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Abstract

As the number of neuroimaging studies that investigate psychological phenomena grows, it
becomes increasingly difficult to integrate the knowledge that has accrued across studies. Meta-
analyses are designed to serve this purpose, as they allow the synthesis of findings not only across
studies but also across laboratories and task variants. Meta-analyses are uniquely suited to answer
questions about whether brain regions or networks are consistently associated with particular
psychological domains, including broad categories such as working memory or more specific
categories such as conditioned fear. Meta-analysis can also address questions of specificity, which
pertains to whether activation of regions or networks is unique to a particular psychological
domain, or is a feature of multiple types of tasks. This review discusses several techniques that
have been used to test consistency and specificity in published neuroimaging data, including the
kernel density analysis (KDA), activation likelihood estimate (ALE), and the recently developed
multilevel kernel density analysis (MKDA). We discuss these techniques in light of current and
future directions in the field.

Studies that use neuroimaging methods such as positron emission tomography (PET) and
functional magnetic resonance imaging (fMRI) allow us to investigate the function of the
human brain, in both healthy and disordered populations. In recent years, the number of such
investigations increased dramatically across a range of psychological domains. Indeed, some
areas of investigation such as cognitive control and emotion have been the subject of many
such studies, representing an ever-increasing body of knowledge that complements findings
from animal and human lesion studies, electrophysiology, transcranial magnetic stimulation,
and other methods. However, activation of a brain region in a single fMRI or PET study
cannot usually provide conclusive evidence until it is replicated across laboratories, task
variants, and scanning procedures. Meta-analyses of neuroimaging data can therefore serve a
crucial function of integrating over research findings to evaluate the consistency of
activation in any particular domain. In this way, meta-analyses can determine which regions
are consistently activated across a large group of studies that address a single psychological
function. A second crucial function served by meta-analysis is the evaluation of functional
specificity of activations in a region to a particular type of psychological process. Meta-
analysis can determine whether a particular brain region that is consistently activated by a
single psychological domain (e.g., cognitive control) is unique to that domain, or whether it
is shared by a broader set of cognitive processes (e.g., working memory).

WHY USE META-ANALYSIS?

Evaluating consistency

In order to understand and evaluate hundreds of neuroimaging studies published in a single
domain (such as emotion), we need to know which regions are most consistently activated.
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Analyses of consistency are particularly important because the small sample sizes typical in
neuroimaging studies and the many tests performed across the brain create an unusually high
rate of false-positive results. We have previously evaluated that with an effect size of d=1
(Cohen’s d, an effect divided by its standard deviation), approximately 45 participants are
required to achieve 80% power using Bonferroni correction on the whole brain.1-2 This
sample size is larger than that used in most imaging studies. Furthermore, based on a sample
of 195 long-term memory studies published between 1993 and 2003, we found that a modal
threshold of £< 0.001 uncorrected for multiple comparisons and estimated 663 false
positives in that sample of studies (which is about 17% of the total number of reported
peaks3). Although in recent years, larger sample sizes and more rigorous correction
procedures have become more prevalent, until recently this has not been the case.°

Once regions have been identified, which are consistently activated across a set of studies
for a particular task type or psychological domain, meta-analytic methods can be used to
further identify groups of regions that are consistently co-activated, as we have recently
done across studies of emotion® and anxiety-related disorders.” Such regions may form
spatially distributed networks in the brain and lead to hypotheses about functional
connectivity in specific tasks that may be tested in future studies.

Evaluating specificity

A second important function that can be served by meta-analysis is the evaluation of
specificity of activation in a region to one kind of psychological processes among many. For
example, a single study might find that the amygdala is activated during the experience of
emotion. However, observing such activation in subsequent studies does not imply that
emotions were experienced. In order to make claims about the relationship between brain
activation and a psychological process (e.g., ‘reverse inference’), we must ask whether
activity in amygdala is specific to the experience of emotion, which requires comparison of
activation across a wide variety of tasks. This, in turn, requires that we assess the
consistency of activation in two ways: (1) in the amygdala during tasks that involve the
experience of emotion and (2) in many types of tasks that do not involve the experience of
emotion. Indeed, only if the amygdala is consistently activated by emational experience and
not by tasks that do not involve emotional experience, will we be able to use amygdala
activity to predict that such a psychological process has occurred.

