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Abstract
In computer vision and image analysis, image registration between 2D projections and a 3D image
that achieves high accuracy and near real-time computation is challenging. In this paper, we
propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a
2D projection image or a small set thereof. The method is called CLARET (Correction via
Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration
preceded by shape space and regression learning. In the registration stage, linear operators are
used to iteratively estimate the motion/deformation parameters based on the current intensity
residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of
the estimated 3D image. The method determines the linear operators via a two-step learning
process. First, it builds a low-order parametric model of the image region’s motion/deformation
shape space from its prior 3D images. Second, using learning-time samples produced from the 3D
images, it formulates the relationships between the model parameters and the co-varying 2D
projection intensity residues by multi-scale linear regressions. The calculated multi-scale
regression matrices yield the coarse-to-fine linear operators used in estimating the model
parameters from the 2D projection intensity residues in the registration. The method’s application
to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in
localizing a tumor under rigid motion in the head and neck and under respiratory deformation in
the lung, using one treatment-time imaging 2D projection or a small set thereof.
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1. Introduction
In a variety of situations of image-guided therapy in medicine, a 2D/3D geometric
transformation is required to relate a 3D image of the patient used in planning the treatment
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with a set of 2D images acquired at treatment time (Markelj et al. [1]). Current 2D/3D
registration methods (Russakoff et al. [2, 3], Khamene et al. [4], Munbodh et al. [5]) find the
transformation that optimizes an objective function consisting of an image matching term
and a regularization term. As a fast optimization often requires many evaluations of the
function’s Jacobian, optimization-based registration methods without further parallelization
are structurally slow unless often unrealistically accurate initialization is provided. With
GPU parallelization recent optimization-based 2D/3D registration methods are able to
localize the tumor within one second assuming rigid patient motion (Furtado et al. [6],
Gendrin et al. [7]) or non-rigid motion (Li et al. [8, 9]). However, the mismatch in the
registration dimensionality often introduces a non-convex objective function which is prone
to optimization solutions that are caught in local minima (i.e., non-global solutions) with
normally available initializations. In order to avoid local minima and to reduce the
registration time, Li et al. [8, 9] adopted a bootstrap-like approach where optimizations were
initialized by registration results from previous time points. Their optimizations were fully-
implemented on high-end GPUs and obtained sub-second speed. Other methods have used
neural networks to model rigid (Banks and Hodge [10], Freire et al. [11], Zhang et al. [12]),
or non-rigid transformations (Wachowiak et al. [13]) and to achieve efficient computation at
registration time. However, to the best of our knowledge, there is no general framework that
supports both rigid and non-rigid 2D/3D registration. We have sought a learning-based
framework that is fast, general to both types of registration, robust to normally available
initializations, and not based on optimization.

In this paper, we describe the methodology of our general learning-based framework that
was initially presented in Chou et al. [14] for rigid registration and Chou et al. [15] for non-
rigid registration, respectively. Steininger et al. [16] subsequently presented a similar
approach for rigid registration. In a way similar to the face alignment algorithm AAM
(Active Appearance Model) by Cootes et al. [17] and the efficient tracking scheme by Jurie
and Dhome [18], we seek a linear operator M, calculated by linear regression, that when
iteratively applied to intensity differences (residue) R between digitally-reconstructed
radiographs (DRRs), i.e., projections, of the currently estimated 3D image and the measured
2D images, yields the update of the estimated transformation parameters ΔĈ that reduce the
residue.

(1.1)

The registration process in eq. 1.1 requires no optimizations; therefore it can support
efficient registration. Different from the AAM, our linear operator M estimates the 3D
transformation parameters from 2D projection intensity residues R for the 2D/3D
registration.

The paper is organized as follows. First, we describe our 2D/3D registration framework and
our efficient approximation of the shape parameters C in section 2. In section 3, we describe
how we obtain low-order parameterization for rigid motion and for a deformation shape
space. In section 4, we describe our regression learning to calculate the linear operator M
and an efficient multi-scale learning scheme. In section 5, we describe how we generate
commensurate projection intensities to support our regression estimation. In section 6, we
describe the experimental setup and clinical context of our medical application. In section 7,
we present our registration results and compare them to those of an optimization-based
method. In section 8, we discuss our rigid and non-rigid registration results.
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2. 2D/3D Registration
We first describe the general framework of our 2D/3D image registration method. Second,
we describe our approach for efficient registration within this framework.

