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Abstract
The classic imaging geometry for computed tomography is for collection of un-truncated
projections and reconstruction of a global image, with the Fourier transform as the theoretical
foundation that is intrinsically non-local. Recently, interior tomography research has led to
theoretically exact relationships between localities in the projection and image spaces and
practically promising reconstruction algorithms. Initially, interior tomography was developed for
x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a
novel framework known as “omni-tomography” is being developed for grand fusion of multiple
imaging modalities, allowing tomographic synchrony of diversified features.
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I. Introduction
The revolutionary work on x-ray computed tomography (CT) by Hounsfield [1] and
Cormack [2] has produced a profound impact on the field of medical imaging. Over the past
decade, the development of spiral fan-beam/multi-slice/cone-beam CT technologies has
dramatically increased and continues increasing the number of CT scans [3, 4]. Smith-
Bindman and her colleagues estimated that the number of CT scans was nearly tripled in the
USA over the past 15 years, from 52 scans per 1,000 patients in 1996 to 149 scans per 1,000
patients in 2010 [5]. Now, there are about 100 million CT scans annually performed around
the world (http://www.buzzle.com/articles/cat-scan-cost.html).

The mathematical twist of spiral cone-beam CT comes from longitudinal data truncation.
Because of the beam divergence, spiral cone-beam CT cannot be simplified into fan-beam
reconstruction through longitudinal data interpolation like what was done for spiral fan-
beam CT [6]. The first spiral cone-beam CT algorithm was derived by Wang et al. [7] by
extending the popular circular cone-beam CT algorithm by Feldkamp et al. [8]. It has taken
CT reconstruction researchers about a decade to find theoretically exact solutions [9–13].
More details can be found in [3, 14].
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Encouraged by the impressive results from overcoming the longitudinal data truncation, we
were very curious about what would happen with the transverse data truncation. This is
actually the well-known “interior problem” [15], in which an internal region of interest
(ROI) is irradiated with x-rays only through the ROI to recover the ROI image exactly.
Unfortunately, it was already proven long time ago that the interior problem had no unique
solution in general [15]. The historical fact that reliable image reconstruction cannot be
performed from truncated projection data has contributed to the current CT architectures
whereby the detectors are sufficiently wide to cover a transaxial section fully. When a
traditional CT algorithm is applied for local reconstruction from truncated data, quantitative
accuracy is lost in a reconstructed image, compromising its diagnostic value significantly.

To overcome the transverse data truncation innovatively, with our collaborators we have
been developing interior tomography since 2007 [16–26]. Independent results in this area
were also performed by peers [27–30]. By interior tomography we mean the theoretically
exact yet numerically stable solution to the long-standing interior problem assuming
appropriate yet practical a priori knowledge (Figure 1). In this sense, it is different from
either traditional local tomography that settles with an approximate solution over an ROI
[31] or well-known lambda tomography that only captures significant changes in an ROI
[32]. Various kinds of a priori knowledge are possible to enable interior tomography, such
as a known sub-region in an ROI [16, 27] or a sparsity model of an ROI [21, 24].

A misconception is occasionally heard that approximate local reconstruction is only one
constant away from the truth. According to page 169 of Natterer's classic textbook [15], the
ambiguity is an infinitely differentiable function whose variation is relatively small well
within an ROI but it increases rapidly towards the boundary of the ROI and is not bounded
over the ROI. The magnitude estimates in Table 4.1 on page 170 of the same book [15] are
~2–13% for a sub-region of an ROI, which are considered rather significant because the CT
number variation of soft tissues is in this range. Actually, we have proven that a non-zero
constant ambiguity in an ROI is simply impossible[22], suggesting the non-trivialness of
interior tomography.

As an emerging area, interior tomography brings research opportunities and promises
practical applications. In this article, we will first review the literature on conventional local
tomography that is theoretically approximate, and then discuss the essential meaning of
interior tomography in both its special and general forms. The remaining parts of this paper
are organized as follows. In section II, we will recall conventional local tomography
techniques that can only produce approximate reconstruction from truncated projections. In
Sections III and IV, we will respectively describe interior tomography for x-ray CT and
other imaging modalities such as SPECT, MRI, and differential phase-contrast tomography.
In Section V, we will focus on omni-tomography enabled by the general theory of interior
tomography. In Section VI, we will discuss relevant issues and conclude the paper.