Meta-analysis provides tools for evaluating consistency exactly in these ways; two or more
functional domains can be compared across a large number of studies. We did this in a
recent meta-analysis of neuroimaging studies of emotion.8 Surprisingly, amygdala was
found to be more consistently activated for emotion perception compared with emotion
experience, consistent with the idea that amygdala activation reflects the salience or possible
informational value of visual stimuli® and is not critical for experience of emotion.10
Although such findings do not entirely resolve the issue of specificity of amygdala
activation, they provide important data that could not have been obtained from a single
study. Furthermore, as the number of meta-analyses from different domains grows, it will
become increasingly easy to compare results from a large number of functional domains, as
we recently did across five cognitive control processes.1! Quantitative analyses of
specificity can also be performed using several other methods including chi-square (x2),
analysis of reported peak density differences, and pattern classifier systems. In each
analysis, formal predictions can be made about task types, given patterns of brain activity.

META-ANALYSIS METHODS

In our view, the ‘gold standard’” meta-analytic method uses full statistical maps from each
included neuroimaging study and aggregates effect size at each voxel.12:13 However,
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although we advocate the use of this method, it is often impractical as statistical images
from most studies are not readily available. Therefore, the vast majority of meta-analyses of
neuroimaging data available today use peak coordinates reported by individual studies. Such
coordinates are often reported in the standard coordinate systems of the Montreal
Neurologic Institute (MNI) or Talairach and Tourneaux,'# and converted into a single
reference space. Such coordinates are readily available in published sources and stored in
electronic databases such as Brainmap (http://brainmap.org/). Within such coordinate-based
meta-analytic approaches, several techniques have been used to evaluate consistency of
activation within anatomically defined regions of interest.

However, the most popular approaches summarize reported coordinates in a ‘voxel-wise’
analysis across the whole brain to assess consistency of activation in a set of studies that use
a particular task or are related to the same psychological state. Such methods summarize the
evidence for activation in a local neighborhood around each voxel in a standard atlas brain
using a kernel. These methods make the assumption that the peak coordinates reported by
each study are representative of the activation maps from which they came. This is not a
perfect assumption, but in the absence of readily available statistical images from included
studies this assumption is necessary. Here, we briefly describe two such kernel-based
methods, namely, kernel density analysis (KDA>-17) and activation likelihood estimate
(ALE18.19) ‘and then more fully describe the newer multilevel kernel density analysis
(MKDA?®6:8) that was designed to address a few important shortcomings of the other two
methods.

In both the ALE and KDA methods, the stereotactic coordinates of peaks are the units of
analyses. Both methods assess consistency by counting the number of peak activations in
each voxel, convolving the resulting 3D histogram with a kernel, and comparing the number
of observed peaks to a null-hypothesis distribution. In the KDA method, the smoothing
kernel is spherical with radius . Kernels that best match the natural spatial resolution of the
data are the most statistically powerful; we previously compared across KDA kernels and
found that 7= 10 or 15 mm gave the best results.18 The resulting map values are highly
interpretable and indicate for each voxel ‘the number of peaks within ymm’. This value is
typically divided by the volume of the kernel (#mm3), providing a density statistic at each
voxel (in peaks/mm3). In the ALE method, the smoothing kernel is Gaussian, with a width
specified by a full width half maximum (FWHM) value, selected by the analyst (a 10-mm
FWHM is common?9). The smoothed values are then treated at each voxel as “estimates of
the probability that each peak lays within ymm?’, and the union of these ‘probabilities’ is
computed to give the activation likelihood, which can be interpreted as ‘estimate that at least
one of the peak activations lays within this voxel’.