2.1. General 2D/3D Registration
The goal of the 2D/3D registration is to match a transformed 3D grey-scale source image to
a set of target 2D projections Ψ. We denote the projection intensity at pixel location x = (x1,
x2) and projection angle θ as Ψ (x; θ). The registration is formulated as an iterative process.
Let I denote the 3D source image and I(t) denote the 3D image at iteration t. The estimated
3D image region’s motion/deformation parameters Ĉ(t) define a geometric transformation T
(Ĉ(t)) in a shape space determined from the 3D images. The Ĉ(t) are calculated by the
estimated parameter updates Δ;Ĉ(t) (eq. 2.1) obtained from the projection intensity residues
R between the target 2D projections Ψ(x; θ) and the computed projections P(x, I(t– 1); θ) of
the transformed 3D source image at iteration t – 1 (eq. 2.2). After parameter estimation in
each iteration, an image transformation (eq. 2.3) is required in order to produce updated
computed projections for the parameter estimation in the next iteration.

(2.1)

(2.2)

(2.3)

Id is the identity transformation. The projection operator P is formulated by a simulation of
the imaging process. For example, in the medical literature, to simulate a 3D image’s x-ray
projections from its 3D volume (DRRs), we use ray-casting to compute the photon
attenuation through a given imaging geometry (Figure 2.1). We note that although eq 2.2
indicates a simple subtraction of the projection of the 3D image from the target projection,
in actual clinical application one must apply additional processing to account for x-ray
scatter in the target projection. This will be explained further in section 5.

One way to obtain the estimated parameter updates ΔĈ(t) is by optimizing a measure ρ of
the concatenated intensity residue R† with respect to the parameter updates ΔC. The
concatenated intensity residues R†, defined as the concatenation over all of the projection
angles θ of the residues Rθ: R† = (Rθ1, R θ2,…, R θΓ).

(2.4)

Without parallelization, iterative computations to carry out this optimization are structurally
slow. Moreover, the optimization may easily converge to a local minimum since the energy
functional in eq. 2.4 is not convex. See section 7.2.3 for the detailed evaluation of the
optimization-based approach.
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2.2. Efficient Linear Approximation of ΔC
We propose an alternative method to calculate ΔC using multi-scale linear operators M. At
each iteration of the registration, our method estimates the motion/deformation parameter
updates ΔĈ(t) by applying a linear operator Ms of scale s to the current concatenated
intensity residue R†. That is,

(2.5)

Typically, S = 4 and tmax ≤ 10 are satisfactory. The computation in eq. 2.5 involves only
matrix multiplications by Ms, computation of the projections P, and subtractions (eq. 2.2).
This makes the registration structurally fast. The calculation of the multi-scale linear
operators M involves a machine learning process described in detail in section 4. Due to the
leveragable advantage of the machine learning process and the fast linear operation, our
proposed method shows a more robust and faster registration than the optimization-based
approach. See section 7.2.3 for the comparisons.

3. Shape Space Modeling
Our method limits the motion/deformation to a shape space. To allow M to be accurately
learned, we require a low-order parametrization C of this shape space. We describe the
shape space calculation for rigid motions and for non-rigid deformations in section 3.1 and
3.2 respectively.

3.1. Rigid Motion Modeling
Rigid motions are modeled explicitly as the variation in the Euler’s six dimensional rigid
space:

(3.1)

where tx, ty, tz are the translation amounts in cm along the world’s coordinate axes x, y, z,
respectively; and rx, ry, rz are the rotations in degrees (°) about the image center, around the
world coordinate axes x, y, and z, in succession.

3.2. Deformation Modeling
Like others (Liu et al. [19], Li et al. [9]), we model deformations as a linear combination of
a set of basis deformations calculated through principal component analysis (PCA). In our
target problem, a cyclically varying set of 3D images {Jτ; over time τ } are available at pre-
registration learning time. From these a mean image J¯, and a set of deformations φτ between
Jτ and J¯ can be computed. The basis deformations are chosen to be the primary eigenmodes
of the PCA of the φτ. The computed mean image J̄ will be used as the reference mean image
I throughout this paper.

3.2.1. Deformation Shape Space and Mean Image Generation—In order to model
the deformation space realistically, our method computes a Fréchet mean image J¯ via an
LDDMM (Large Deformation Diffeomorphic Metric Mapping) framework (Beg et al. [20])
from the cyclically varying set of 3D images {Jτ; over time τ }. The Fréchet mean, as well as
the diffeomorphic deformations φ from the mean to each image Jτ, are computed using a
fluid-flow distance metric dfluid (Lorenzen et al. [21]):
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(3.2)

(3.3)

where Jτ (x) is the intensity of the pixel at position x in the image Jτ, vτ,γ is the fluid-flow
velocity field for the image Jτ in flow time, γ, α is the weighting variable on the image
dissimilarity, and φτ (x) describes the deformation at the pixel location

.

The mean image J ¯ and the deformations φτ are calculated by gradient descent optimization.
The set {φτ over τ} can be used to generate the deformation shape space by the following
statistical analysis.