II. Prior Art
The interior problem and approximate solutions were extensively studied in the past
decades. These results can be divided into two classes: (1) approximate algorithms for image
reconstruction over an ROI [31, 33–40] and (2) lambda tomography algorithms for edge
identification within an ROI [32, 41–54], either of which only assumes that local projection
data are available. To put interior tomography in perspective, in this section we briefly touch
upon these classes.
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II.1. Approximate Local Reconstruction
Since many applications involved the interior problem but it was believed that there would
be no unique solution in such cases [15, 36], a number of researchers developed various
approximate local reconstruction algorithms for this purpose. For example, Louis and Rieder
derived the consistency conditions for the divergent beam transform and studied the singular
value decomposition, which showed that the high angular frequency components can be well
determined [38]. Sahiner and Yagle combined the non-uniform sampling and circular
harmonic expansions for ROI reconstruction [39]. Using wavelets to localize the Radon
transform, Rashid-Farrokhi et al. developed a multi-resolution method for ROI
reconstruction from almost completely local projections [40]. Wiegert et al. extrapolated
truncated ROI projections from forwarded projections of a previously acquired reference
image and obtained excellent ROI images [37].

Our group published multiple papers in this regard. We studied the wavelet local
tomography [55–57] for parallel and fan-beam geometries, and applied the results to cone-
beam data [58]. Our wavelet filtering and local reconstruction techniques were applied to
metal artifact reduction (MAR) [59, 60]. In a local ROI reconstruction scheme we proposed
[61], a normal radiation dose is delivered to an ROI while a low radiation dose is applied
outside the ROI. If both low and high quality datasets are acquired, we can combine them
for excellent local image reconstruction such as for clinical micro-CT possibilities [62]. It is
underlined that these local reconstruction algorithms we developed, along with similar
algorithms other investigators developed [63–68], were approximate in principle. Hence,
they have no theoretical basis to produce exact reconstruction results.

II.2. Lambda Tomography
In contrast to approximate local reconstruction algorithms, lambda tomography techniques
target boundaries only. Let x and ξ represent two-dimensional (2D) vectors, f (x) a 2D

bounded function,  the corresponding Fourier transform, we have

(2.2.1)

where  denotes the 2D space. Let Λ be the Calderon operator defined as

(2.2.2)

Lambda tomography is to reconstruct the gradient-like function Λf (x) only from directly
involved truncated projection data, which was first proposed in [41].

Despite its non-quantitative nature, lambda tomography has a major mathematical advantage
over approximate local tomography. Thanks to the simplified reconstruction requirement,
lambda tomography eliminates non-local filtering, and image reconstruction can be done
with high computational efficiency [32]. Faridani et al. studied the properties of the
Calderon operator and its adjoint, whose linear combination was used for local
reconstruction [43, 44]. Katsevich proposed an efficient numerical scheme to compute
lambda tomography from a generalized Radon transform [45], and extended it for limited-
angle [46], non-smooth attenuation [48], cone-beam [47] tomography. Furthermore,
Katsevich proposed an improved version of cone-beam lambda tomography [52], updating
his previous results [47].
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Inspired by the results on exact CT reconstruction from data acquired along any smooth
scanning curve [3, 69], a theoretically exact fan-beam lambda tomography formula was
proved for data collected along a smooth trajectory in terms of the 2D Calderon operator
[70]. It was also extended to cone-beam lambda tomography [71] and even with
discontinuous trajectories [72]. Compared with the result in [52], the major result in [71] is a
special case of [52] with a specific weighting function derived from the 2D exact formula in
[70]. Generally, it is impossible to reconstruct a 3D lambda tomography image exactly with
a spiral cone-beam scan in terms of the 3D Calderon operator [72]. Hence, a skew cone-
beam lambda tomography method was proposed [73]. Recently, Quinto et al. reported on
electron lambda tomography [49, 74–76]. Katsevich studied motion compensated local
tomography [50, 53, 54].