Both the KDA and ALE methods use Monte Carlo simulations to obtain a threshold and
establish statistical significance against a null hypothesis that the distribution of the /7 peaks
is randomly and uniformly distributed throughout the brain (or throughout gray matter,
depending on the brain template used?). In both methods, sets of /7 peak coordinates are
generated and randomly distributed across the brain in each permutation. As inferences are
made at the extremes of the null-hypothesis distribution, we typically use at least 5000
permutations to achieve stability in estimation. In the KDA method, the maximum density
value at each permutation is saved, and a maximum density distribution under the null
hypothesis is created. Use of the distribution of maximum values is an established method
for multiple comparisons correction2 that ensures strong control of familywise error rate
(FWER). Voxels whose density exceeded the 95th percentile value under the null hypothesis

aWe prefer a gray matter mask with a border to allow for inter-study variability. Although it might lead to the exclusion of some peaks
that fall outside of the mask, this method is more conservative as it tests the distribution of peaks across a smaller possible area.
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are considered significant, and such correction at £< 0.05 means that the chance of seeing
false positives anywhere in the brain is under 5%. Therefore, a significant result indicates
that the density of peaks within rmm of a voxel is greater than that can be expected by
chance.

By contrast, the ALE method identifies the voxels where the union of probabilities exceeds
that expected by chance. Because the ALE statistic reflects the probability that at least one
peak falls within rmm of each voxel, a significant result in this method indicates that there
were enough peaks near the voxel to indicate that at least one peak truly fell within that
voxel. In a recent implementation of the ALE approach,18 the ALE statistic was subjected to
false discovery rate (FDR?1) correction, which at £< 0.05 ensures that about 5% of the
reported voxels are false positives. This correction procedure is less stringent than FWER
correction.

Importantly, the inferential power of both methods described thus far is limited by the
assumptions they make about the data. Perhaps the most troubling is the assumption that
there are no inter-contrast and inter-study differences in the number of peaks reported, their
location, the smoothness of the data, false-positive rates, and statistical power. This
assumption is tied to the practice of lumping all the peak coordinates across all studies
together and treating them as independent units of analysis. Such an assumption implies that
contrasts and studies are ‘fixed effects’ rather than ‘random effects’, which limits the meta-
analytic results from being generalizable to new contrasts or studies. That is, one cannot
infer from a significant ALE/KDA result that a new study on the same topic is likely to
activate the same regions. Because this ability to generalize meta-analytic results to new
contrasts or studies is one of its most appealing features, this is a significant drawback. A
second implication is that a single study can dominate the meta-analysis if it reports a
relatively high number of peaks.

Another problematic assumption made by both methods is that peaks are spatially
independent within and across studies under the null hypothesis. This assumption is required
for the ALE probability computation, and for the null-hypothesis distribution in the Monte
Carlo simulation (in both methods) to be a meaningful baseline. However, in practice,
multiple nearby peaks (that belong to a single activation cluster) are often reported within a
single contrast or within a single study, violating this assumption. The implication again is
that a single study can dominate the meta-analysis and lead to a significant result if it reports
multiple nearby peaks. This is further complicated by the fact that, as Turkeltaub et al.1?
point out, often the most poorly controlled studies, the ones that use the most liberal
statistical thresholds, or the ones that impose less arbitrary smoothing of the data are the
ones that report many peaks.

MKDA APPROACH

Improvement over previous methods

This novel approach was designed to overcome the limitations described in the previous
section. Specifically, the assumptions that complicate the previously described methods are
not required if the unit of analysis is the study, or the contrast, rather than individual peak
coordinates. Therefore, the MKDA approach takes into account the multilevel nature of the
data, and nests peak coordinates within study contrast maps (CMs), treating these maps as
‘random effects’, such that no single CM (even one with many nearby peaks) can
disproportionately contribute to the meta-analytic result. This allows the results to be
generalizable to new CMs from new studies.