3.2.2. Statistical Analysis—Starting with the diffeomorphic deformation set {φτ }, our

method uses PCA to find a set of linear deformation basis functions . The scores  (basis

function weights) for each  yield φτ in terms of these basis functions.

(3.4)

We choose a subset of n eigenmodes that capture 95% of the total variation. Then we let the
n basis function weights λi form the n-dimensional parameterization C.

(3.5)

(3.6)

4. Machine Learning
From the motion/deformation shape space we calculate linear operators M that correlate
coarse-to-fine sampled model parameters C with the corresponding projection intensity
residue vectors R. We describe our regression learning to calculate the linear operators M in
section 4.1 and an efficient multi-scale learning strategy in section 4.2.

4.1. Residues to Model Parameters Regression Learning
As detailed in section 4.2 we select a collection of model parameters {Cκ over cases κ} for
learning. Each case is formed by a selection of parameter settings. The training uses
deviations from the reference image, such that ΔC = C κ. Linear regression is used to
correlate the selected modeled parameters C in the κth case with the co-varying projection
intensity residue set {Rκ,,θ over the projection angles θ}. Rκ θ(x) is computed as the
intensity difference at pixel location x = (x1, x2) between the projection at angle θ of the
mean image I (or an untransformed 3D image for the rigid case) and the projection of the
image I ∘ T (Cκ) transformed with the sampled model parameter Cκ:
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(4.1)

We concatenate the residues at each projection angle to formulate a residue set in a vector

 and build a linear regression for all cases κ= 1, 2, …, K:

(4.2)

The regression matrix M that gives the best estimation of the linear operators per parameter
scale is computed via a pseudo-inverse:

(4.3)

4.2. Multi-scale Learning
To provide adequate regression learning, C must be sufficiently sampled to capture all the
shape variations. However, the direct implementation requires an exponential time
computation. Instead, we have designed an efficient scheme that learns the model
parameters from large to small scales, 1 to S, to yield S scale-related regression matrices
M1, M2, …, MS. At the σth scale of learning, each model parameter ci is collected from the
combinations of ±3σi · (S − σ + 1)/S and 0 where σi is the standard deviation of the basis
function weights i observed at pre-registration time. In the registration stage the calculated
multi-scale linear operators are applied sequentially, from M1 to MS, to give new
estimations of the model parameters from large to small scale. After evaluating the
estimation accuracy for target examples of both the rigid and non-rigid types, we found that
four scales of learning (S = 4) produced sufficiently dense samples in C to achieve the
required registration accuracy.

5. Commensurate Projection Intensity Generation
X-ray scatter is a significant contribution to the cone-beam CT projections. However, the
regression estimators M are not invariant to the projection intensity variations caused by x-
ray scatter. Therefore, our method uses a normalization filter (section 5.1) and a subsequent
histogram matching scheme (section 5.2) to generate commensurate intensities between
learning-time computed projections and registration-time target projections.

5.1. Local Gaussian Normalization
To account for variations caused by x-ray scatter, we perform a 2D Gaussian-weighted
normalization for each pixel in the learning projections (Figure 5.1 (d)) and the target
projections (Figure 5.1 (b)). To calculate the normalized value Ψ′(x;θ) at pixel location x =
(x1, x2) and projection angle, θ we subtract a Gaussian-weighted spatial mean μ′ (x1, x2)
from the raw pixel value Ψ (x1, x2) and divide it by a Gaussian-weighted standard deviation
σ′ (x1, x2).
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(5.1)

(5.2)

(5.3)

where 2A + 1 and 2B + 1, respectively, are the number of columns and rows in the
averaging window centered at (x1, x2); the function G is a zero mean Gaussian distribution
with a standard deviation w. We choose A, B, and w to be a few pixels to perform a local
Gaussian-weighted normalization for our target problem (see section 6).

5.2. Histogram Matching
In order to correct the intensity spectrum differences between the normalized learning

projection  and the normalized target projection  a function Fω of intensity to
achieve non-linear cumulative histogram matching within a region of interest ω is applied.
To avoid having background pixels in the histogram, the region ω is determined as that pixel
set whose intensity values are larger than the mean value in the projection. That is, Fω is
defined by

(5.4)

where Hf is the cumulative histogram profiling function. The histogram matched intensities

 (Figure 5.1 (c)) are calculated through the mapping:

(5.5)