III. Special Interior Tomography
The development of CT theory is to use an increasingly smaller amount of data for
theoretically exact image reconstruction. Examples include half-scan fan-beam
reconstruction [77], 2D two-step Hilbert method [78, 79], and Tam-window-based cone-
beam reconstruction [9, 80]. Each relaxation of the data condition is a theoretical
advancement. In the classic CT literature, a minimum dataset consists of transversely non-
truncated projections. Such a global dataset permits theoretically exact reconstruction of a
cross-section or an entire volume. In contrast, interior tomography offers an exact inner
vision over an ROI only from directly related local projection data, demonstrating in an
essential sense and for the first time the uniqueness and stability of local reconstruction of
reconstruction of an ROI only from data that directly involve the ROI (Figure 2). This
decomposition has sharpened our understanding of the relationship between the image and
projection domains, which shows the locality correspondence across these domains.

This aforementioned relationship is fundamentally related to Gel'fand-Graev theory [14, 81]:
Backprojection of differentiated projection data over a PI-line segment gives the truncated
Hilbert transform over it. Here, the PI-line segment is defined as a line-segment connecting
two different points on a scanning trajectory, and the backprojection is performed over the
data acquired along the corresponding PI-arc (the portion of the scanning trajectory between
the two points of the PI-line segment). Let H0 be a set of oriented 1D lines in the 3D real
space  through the origin. Since an oriented line has a direction, H0 can be viewed as the
unit sphere S2 in  and α ∈ S2 defines the oriented line tα ∈ H0, . Let us fix a 1D
oriented curve γ, which can be represented as an oriented curve Cγ ⊂ S2. For a compactly
supported smooth function f (x), let us define an operator Jγ on the integral transform

(3.0.1)

by

(3.0.2)

where αj and βj represent the jth component of α and β, respectively. When Cγ is a smooth
curve on S2 whose end points are diametrically opposite on S2, it is called a quasicycle.
Gel'fand and Grave's major results can be re-stated as follows.

Theorem 3.0.1. [14, 81] If γ is a quasicycle in H0, then (JγR)2 = c (γ)2 E with E being
the identity operator and c (γ)2 a constant. Thus, for the integral transform φ = Rf, one
has the inversion formula
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(3.0.3)

In the CT field, JγR is exactly the Hilbert transform relationship between the backprojection
data and the original image on a PI-line, which was re-discovered 13 years later [79]; see
[14, 81] for more details. In contrast, special interior tomography means that a truncated
Hilbert transform data can be uniquely and stably inverted under various quite general
assumptions on an ROI, which is a step forward relative to inversion of the finite Hilbert
transform and will be explained in the following two sub-sections.

III.1 Known Sub-region Based Interior Tomography
The first working assumption for interior tomography is the availability of a known sub-
region in an ROI [16, 27, 82]. In many scenarios, a sub-region is indeed known in advance,
such as air in airways, blood through vessels, or images from prior scans. Our work [16] was
inspired by Defrise et al.'s work on the partial PI line based Hilbert transform inversion [83].
Initially, we struggled to perform exact local reconstruction assuming one known point in an
ROI (Figure 3). This attempt was to solve a conjecture posed in our R01 proposal
(EB002667) that Katsevich' helical cone-beam reconstruction [9] can be done along a
bundle of curves within the Tam window. We were not successful with interior tomography
until a known point assumption was enhanced with a known sub-region of non-zero
measure. By the analytic continuation, it was demonstrated that the interior problem can be
exactly and stably solved if a sub-region in the ROI is known [16–18]. The key issue for
exact interior reconstruction based on a known sub-region is the inversion of a truncated
Hilbert transform. A projection onto convex sets (POCS) method and a singular value
decomposition (SVD) method were respectively adapted to reconstruct interior images from
truly truncated data, and produced excellent results [16, 23]. Although the POCS method is
computationally expensive, it is easier to employ additional constraints. The SVD method is
computationally much more efficient than the POCS method.

The major theoretical results can be summarized as follows:

Theorem 3.1.1 [16]: Let c1, c2, c3, c4, c5 be five real numbers with c1 < c3 < c5 < c4 <
c2. A smooth function f (x) supported on [c1, c2] can be exactly reconstructed on [c5, c4)
if (i) f (x) is known on (c3, c5); (ii) g (x) is known on (c3, c4), which is truncated data of
the Hilbert transform of f (x), and (iii) the constant Cf is known, which is the integral of
f (x).

