*].

MicroRNA-122 (miR-122), which regulates cholesterol biosynthesis, is essential for the
accumulation of HCV RNA in cell culture [78]. Although the underlying mechanism(s) are
still under investigation, miR-122’s interaction with two target sites in the 5′ noncoding
region of the HCV genome are known to be critical for its positive regulation of the virus
[79,80]. Demonstrating miR-122’s potential as an anti-HCV target, SPC3649 (miravirsen), a
locked nucleic acid-modified oligonucleotide complementary to miR-122, caused long-
lasting suppression of HCV viremia with no evidence of viral resistance in infected
chimpanzees [81*].

Diacylglycerol acyltransferase-1 (DGAT1) is a host factor that induces lipid droplet
formation and whose interaction with core has been demonstrated to be essential for HCV
assembly [82]. A small molecule inhibitor of DGAT1 was shown to block this interaction
and prevent recruitment of RNA replication complexes to the site of virion assembly while
having no effect on the formation of DGAT2-induced lipid droplets [82]. These findings
suggest that DGAT1 inhibitors that are currently in early clinical trials for obesity-associated
diseases may also have potential as anti-HCV agents.

Is there an IFN-free Cure for HCV in the Future?
Two decades following the discovery of HCV, drug development efforts are now beginning
to yield a diverse set of anti-HCV agents that inhibit HCV replication via both viral and host
targets. Theoretically, a collection of mechanistically distinct HCV drugs that behave
additively and/or synergistically against HCV in combination and that have orthogonal
resistance profiles has the potential to yield an IFN-free cure for chronic HCV. The
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demonstration that HCV replicons with dual resistance to PI and NNI can be selected in
vitro [83**] suggests that such a cure will require more than two agents. Recent data
indicate that this goal is not yet attainable but provide reasons for optimism. First, Gilead
[84] and Vertex [85] have recently reported that while combinations of two DAAs targeting
NS3/4A and NS5B were not able to achieve desirable levels of RVR, the addition of
ribavirin to a combination of tegobuvir (NS5B NNI) and GS-9256 (PI) significantly
improved the RVR rate (38% versus 7%). -Boehringer Ingelheim [86] also showed that all
17 subjects achieved HCV RNA suppression (< 25 IU/mL) after 4 weeks of combination
therapy with BI-201335 (PI)/BI-207127 (NS5B NNI)/ribavirin. A combination of two NS5B
NIs, PSI-7977 and PSI-938, resulted in 94% subjects with HCV RNA <15 IU/mL at the end
of 14-day treatment [87]. Finally, a combination of BMS-790052 (NS5A inhibitor) and
BMS-650032 (PI) in null subjects showed promising initial results: for a total of 11 subjects,
2 of 2 GT-1b subjects and 2 of 9 GT-1a subjects achieved SVR12 [88**], providing the first
clinical evidence that HCV can be eradicated by a DAA combination. Future inhibitor
combinations of complementary antivirals with pan genotypic coverage certainly offer new
hope for the treatment of HCV infection. As was observed with the rapid development of
highly efficient combination therapy for HIV, the arsenal of modern approaches for drug
discovery including well designed biochemical and cellular high-throughput screening,
structure-based drug design, mutation susceptibility screening, and expeditious exploration
of combination therapy in preclinical and clinical studies is likely to provide drugs that will
revolutionize the treatment of HCV.
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Highlights

New antivirals in clinical trials for chronic HCV have viral and host targets

RG7128 is a classic active site inhibitor of the HCV NS5B RNA-dependent RNA
polymerase

BMS-790052 targets the HCV NS5A protein to inhibit viral replication

DEB025 inhibits formation of active viral replicases by targeting host cyclophilins of
active viral replicases by targeting host cyclophilins