Wiley Interdiscip Rev Cogn Sci. Author manuscript; available in PMC 2013 September 17.
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A second important advantage of the MKDA method over previous methods is that CMs are
weighed by study quality and sample size, as is customary in meta-analysis in other fields.?2
The weight of the sample size is especially straightforward as the precision of a study’s
estimate (1/standard error) is proportional to the square root of the study’s sample size. The
second weight is designed to reduce the impact of studies that use fixed effects analysis by a
factor of 0.75, as the results of these studies tend to be more liberal. Using such weighing
procedures ensures that larger and more rigorously performed studies exert more influence
on the meta-analytic results. Indeed, other weighing schemes are possible, and their relative
advantages and disadvantages have been discussed elsewhere.2:6

Evaluating consistency of activation with MKDA

In the MKDA method, CMs from included studies rather than the peak coordinates serve as
the unit of analysis (see Figure 1(a)). Similar to previous methods, peaks are convolved with
a kernel of radius r(which is spherical like in the KDA method). However, this convolution
occurs within each CM rather than across all the included peaks. This process results in the
creation of contrast indicator maps, or CIMs, in which a voxel value of 1 indicates a peak
within mm, whereas 0 indicates the absence of a peak within ¥mm (see Figure 1(b)). Once
CIMs are created for each CM, they are weighed by the study quality adjustment factor and
the square root of the sample size (as described in the previous section). The result of this
stage is a density map across all included CIMs, which represents at each voxel the weighed
proportion (P) of contrasts that activated within #mm of that voxel: a highly interpretable
meta-analytic statistic (see Figure 1(c)).

Similar to ALE and KDA, the MKDA method uses Monte Carlo simulations to obtain a
threshold and establish statistical significance, but with a few important differences. In the
former, the null hypothesis is that the distribution of the 77 peaks is randomly distributed
throughout the brain (or gray matter). In the MKDA method, the null hypothesis is that the
distribution of peaks within each CIM is randomly distributed throughout gray matter. Even
more specifically, the null hypothesis is that the distribution of ‘blobs” within each CIM is
randomly distributed, where “blob’ refers to contiguous regions of activation in the CIMs.
Therefore, in each of Monte Carlo iterations, the number and shape of activation blobs are
held constant within each CIM, whereas their location is randomly distributed throughout
gray matter. This procedure preserves the spatial clustering of nearby peaks within each
contrast, and thus avoids the assumption of independent peak locations within contrasts.
After each iteration, the maximum density statistic P across all studies is saved. Similar to
the KDA method, strong FWER control is used, and voxels whose density value P exceeded
the 95th percentile value under the null hypothesis are considered significant (see Figure
1(d)). Therefore, a significant result indicates that the proportion of CIMs that consistently
activated within rmm of the voxel is greater than can be expected by chance (regions
depicted in yellow in Figure 1(¢)). In addition, in MKDA an ‘extent-based’ thresholding can
be used,5-8 paralleling methods available in the popular Statistical Parametric Mapping
software.23 To threshold in this way, the largest cluster of contiguous voxels is saved at each
Monte Carlo simulation, and the cluster extent threshold is set equal to the 95th percentile of
these values across iterations. Significant regions are extensive enough so that one would
expect a cluster this large anywhere in the brain by chance only 5% of the time (depicted in
orange and pink in Figure 1(e)).