The statement of Theorem 3.1.1 is for a 1D PI-line in a 2D or 3D object through a known
sub-region, wherex represents the 1D coordinate along the PI-line, [c1, c2] represents the
intersection between the compact object support and the PI-line, [c3, c4] denotes the
intersection between the ROI/VOI and the PI-line, [c3, c5] denotes the intersection between
the known sub-region and the PI-line, g (x) can be calculated from projections collected
along the corresponding PI-arc, and Cf can be obtained from the x-ray path containing the
PI-line. With the analytic continuation of both g (x) and f (x), a more general result can be
expressed as:

Theorem 3.1.2 [27]: Let c1, c2, c3, c4, c5, c6 be six real numbers with c1 < c3 < c5 < c6
< c4 < c2. A smooth function f (x) supported on [c1, c2] can be exactly reconstructed on
[c6, c4) if (i) f (x) is known on (c3, c6); (ii) g (x) is known on (c3, c5) and (c6, c4), and
(iii) the constant Cf is known.
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III.2. Sparsity-model-based Interior Tomography
The known-sub-region-based interior tomography approach has serious limitations. There
are situations where no precise information is available on any sub-region, especially in the
scenario of contrast-enhanced CT studies. To address this challenge, the second working
assumption we figured out is that an ROI is piecewise constant or piecewise polynomial [21,
22, 24–26, 84]. Then, the total variation (TV) minimization or high order TV (HOT)
minimization can be coupled with the data discrepancy minimization to solve the interior
problem uniquely and stably [26]. The heuristics behind the TV or HOT minimization is that
any “ghost” function invisible from measured local data would induce higher TV or HOT
values. Hence, such a ghost cannot survive the TV or HOT minimization. Further extensions
are possible, such as with a more effective transform based compressibility. Note that the
piecewise parametric assumption is already a quite general image model [75], somehow
comparable to the limited bandwidth for digital signal processing.

For piecewise constants or piecewise polynomial functions, it is natural to use the space of
functions of bounded variation to capture the discontinuities. Mathematically, the total
variation of an image f (x1, x2) inside an ROI can be evaluated with

(3.2.1)

where f▽ (x1, x2) represents a sparsifying transform of f (x1, x2) defined on the ROI Ωa and a
denotes the radius of the ROI. For the commonly used gradient transform in the biomedical
imaging field, we can use

(3.2.2)

which is the gradient magnitude or the maximum directional derivation at (x1, x2). When
there exists an artifact image fa (x1, x2) due to missing data outside an ROI of radius a, the
total variation becomes

(3.2.3)

First, we have the following theorem:

Theorem 3.2.1 [21, 22, 84]: Suppose that all the projections through an interior ROI of
a compactly supported and square integrable nonzero function f are available. The
attenuation coefficient inside the ROI can be exactly determined by minimizing the total
variation defined by Eq. (3.2.1) from the measured projections if f in the ROI can be
decomposed into finitely many constant sub-regions.

Then, we have the following more general theorem in terms of the high-order total variation
(HOT) [24]:

Theorem 3.2.2[24]: Suppose that all the projections through an interior ROI of a
compactly supported and square integrable nonzero function f are available. The
attenuation coefficient inside the ROI can be exactly determined by minimizing the
high-order total variation (HOT) from the measured projections if f in the ROI can be
decomposed into finitely many sub-regions where the function can be modeled as a
polynomial, with the HOT being defined as
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(3.2.4)

In Eq. (3.2.4), f (x1, x2) is a piecewise nth (n ≥ 1) order polynomial function in the ROI, m is
the number of sub-regions, Γi,j represents piecewise smooth boundaries between ith and jth

sub-regions, and Ni is the neighborhood regions of the ith sub-region.

III.3. Practical Performance
To demonstrate the application of interior tomography, a cardiac CT study was performed
on a state-of-the-art GE discovery CT750 HD scanner at Wake Forest University Health
Sciences [85]. After appropriate pre-processing, we obtained a 64-slice fan-beam sinogram.
The radius of the scanning trajectory was 53.852 cm. Over a 360° range, 2200 projections
were evenly acquired. For each projection, 888 detector elements were equi-angularly
distributed, which defined a field of view of 24.92 cm in radius. From each sinogram, an
800×800 image matrix was reconstructed using the filtered backprojection (FBP) method as
a benchmark.