6. Experimental Setup and Clinical Context
We describe the experimental setups for evaluating the method and provide some clinical
context. Our target problem is IGRT (Image-guided Radiation Therapy). There the 3D
image I is the planning CT (Computed Tomography), and the target projection images Ψ are
treatment-time imaging kV projections. In particular, the kV projections are produced by 1)
a rotational CBCT (Cone-beam CT) imager or 2) a stationary NST (Nanotube Stationary
Tomosynthesis) imager specified in Maltz et al. [22]. Our method’s application to IGRT,
referred to as Correction via Limited-Angle Residues in External Beam Therapy, or
CLARET (Chou et al. [14, 15]), has shown promise in registering the planning CT to the
treatment-time imaging projections. We describe the two treatment imaging geometries in
section 6.1 and CLARET’s application to head-and-neck IGRT and lung IGRT in sections
6.2 and 6.3, respectively.
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6.1. Treatment Imaging Geometry
6.1.1. Cone-beam CT (CBCT)—A CBCT is a rotational imaging system with a single
radiation source and a planar detector, which are mounted on a medical linear accelerator.
This pair rotates by an angle of up to 2π during IGRT, taking projection images Ψ during
traversal (Figure 6.1 (a)). A limited-angle rotation provides a shortened imaging time and
lowered imaging dose. For example, a 5′ rotation takes ~ 1 second. In our application,
CBCT projections were acquired in a half-fan mode. Half-fan mode means that the imaging
panel (40 cm width by 30 cm height, source-to-panel distance 150 cm) is laterally offset 16
cm to increase the CBCT reconstruction diameter to 46 cm. The method’s linear operators
are trained for projection angles over 360 degrees at 1 degree intervals beforehand at
planning time. At treatment time the method chooses the linear operator that is closest to the
current projection angle.

6.1.2. Nanotube Stationary Tomosynthesis (NST)—An NST is a stationary imaging
system mounted on a medical linear accelerator that can perform imaging without
interfering with treatment delivery. As illustrated in Figure 6.1 (b), it consists of an
arrangement of radiation sources arrayed around the treatment portal, together with a planar
detector. The geometry thus is fixed and known beforehand. Firing the sources in sequence
produces a sequence of projection images at different orientations. Each projection image
requires ~ 200 ms.

6.2. Head-and-neck IGRT
In head-and-neck IGRT, the geometric differences of the skull between planning time and
treatment time can be represented by a rigid transformation. Therefore, in the pre-
registration learning, CLARET samples clinically feasible variations (±2 cm, ±5°) in the
Euler’s 6-space C to capture the treatment-time patient’s motions. With a single planning
CT I of the patient, the computed learning projections P(x, I ∘ T (C);θ) are generated by
transformation of the feasible variations T (C) and projection from a given angle θ of the
transformed 3D volume I ∘ T (C).

In the registration, CLARET iteratively applies S multi-scale linear operators M1 to MS to
estimate the rigid transformation from the 2D intensity residues formed by the difference
between the normalized target projections Ψ★ and the normalized projections computed
from the currently estimated rigid transformation applied to the planning-time 3D image.

6.3. Lung IGRT
A consideration in lung IGRT is that respiratory motion introduces non-rigid
transformations. In the pre-registration learning stage, a set of 10-phase RCCTs
(Respiratory-correlated CTs) collected at planning time serve as the cyclically varying 3D
images {Jτ over the phase τ }. This image set is used to generate the deformation shape
space C. From these RCCTs, a Fréchet mean image J¯ and its deformations φτ to the
corresponding images Jτ are calculated via an LDDMM framework. Figure 6.2 (c) shows an
example respiratory Fréchet mean image. The deformation basis functions φpc are then
generated by PCA on the deformation set {φτ over phase τ }. Liu et al. [19] have shown that
a shape space with three eigenmodes adequately captures 95% respiratory variations
experienced at treatment time. Figure 6.3 shows the first two principal deformation basis
functions.

To generate feasible variations in the deformation space C for learning the linear operator
M, CLARET samples the largest scale of parameters by three standard deviations of the
basis function weights derived from the RCCT image set. From the Fréchet mean image the
computed projections P(x, I ∘ T (C);θ) are generated by 1) transformation based on the
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feasible variations T (C) and 2) projection from a given angle θ to the transformed 3D
volume I ∘ T (C).

Just prior to treatment, the Fréchet mean image obtained at planning time is rigidly
registered to the CBCT for correcting patient position. During treatment with planar
imaging, CLARET iteratively applies S multi-scale linear operators, from M1 to MS to
estimate the weights C on the basis functions φpc from current 2D intensity residues. The
residues are formed by the difference between the normalized and histogram matched target
projections Ψ★ (Figure 5.1 (c)) and the normalized projections (Figure 5.1 (d)) computed
from the presently estimated deformation applied to the Fréchet mean image.