Evaluating specificity of activation with MKDA

One simple means of assessing specificity is comparing two conditions or two task types
(e.g., positive versus negative emotion, or working memory versus long-term memory), and
asking, where is there relatively greater activation in one of the conditions? This is
accomplished at the stage of Monte Carlo simulation: At each iteration, once the locations of

Wiley Interdiscip Rev Cogn Sci. Author manuscript; available in PMC 2013 September 17.
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contiguous blobs are randomized within CIMs, a separate density map is created for each
condition, and the maximum value for the difference between density statistics is saved.
Thresholding on the saved difference values proceeds as described above to reveal
significant relative differences of activation between the two conditions. This kind of
analysis is useful, because it controls for the overall frequency of activation across
conditions. We used this approach recently to examine the differences between positive and
negative valence using 240 CIMs from 95 studies of emotional experience.8 As shown in
Figure 2, positive experience was associated with relatively greater activation in medial
dopamine-rich regions such as the ventral tegmental area and ventral striatum, ventromedial
prefrontal cortex, and regions of anterior cingulate cortex. Conversely, negative experience
was associated with greater activation in amygdala, anterior insula, periaqueductal gray, and
more posterior portions of ventral striatum. Although these results suggest that gross
anatomical regions are differentially sensitive to positive versus negative experience, they
do not allow us to conclude that activation in these regions is uniquely associated with either
category.

However, one might want to test the absolute difference in activation in one condition
compared with another. Such information can be obtained from a x2 analysis, which tests
whether significantly more CIMs from one condition compared with another activated in
any given voxel. Once CIMs are constructed, each CIM is tagged as belonging to one of the
conditions in question, and x2 test compares observed activation frequencies of CIMs at each
voxel with the null hypothesis of equal expected frequencies across all conditions. One
possible limitation of this approach in neuroimaging meta-analysis is the fact that CIM
counts are often too low to perform a valid x? test, because it is a large sample test that is not
valid if the expected count in any cell in the contingency table is under 5. Therefore, a large
number of CIMs is needed. To address this limitation, we have recently used a multinomial
permutation test to examine absolute differences in activation between conditions, following
Agresti (Ref 24, p. 98). Again, CIMs are tagged by condition, and for each voxel, a
contingency table is constructed indicating whether each CIM activated within rmm of the
voxel. Then, the ‘yes/no’ indicators within the contingency tables are permuted, providing a
null-hypothesis distribution that can then be thresholded. This method uses the x2 as a
convenient summary statistic, though the test is nonparametric and it is not subject to the
concerns raised above. It is implemented in the current version of the MKDA software.

Selecting a meta-analytic method

Which analytic method is most appropriate for a particular dataset depends on the goals of
the study and the characteristics of the dataset. The differences between the methods can be
used to inform decisions on which method would be most advantageous, or if more than one
should be considered. If the analytic goal is to identify regions that are consistently activated
across studies and avoid false-positive results, then MKDA is a good choice, because the
contrast (i.e., a map from a particular study) is the unit of analysis, and the meta-analysis
assesses consistency across maps. KDA and ALE analyze reported coordinate locations
directly; meta-analytic results can be driven by a single study that reports many peaks, and
so little can be said about whether multiple studies activate the same locations. Salimi-
Khorshidi et al.13 recently compared KDA, MKDA and ALE with a full mixed-effects
analysis of aggregated neuroimaging data from multiple studies. Analyses were performed
on both simulated data and a single meta-analytic dataset consisting of a number of pain
studies, with the image-based mixed-effects analysis considered the gold standard. In this
comparison, the MKDA was found to control type | error (false positives) appropriately, but
KDA and ALE showed high false-positive rates under some conditions. Notably, a recently
updated version of ALE addresses this concern as well, by treating the spatial relationship
between within-study foci as fixed effects and between-study relationships as random
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effects.26 Thus, MKDA or the new variant of ALE are preferred if one would like to
interpret the meta-analysis results as revealing consistent activation across studies.

However, another kind of meta-analytic goal is to produce a ‘best guess’ as to the pattern of
true activations in a set of studies, with the intention of using this pattern for some other
purpose (e.g., as a region-of-interest mask for other studies, or to identify a set of regions for
comparison with results from other types of data). In this case, it is important to balance
false positives and false negatives roughly equally. If truly activated areas are missed, the
interpretation of the functional circuit might be distorted. In the paper discussed above,13
MKDA was found to control type | error (false positives) appropriately, but produce more
type Il errors (missed regions), suggesting it may not be optimal as a localizer of distributed
patterns. Whether this conservative bias generalizes to other datasets will be borne out in
future studies, but these results suggest that ALE or KDA may be a good choice for pattern
generation.