To evaluate our sparsity-model-based interior tomography techniques, each projection was
truncated by discarding 300 detector elements on each of its two sides to just cover an
interior ROI of 8.70 cm in radius. This interior reconstruction process was implemented in a
soft-threshold filtering framework, with a flowchart in Figure 4 [86]. The algorithm included
two major steps. In the first step, the ordered-subset simultaneous algebraic reconstruction
technique (OS-SART) [87] was used to reconstruct a digital image from all the truncated
projections. The initial image was set to zero, and the 2200 truncated projections were
divided into 88 subsets, and each of them includes 25 uniformly distributed projections. Let
the subset index be as 1, 2,…., 88 sequentially. In each iteration, all the subsets were
employed in the order of 1, 45, 2, 46, …, 44, 88 to suppress artifacts. Then, the total
difference (also bilateral total variation) [86] of an intermediate image was minimized using
the fast iterative soft thresholding algorithm (FISTA) [88] and a pseudo-inverse discrete
difference transform (DDT) [86]. To accelerate the converging speed, the projected gradient
method [89] was used to determine an optimal threshold for the soft thresholding filtration.
The two steps were alternated until the refinement in the projection domain became
insignificant. The reconstructed image was also in an 800×800 matrix covering a region of
44.86×44.86 cm2. It can be seen in Figure 5 that the difference between the interior
reconstruction and global reconstruction became smaller and smaller with the increment of
the iteration index, and should approach zero in the limiting case when scattering, beam-
hardening and noise are negligible according to our theoretical analysis [21, 26, 84].

III.4. Advantages and Limitations
Interior tomography allows exact reconstruction from less data. Naturally, there are major
advantages from the less-is-more effect in this circumstance. At the beginning of this
section, we have shown that less means a deeper theoretical understanding of the local
reconstruction mechanism. In the following, we suggest that less means lower, larger, and
faster, among other benefits.

Less is lower—Less data is equivalent to lower radiation dose, because of not only a
narrower beam but also a less angular sampling requirement in the longitudinal studies or
multi-scale scenarios. The smaller an ROI is, the narrower the beam will be, and the less
radiation gets involved. Because of the narrower beam, the number of scattered photons
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becomes less, which improves contrast resolution. Hence, one can reduce radiation dose
further, given the same contrast resolution as that of the global reconstruction from a
complete dataset. Interestingly, for a smaller ROI in a case of a known background outside
the ROI, the spatial resolution of global reconstruction can be maintained for interior
reconstruction at a less angular sampling rate. Our numerical results are consistent with the
heuristics that only two projections (two measures per projection) are needed to reconstruct
a 2 by 2 ROI, three projections (three measures per projection) are sufficient to reconstruct a
3 by 3 ROI, and so on. In other words, the number of projections could be reduced with
interior tomography in favorable cases (say, the region outside the ROI is roughly known),
accordingly reduced is the radiation dose in this scenario.

Recently, compressive sensing has been a hot topic in the signal processing community.
Inspired by this powerful theory, “few-view” interior tomography was studied with
encouraging results [30, 90–93] (Figure 6). Another dimension towards dose reduction is to
perform statistical interior tomography [94, 95], which is an adapted version of conventional
statistical reconstruction [96]. There is no doubt that less data and less radiation mean lower
cost and safer CT systems. Efforts in this direction will be significant for either “low-end” or
“high-end” CT systems.

Less is Larger—Acquisition of less projection data is achieved with a narrower beam, and
an object larger than the beam width is not a concern anymore. In other words, interior
tomography can handle objects larger than a field of view. This flexibility can certainly
enhance the utility of a CT scanner. In nano-CT studies, one reduces a sample into a narrow
x-ray beam for complete projection profiles. In this tedious process, morphological and
functional damages may be induced. Supported by an NSF/MRI grant and in collaboration
with Xradia, we are developing a next generation nano-CT system capable of focusing on an
ROI and reconstructing it accurately within a large object (Figure 7). In a geo-science
project, fossils from the Ediacaran Doushantuo Formation (ca. 551–635 million years old)
were investigated, which are too valuable to be broken, and demand interior tomography.
Another example is the large patient problem, i.e., a patient is larger than the field of view of
a CT scanner, which can now be solved using theoretically exact interior tomography,
instead of using conventional approximate methods such as extrapolation for data
completion.