7. Experiments and Results
We show CLARET’s rigid registration and non-rigid registration results in sections 7.1 and
7.2, respectively. In particular, we tested the rigid registration using the NST imaging
system for the head-and-neck IGRT and tested the non-rigid registration using projection
images from CBCT scans acquired with the rotational imaging system lung intratreatment
IGRT. In section 7.2.3 we compare the registration accuracy and efficiency of CLARET and
an optimization-based approach.

7.1. Rigid Registration Results
We tested CLARET’s rigid registration by synthetic treatment-time projections and by real
phantom projections, as described in sections 7.1.1 and 7.1.2, respectively. The registration
quality was measured by the mean absolute error (MAE) and mean target registration error
(mTRE). The MAE in any of the parameters of C is the mean, over the test cases, of the
absolute error in that parameter. The mTRE for a test case is the mean displacement error,
over all voxels in a 16× 16× 16 cm3 bounding box (the probable tumor region) centered on
the pharynx in the planning CT I.

(7.1)

where χ is the number of pixels in the probable tumor region, yi = (y1, y2, y3) is the tuple of
the ith voxel position, and Ct;rue, Cest; are the true and the estimated transformation
parameters, respectively.

7.1.1. Synthetic Treatment Projections—We used noise-added DRRs (digitally
reconstructed radiographs) of target CTs as the synthetic treatment-time projections. The
DRRs (Figure 7.1(a)) were generated to simulate the NST projections with dimension 128 ×
128 and pixel spacing 3.2 mm (Figure 2.1). The target CTs were transformed from the
patient’s planning CT by taking normally distributed random samples of the translation and
rotation parameters within the clinical extent: ±2 cm and ±5°, respectively. The planning
CTs have a voxel size of 1.2 mm lateral, 1.2 mm anterior-posterior, and 3.0 mm superior-
inferior. The number of imaging positions was varied to find the minimum number with sub-
CT-voxel accuracy in terms of mTRE.

Zero mean, constant standard deviation Gaussian noise was added to the DRRs to generate
the synthetic projections. The standard deviation of the noise was chosen to be 0.2 × (mean
bony intensity - mean soft tissue intensity). This noise level is far higher than that produced
in the NST system. An example synthetic projection is shown in Figure 7.1(b).
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We first studied how many projection images are needed for CLARET’s learning to obtain
sub-voxel accuracy. The results on 30 synthetic test cases of a head-and-neck dataset,
displayed in Figure 7.2(a), show that two projection images are sufficient to achieve sub-
CT-voxel accuracy. Figure 7.2(a) also shows the method’s accuracy improves with more
projections. However, we note that redundant projections may contribute error in the
parameter estimation. Therefore, the 4-projection geometry (Figure 7.2(a)), which used the
middle x-ray source on each imaging bank, produced the sufficient and necessary number of
projections to capture the simulated rigid motions. Figure 7.1(c) shows the geometry of the
two opposing x-ray sources that generated the two projection images in the study. We note
that the choice of opposing sources is such that the maximum angle between images (22.5
degrees) is formed with the NST system.

An analysis of the effect of the number of scales on multi-scale learning (section 4.2) shows
that increasing the number of scales reduces the registration errors (Figure 7.2(b)).

Table 1 shows the statistics of the errors in each rigid parameter from 90 synthetic test cases
generated from three patients’ planning CTs (30 cases for each CT). The CLARET
registration used only the two opposing NST projection images (Figure 7.1(c)).

7.1.2. Real Treatment Projections—We tested CLARET’s rigid registration on a head
phantom dataset. NST projections (dimension: 1024 × 1024; pixel spacing: 0.4 mm) of the
head phantom were downsampled to dimension 128 × 128 with a pixel spacing of 3.2 mm
(Figure 7.3(a)). The dimension of the planning CT is 512 × 512 × 96 with a voxel size of
3.43 mm3. The ground truth was obtained by rigidly registering all 52 NST projections to
the planning CT by the l-BFGS optimization (Nocedal [23]) of the similarity metric in
projection space.1 The initial mTRE over the head region is 51.8 mm. With 4-scale learning
(S = 4), CLARET obtained a sub-voxel accuracy of 3.32 mm using only two projections in
5.81 seconds. It was computed on a 16-core laptop GPU (NVIDIA GeForce 9400m) where
the parallelization is limited. A factor of 32 speed-up (0.18 seconds per registration) can be
expected when using a 512-core GPU. As shown in Figure 7.3(b) and 7.3(c), CLARET
accuracy improves with increased number of projections and scales in the multi-scale
learning process. The registration time is approximately linear with the number of
projections used.