One other trade-off worth mentioning is a trade-off between resolution of the meta-analysis
and interpretability of the meta-analytic metric. KDA and MKDA use a spherical kernel, and
ALE uses a Gaussian kernel. If several distinct foci are located in the same general area, the
Gaussian kernel is most likely to recover the separate foci. And, in general, if the spatial
error on peak locations is approximately Gaussian (a reasonable assumption), then the
Gaussian kernel will likely yield the most sensitive results (notably, simulations by Salimi-
Khorshidi et al. used a “true’ signal that was closer to a Gaussian kernel, which may explain
the increased sensitivity of ALE in the simulations). However, an advantageous feature of
the spherical kernel is that the metric is readily interpretable: each voxel in each study is
counted as either ‘active’ or ‘not active’, and the group analysis tests the quality-weighted
number of CMs that are “active’ at each voxel. The ALE metric is based on assuming that
peaks represent a probability distribution and taking the union of those probabilities, which
is a less readily interpretable metric.

CONCLUSION

In recent years, meta-analyses of neuroimaging data have gone beyond consistency and
specificity to provide information on co-activation between regions, across contrasts and
studies.%” In such implementations, measures of association that are appropriate for
binomial CIM data, such as Kendall’s tau-b are used to assess whether CMs that activate
one region are more likely to activate another region as well. Findings that two regions are
thus co-activated can be integrated with our knowledge of structural organization to generate
testable hypotheses for future studies. As such, this method represents the meta-analytic
analogue to functional connectivity analysis in individual neuroimaging studies, which
allows us to (1) define functional networks across regions and across studies and (2) identify
nearby regions that have differing patterns of connectivity, perhaps subserving different
functions. Another promising future direction is the development of meta-analysis-based
classifier techniques that will allow quantitative inferences to be made from brain activation
to psychological states. This kind of analysis will allow us to make formal predictions about
psychological states based on brain activation. Another exciting direction is that analyses
across many study types can enable us to develop brain-based psychological ontologies—
that is, to group different kinds of tasks and psychological functions together based on the
similarity of their brain patterns.
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FIGURE 1.

Schematic representation of the procedures for multilevel kernel density analysis (MKDA).
(a) Peak coordinates in three of the 437 CMs included in a recent emotion meta-analysis.®
(b) Peak coordinates in each map were separately convolved with a 10-mm kernel,
generating contrast indicator maps (CIMs) of values 0 or (1 shown in black). (c) The
weighted average of the CIMs (weights based on sample size and analysis type) is
thresholded by the maximum proportion of activated comparison maps expected under the
null hypothesis [shown in (d)] to produce significant results. (e) Significant results: yellow
voxels are familywise error rate (FWER) corrected at £ < 0.05. Other colored regions are
FWER corrected for spatial extent at £< 0.05 with primary alpha levels of 0.001 (orange)
and 0.01(pink).
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FIGURE 2.

Assessing specificity using the multilevel kernel density analysis (MKDA). Differences
between positive and negative valence using 240 CIMs from 95 studies of emotional
experience are shown. Positive experience was associated with relatively greater activation
in rostral-dorsal anterior cingulate cortex (rdACC), ventromedial prefrontal cortex (vmPFC),
hypothalamus (Hy), ventral striatum (vStr), basal forebrain (BF), and the ventral tegmental
area (VTA). Conversely, negative experience was associated with greater activation in
amygdala (Amy), anterior insula (alns), hippocampus (Hipp), periaqueductal gray (PAG),
and more posterior portions of ventral striatum (vStr).
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