Less is faster—Interior tomography allows a smaller detector size, a faster frame rate, and
more imaging chains in a gantry space, all of which contribute to an accelerated data
acquisition process. Clearly, the evolution of the CT technology is for faster and faster
scanning. Spiral CT is revolutionary [3] because it enables truly volumetric and dynamic
tomographic x-ray imaging, utilizing a high-tech slip ring, a modern detector array,
sophisticated reconstruction methods and system architectures. The scanning speed of more
than 3 turns per second has reached the mechanical upper bound. While dual-source
scanners are well received, the scanning speed is still not sufficient to handle challenging
cases of rapid or irregular heart beating and other physiological processes. The physical
obstacle to use more sources and detectors is the rather limited gantry space where at most
we can assemble a triple-source system [97]. An interior tomographic imaging chain is
slimmer, weighs lighter, facilitates faster rotation, records less data, and transfers them more
rapidly. Thus, multiple local imaging chains can be fitted into a gantry for simultaneous data
acquisition and ultrafast interior reconstruction [20].

In 2009, our group proposed a multi-source interior tomography scheme to improve
temporal resolution of CT [20] (Figure 8). For a CT scan of the heart, a field of view of
~15cm in diameter is preferred (apart from some very special cases where only part of the
heart or coronary artery would be of interest) and can be achieved using multi-source
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interior tomography by scanning the source-detector chains in a circular, saddle-curve or
another trajectory. In the case of 2 N + 1 sources, the radius of the field of view can be
maximized by arranging the source-detector pairs equi-angularly, or re-configured for other
purposes. This scheme promises to revitalize the dynamic spatial reconstructor (DSR)
concept [98, 99], and in the limiting case allows instantaneous temporal resolution.
However, the cross-scattering effects between image chains are challenging for the multi-
source scheme, and must be managed such as with algorithmic compensation or beam
multiplexing.

In the CT field, “CT” and “scanning” have been together and inseparable. Nevertheless,
with the many-source interior tomography scheme, taking a snapshot of an ROI is feasible
without any scanning. When such a snapshot does not adequately cover features of interest,
one can always take another snapshot. In other words, one can roam within an object
without scanning. Although these snapshots are not taken at the same time, each of them is
an instant reflection of the ROI at the corresponding moment, and could give critical
information for medical and non-medical studies.

Less is not always better—While compressive sensing inspired reconstruction
algorithms produce visually pleasing images, diagnostically critical information may be
hidden or lost [100]. This potential risk is substantial with interior tomography especially
few views. In practice, the minimum amount of data can only be determined in a task
specific fashion, through extensive tests, and with an optimized algorithm. Whenever the
information carried by data is less than the number of degrees of freedom of the sparsest
model for an ROI, the solution will not be unique, and the promise of interior tomography
cannot be hold. This pre-caution must be underlined to avoid any adverse effect. Even if
sufficiently many views are available for interior tomography, the stability of interior
reconstruction is not as good as that of global reconstruction for a well-known mathematical
reason [26]. This weakness can be addressed with more prior knowledge, sparsely sampled
more global data, or other means.

IV. General Interior Tomography
Interior tomography has been extended from the CT field to other tomographic imaging
modalities, such as single-photon emission computed tomography (SPECT) [101–107], MRI
[108, 109], differential phase-contrast tomography [110], and spectral CT [95]. Based on
these established interior tomographic imaging modes, we have postulated the following
abstraction that theoretically exact local tomography can be always done only from indirect
measured data that directly involves a region of interest under rather general assumptions.
This general interior tomography principle can be further appreciated in the following case
studies.

IV.1. Interior SPECT
While the CT reconstruction algorithms are being advanced rapidly, SPECT techniques are
being improved as well [111–115]. As a unique tomographic imaging modality, SPECT is to
reconstruct a radioactive source distribution within a patient from data collected with a
gamma camera at multiple orientations. Different from the line integral model for x-ray CT,
a SPECT projection can be mathematically modeled as an exponentially attenuated Radon
transform [115, 116]. Thus, the CT reconstruction is a special case of SPECT when the
attenuation coefficients are set to zero, but CT reconstruction techniques cannot be used for
SPECT in general.