7.2. Non-rigid Registration Results
We tested CLARET’s non-rigid registration with synthetic and real patient cone-beam
projections, as described in sections 7.2.1 and 7.2.2, respectively. RCCT datasets (CT
dimension 512×512×120; voxel size 1 mm lateral × 1 mm anterior-posterior × 2.5 mm
superior-inferior) were generated with an 8-slice scanner (LightSpeed, GE Medical Systems)
by acquiring multiple CT images for a complete respiratory cycle at each couch position
while recording patient respiration (Real-time Position Management System, Varian
Medical Systems). The CT projections were retrospectively sorted (GE Advantage 4D) to
produce 3D images at 10 different respiratory phases.

7.2.1. Synthetic Treatment Projections—We used DRRs of the target CTs as the
synthetic treatment-time projections. The DRRs were generated to simulate projections from
a rotating kV imaging system (section 6.1.1) mounted on the gantry of the medical
accelerator (TrueBeam, Varian Medical Systems). The target CTs were deformed from the
patient’s Fréchet mean CT by taking normally distributed random samples of the

1Results in Frederick et al. [24] suggests that 2D/3D registration accuracy is higher than limted-angle-reconstructed-3D/3D
registration accuracy for the NST geometry.
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coefficients of the first three PCA-derived deformation eigenmodes of the patient’s RCCT
dataset (section 3.2).

For each of the 10 CLARET registrations, we used a single simulated coronal projection
(dimension 128 × 96; pixel spacing 3.10 mm) at angle 14.18° (Figure 5.1(d)) as input.
(Future studies will investigate the effect of this pixel spacing on the registration quality.)
The registration quality was then evaluated by measuring the 3D tumor centroid difference
between the CLARET-estimated CT and the target CT. 3D tumor centroids were calculated
from active contour (geodesic snake) segmentations (Yushkevich et al. [25]). As shown in
Table 2, after registration CLARET reduces more than 85% of the centroid error.

We studied CLARET’s registration quality in terms of average DVF (Displacement Vector
Field) error over all cases and all CT voxels versus different angular spacings used in
learning. Registrations using two projections with four differ-ent angle separations were
tested by 30 randomly generated test cases. Figure 7.4(a) shows that the average DVF error
reduces with appropriately large angular separations. However, tumor motion or respiratory
motion may not be visible or inferable in projections from certain angles. For example, the
tumor may be obscured by denser organs (i.e., mediastinum). In Figure 7.4(a) the respiration
motion may not be inferable from the projection at 9.68° resulting in a larger error in the
parameter estimation.

We also studied CLARET’s registration quality by measuring the average DVF error versus
the number of projections used for learning. For each number of projections, we generated
30 random test cases. Figure 7.4(b) shows no particular trend. As a result, we used a single
projection to test CLARET’s non-rigid registration for the real patient data in the next
section.

7.2.2. Real Treatment Projections—We tested CLARET on 5 lung patient datasets
consisting of projections from patient CBCT scans acquired with the rotational imaging
system (section 6.1.1). CLARET 2D/3D registration used a single coronal CBCT projection
at angle 14.18° and downsampled (original dimension 1024 × 768 and pixel spacing 0.388
mm) to 128 × 96 with 3.10 mm pixel spacing (Figure 5.1(a)). Separate registrations were
done using projections at the EE (End-Expiration) and EI (End-Inspiration) phases. Prior to
2D/3D registration, the Fréchet mean image was rigidly registered to the patient’s CBCT
image so as to align the vetebral anatomy in both images. We measured the difference in 3D
tumor centroid position (Figure 7.6(a)) between the CLARET-estimated CT and
reconstructed CBCT at the same respiratory phase as the projection used in the 2D/3D
registration. The RMS window width was set to 32.0 mm for the Gaussian normalization of
this imaging geometry, which was predetermined to yield the smallest 3D centroid error in
one lung dataset (Figure 7.5). (Future studies will check whether this window size is also
best for other datasets.) The results shown in Table 3 suggest a consistency in registration
quality between the synthetic image tests and real projection image tests. The mean and
standard deviation of 3D tumor centroid errors following 2D/3D registration are 2.66 mm
and 1.04 mm, respectively. The errors include an uncertainty in tumor position in the CBCT
projections, owing to variability in the manual segmentations in the CBCT reconstructions,
and residual tumor motion within the EE and EI phase intervals. Based on repeatability
measurements of the manual segmentations and tumor motion analysis of the RCCT
datasets, we estimate the standard deviation uncertainty in manually determined tumor 3D
position to be 1 mm. The average computation time is 2.61 seconds on a 128-core GPU,
NVIDIA GeForce 9800 GTX. A factor of four speed-up (to 0.65 seconds) can be expected
when using a 512-core GPU for acceleration.
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The clinical goal is to improve tumor localization during treatment using CLARET.
Assuming a mean lung tumor motion extent of about 10 mm, the standard deviation
uncertainty is about one-third of the motion extent, or 3 mm. In order to improve on current
clinical practice (i.e., no image guidance during treatment) a standard deviation uncertainty
of 2 mm or less is desirable. Furthermore, since most of the motion is in the inferior-superior
direction, it is desirable to achieve 2 mm uncertainty or less in that direction. Our results
show that CLARET achieves the clinically desired accuracy: the mean and standard
deviation 2D tumor centroid error after registration is 1.96 mm and 1.04 mm, respectively.
CLARET reduces positional errors in directions along the plane of the projection more than
in the out-of-plane direction. As shown in Table 3, most of the percent 2D error reductions
(coronal in-plane), except cases from patient #1, are larger than 3D error reductions. This is
expected because 2D/3D registration with a single projection is more sensitive to tumor
displacements in the image plane but less sensitive to scale changes due to out-of-plane
displacements.