SVR12 in patients treated with DAAs suggests that an IFN-free cure may be possible
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Figure 1. The hepatitis C virus replication cycle
HCV enter host hepatocytes via receptor-mediated endocytosis. HCV RNA (positive strand
in black) is liberated in the cytoplasm and translated into a single polyprotein precursor that
is cleaved by viral and host proteases to produce single viral proteins. Individual non-
structural proteins form a replication complex to mediate replication of the positive-stranded
viral RNA via a complementary intermediate (negative strand in grey). The newly-
synthesized positive-stranded RNA is packaged and assembled with structural proteins to
produce mature virions, which are then secreted. Each major step in the HCV life cycle is
being examined to generate alternative anti-viral agents. Novel HCV therapeutics (in red
text) that are currently in advanced clinical trials are discussed in detail.
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Figure 2. The HCV polyprotein prior to cleavage by viral and hosts proteases
Core (C), Envelope1 (E1) and Envelope2 (E2) are the protein components of the assembled
virus and house the viral RNA. Nonstructural (NS) proteins, which are not packaged in the
mature virus, assist or mediate the replication of viral RNA. P7 is a putative ion channel
important for NS2 translocation. As listed above, each NS protein contributes to the
propagation of viral RNA. NS5A is a multifunctional phosphoprotein. §Numerous directly-
acting antivirals are currently in advanced-stage clinical trials or have been approved for
use. ‡Directly-acting antivirals are currently being studied, although none are currently in
advanced clinical trials. †,*Directly-acting antivirals in advanced studies are discussed in
detail in this review.
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Figure 3. Structures of inhibitors and parent compounds discussed in this review.
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Table 1
Current drugs in the anti-HCV pipeline

This is a list of drugs currently in phase II and phase III stages of development and testing. While we have
made our best effort to make this list up to date, this is a dynamic and rapidly changing area of research.

Target Inhibitor Name Company Status

Directly-acting

NS3 Incivek (telaprevir, VX-950) Vertex Approved

NS3 Victrelis (Boceprevir, SCH503034) Merck Approved

NS3 MK-7009 (Vaniprevir) Merck Phase II

NS3 ITMN-191/R7227 Intermune/Roche Phase II

NS3 TMC435 Medivir/Tibotec Phase III

NS3 BI 201335 Boehringer Ingelheim Phase III

NS3 GS 9256 Gilead Phase II

NS3 BMS-650032 Bristol-Myers Squibb Phase II

NS3 ACH-2684 Achillion Phase II

NS3 ABT-450 Abbott/Enanta Phase II

NS3 ACH-1625 Achillion Phase II

NS3 MK-5172 Merck Phase II

NS5A BMS-790052 Bristol-Myers Squibb Phase III

NS5A PPI-461 Presidio Phase II

NS5A GS5885 Gilead Phase II

NS5B (NI) IDX184 Idenix Phase II

NS5B (NI) PSI-7977 Pharmasset Phase II

NS5B (NI) PSI-938 Pharmasset Phase II

NS5B (NI) R7128 Roche/Pharmasset Phase II

NS5B (NI) INX-189 Inhibitex Phase I

NS5B (NI) GS6620 Gilead Phase I

NS5B (NI) TMC-649128 Tibotec/Medvir Phase I

NS5B (NNI; palm 1) ABT-072 Abbott Phase II

NS5B (NNI; palm 1) ABT-333 Abbott Phase II

NS5B (NNI; palm 1) ANA598 (Setrobuvir) Anadys Phase II

NS5B (NNI; palm 2) GSK2485852A GSK Phase I

NS5B (NNI; thumb 1) BI 207127 Boehringer Ingelheim Phase II

NS5B (NNI; thumb 2) VX-222 Vertex Phase II

NS5B (NNI; thumb 2) VX-759 Vertex Phase II

NS5B (NNI; thumb 2) PF-868554 (Filibuvir) Pfizer Phase II

NS5B (NNI; beta-hairpin) GS 9190 (Tegobuvir) Gilead Phase II

Antibody to HCV Civacir NABI Biopharmaceuticals Phase II

Host targeting antivirals

Cyclophilin Debio 025 (Alisporivir) Novartis/Debiopharm Phase III

Cyclophilin SCY-635 Scynexis Phase II

Cholesterol Fluvastatin Oklahoma University Phase II
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Target Inhibitor Name Company Status

Entry inhibitor (SR-BI) ITX-5061 iTherX Phase II

Matrix metalloprotease CTS-1027 Conatus Phase II

miR-122 Miravirsen (SPC3649) Santaris Pharma Phase II

Immunomodulators

Anti-inflammatory JKB-122 Jenkin Phase II

Anti-inflammatory Mito-Q Antipodean Phase II

Anti-inflammatory PYN17 Phynova Phase II

Anti-inflammatory CF102 Can-Fite Phase II

Anti-inflammatory NOV-205 Novelos Phase II

Immunomodulatory SCV-07 SciClone Pharma Phase II

Immunomodulatory Zadaxin SciClone Pharma/Sigmatau Phase III

Interleukin-7 CYT107 Cytheris Phase II

Phosphatidylserine Bavituximab Peregrine Pharm Phase II

PKR nitazoxanide (Alinia) Romark Phase II

TLR-7 ANA773 Anadys Phase II

Unknown Silymarin, Silibinin various Phase II, III
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