Figure 7.6(b) shows the 3D meshes of the tumors in the Fréchet mean CT, the CBCT at EE,
and the estimated CT of a lung dataset for visual validation. As shown in the Figure, the
tumor position in the CLARET-estimated CT is superior to that in the mean image, as
expected physiologically for the EE phase.

Figure 7.7 shows the same 3-space lines in the mean CT, the reconstructed CBCT at the EE
phase and the CLARET-estimated CT of a lung dataset. The intersection of the lines with
the tumor centroid in the CBCT are in better agreement with the CLARET-estimated CT
than with the mean CT, indicating that CLARET can accurately locate the tumor in the
plane of the projection (coronal plane) and further corroborating the results of Table 3.

7.2.3. Comparison to an optimization-based registration method—We compared
the registration accuracy and efficiency between CLARET (eq. 2.5) and an optimization-
based method similar to that in Li et al. [9]. The optimization-based method we
implemented optimizes eq. 2.4 (with ρ = 2) using the l-BFGS quasi-Newton algorithm
(Nocedal [23]). To make fair comparisons, we used the same deformation shape space, the
same initializations, the same GPU acceleration for the projection operator P, and the same
testing datasets. For the comparisons, we randomly sampled 30 synthetic deformations for
each of the five lung patients as the test cases. The deformations are sampled randomly
within ±3 standard deviations of deformations observed in the patient’s RCCTs. For each
test case, a single coronal CBCT projection (dimension: 1024 × 768 downsampled to
dimension: 128×96) was simulated from the deformed Fréchet mean CT as the target
projection. Both methods were initialized with the realistic Fréchet mean image with no
deformation: Ĉ(0) = 0 in eq. 2.1.

For CLARET, we used 4 scales of learning for each patient. At the σth scale of learning,
each deformation parameter ci (i = 1, 2, 3) was collected from the combinations of ±3σi · (4
− σ + 1)/4, ±1.5σi · (4 − σ + 1)/4, and 0 where σi is the standard deviation of the ith

eigenmode weights observed in the patient’s RCCTs. Therefore, at each scale of learning,
125 training deformations are sampled.

We compare the registration accuracy by the average registration error distance over the
lung region. As Figure 7.8 shows, CLARET yields more accurate results than the l-BFGS
optimization-based registration in almost every test cases in all five patients. Table 4 shows
statistical comparisons of the registration accuracy. The maximum error produced by
CLARET among the 30×5=150 test cases is only 0.08 mm where the maximum error
produced by l-BFGS is 13.15 mm, which is 164 times higher than CLARET. The smaller
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median error and error standard deviation also shows that CLARET is more accurate and
more robust than the l-BFGS optimization-based approach.

In term of registration speed, Figure 7.9 shows that CLARET is faster than l-BFGS in every
test case and has relatively small variation in speed. The statistical results shown in Table 5
indicate that the longest registration time produced by CLARET is still shorter than the
shortest time produced by l-BFGS.

As our results show, in our implementations CLARET is more robust, accurate, and faster
than the l-BFGS optimization.

8. Conclusions and Discussion
We have presented a novel rigid and non-rigid 2D/3D registration method that estimates an
image region’s 3D motion/deformation parameters from a small set of 2D projection images
of that region. Our clinical goal is to model not only temporal changes in tumor position and
shape (tumor tracking), but also those for the surrounding organs at risk. In this context the
volume of interest is known to exhibit deformations (Mageras et al. [26], Rosu et al. [27]).
The method is based on producing limited-dimension parameterization of geometric
transformations based on the region’s 3D images. The method operates via iterative, multi-
scale regression, where the regression matrices are learned in a way specific to the 3D
image(s) for the specific patient. The synthetic and real image test results have shown the
method’s potential to provide fast and accurate tumor localization with a small set of
treatment-time imaging projections for IGRT. Faster registration is expected when a modern
GPU is used for a higher level of parallelization.

However, in order to obtain such registration accuracy, our method requires a well-modeled
motion/deformation shape space that includes all feasible variations of the image region. In
many radiation therapy situations for certain parts of the body, collecting the required
number of 3D images of the patient to form the well-modeled shape space is not directly
obtainable in current therapeutic practice. Future work will investigate the possibility of
modeling the shape space through a patient population.

To make our method more robust for the IGRT application, future work will also evaluate
the method on more patient datasets and study the effects of the projection resolution and the
normalization window size on the registration accuracy.
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• A novel rigid or deformable 2D/3D image registration method using regression
learning.

• The method learns a shape space of geometric transformation from the 3D
image set.

• The method uses multi-scale linear regressions on the 2D image intensity
residues.

• Target problem is registration between planning time and treatment time in
radiotherapy.
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Figure 2.1.
An x-ray projection is simulated by ray-casting on a 3D image volume. The dashed lines and
arrows indicate the ray directions.
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Figure 5.1.
(a) A raw Cone-Beam CT (CBCT) projection (target projection), (b) a local Gaussian
normalized CBCT projection (normalized target projection), (c) histogram matched CBCT
projection (normalized and histogram matched target projection) and (d) a local Gaus-sian
normalized DRR of a Fréchet mean CT (learning projection) from a lung dataset. As shown
in the images, after normalization and histogram matching, the intensity contrast in the
target projection becomes closer to that in the learning projection.
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Figure 6.1.
(a) Short arc CBCT geometry: rotational imaging system depicting a 30° arc. The image
detector is laterally offset for half-fan acquisition. (b) The NST geometry: stationary sources
array with angle θ = 22.42°
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Figure 6.2.
(a) Respiratory-correlated CT at the End-Expiration (EE) phase (b) RCCT at the End-
Inspiration (EI) phase and (c) Fréchet mean CT generated via the Large Deformation
Diffeomorphic Metric Mapping framework from the RCCT dataset.
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Figure 6.3.
The (a) first and (b) second principal deformation basis functions analyzed from a lung
RCCT dataset. Colored lines indicate heated body spectrum presentations of the deformation
magnitudes. As shown in the images, the first principal motion consists of anterior-posterior
expansion and contraction of the lung, and the second principal motion is along the superior-
inferior direction. X⃗: Left to Right (LR); Y⃗: Anterior to Posterior (AP); Z⃗: Superior to
Inferior (SI).
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Figure 7.1.
(a) A raw DRR from a x-ray source in the NST (b) DRR with Gaussian noise added (c) the
NST geometry of two opposing x-ray sources
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Figure 7.2.
Boxplot results of errors in varying (a) the number of projections used and (b) the number of
scales used for CLARET’s rigid registration. Red dots are the outliers. In (a), projections of
equally-spaced sources were used.
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Figure 7.3.
(a) One of the testing NST projection of a head phantom. (b) Time plots and (c) error plots
of CLARET’s registrations on a real head-and-neck phantom dataset. Registrations were
accelerated on a 16-core laptop GPU (NVIDIA GeForce 9400m).
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Figure 7.4.
Boxplots of average displacement vector field errors when varying (a) the angular spacing
and (b) the number of projections used for CLARET’s non-rigid registration. Red dots are
the outliers. In (a), two projections for each test were used. For the zero-degree test case,
only one projection was used. In (b), DRRs spanning 9.68° about 14.18° were used in each
test. The single projection was tested at 14.18° (see Figure 5.1(d)).
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Figure 7.5.
3D tumor centroid error plots on a lung dataset for varying width of the Gaussian window
used for CLARET’s local Gaussian normalization.
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Figure 7.6.
(a) Transaxial image with manual segmented tumor contours in the reconstructed CBCT at
one respiratory phase of a lung dataset (patient 3). The contours were used for 3D centroid
calculation. (b) Tumor meshes in the Fréchet mean CT (white), in the target CBCT at the EE
respiratory phase (blue) and in the CLARET-estimated CT (red) of a lung dataset (patient 2).
The background is a coronal slice of the mean CT for illustration. The overlap between the
estimated and the target tumor meshes indicates a good registration.
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Figure 7.7.
The same 3-space lines in (a) the mean CT, (b) the reconstructed CBCT at the EE phase and
(c) the estimated CT of the same lung dataset used in Figure 7.6 (b). Upper row: lines
indicate the tumor centroid in the CBCT at the EE phase; lower row: lines indicate the
diaphragm contour in the CBCT at the EE phase.
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Figure 7.8.
mean target registration error (mTRE) on test data generated from five patients (pt1-pt5):
CLARET vs. the l-BFGS optimization vs. the initial error before registration.
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Figure 7.9.
Registration time on the five patient data (pt1-pt5): CLARET vs. the l-BFGS optimization.
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