Encouraged by excellent results from special interior tomography that was formulated for
CT, interior SPECT was first developed assuming a constant attenuation background [101].
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Based on interior tomography results in the CT field, we proved in 2008 that theoretically
exact interior SPECT is feasible from uniformly attenuated local projection data, aided by a
known sub-region in an ROI [101]. With total variation minimization techniques [21, 24],
we further proved that if an ROI is piecewise polynomial, then it can be uniquely
reconstructed from truncated SPECT data that go directly through the ROI [102]. Based on
the above results, other researchers developed variants of interior SPECT for more
flexibility [103–106].

Let f (x) be a 2D smooth distribution function on a compact support Ω with x = (x, y) ∈ Ω.
In a parallel-beam geometry, a SPECT projection of f (x) is [115]:

(4.1.1)

where the subscript “o” denotes original projection data, θ = (cosθ, sin (θ)), θ⊥ = (− sin θ,
cos(θ)), and μ (x) the attenuation map on the whole support. A practical uniform attenuation
map can be defined as

(4.1.2)

where μ0 is a constant. Since the object function is compactly supported, we can determine
the length of the intersection between the support Ω and the integral line for Po (θ, s).
Without loss of generality, we denote this length as tmax (θ, s), and Eq. (4.1.1) becomes

(4.1.3)

Let us assume that the compact support Ω and the constant coefficient μ0 are known. By
multiplying a weighting factor eμ0tmax (θ,s), the projection model for SPECT is reduced to

(4.1.4)

where the subscript “w” indicates weighted projection data.

Let us denote a weighted backprojection of the differential projection data as

(4.1.5)

In 2004, Rullgard proved a relationship linking an object image f (x) and the weighted
backprojection g (x) as [115]

(4.1.6)

where “PV” represents the Cauchy principle value integral, and chμ0 is defined as

(4.1.7)

When μ0 → 0, chμ0 becomes the Hilbert transform kernel, in consistence with the results in
the CT field [78]. Eq. (4.1.7) is called a generalized Hilbert transform.
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We have two important theorems for interior SPECT, corresponding to the known-sub-
region-based and sparsity-model-based special interior tomography approaches respectively.

Theorem 4.1.1 [101]: Let c1, c2, c3, c4, c5, be five real numbers with c1 < c3 < c5 < c4 <
c2. A smooth function f (x) supported on (c1, c2) can be exactly reconstructed on (c5, c4)
if (i) f (x) is known on (c3, c5), (iii) g (x) is known on (c3, c4), which is the truncated
data of the generalized Hilbert transform, and (iii) the constant μ0 and mμ0 are known,
where

(4.1.5)

and g (x) can be computed using Eq. (4.1.5) proved by Rullgard [115].

In Theorem 4.1.1, all the relevant notations have the same meanings as that in Theorem
3.1.1, and Theorem 4.1.1 can reduce to Theorem 3.1.1 when μ0 = 0.

Theorem 4.1.2 [102]: Suppose that f0(x) is a smooth function in ΩA and f0(x) is a
piecewise n-th (n ≥ 1) order polynomial function in an ROI Ωa ⊂ ΩA; that is, Ωa can be
decomposed into finitely many sub-domains  such that

(4.1.6)

where fi(x) is an n-th order polynomial function, and each sub-domain Ωi is adjacent to
its neighboring sub-domains Ωj with piecewise smooth boundaries Γi,j, j ∈ Ni. All the
attenuated projections defined by Eq. (4.1.1) through the ROI are available and the
constant attenuation coefficient μ0 is known. Ifh (x) is the reconstructed image from all

the local attenuated projections,  where u1(x) is an
analytic function in Ωa due to the missing data outside the ROI, and

(4.1.7)

then h(x) = f0(x) for x ∈ Ωa [102].

To demonstrate the utility of interior SPECT, we downloaded a SPECT cardiac perfusion
image from Internet and modified it into a realistic 128 by 128 image phantom, covering an
area of 128 by 128 mm2. It represents a radionuclide distribution in a human heart. In our
simulation, we assumed a constant attenuating background μ0 = 0.15 cm−1 on a compact
support of a standard patient chest size. We used an equi-spatial detector array consisting of
78 detector elements, each of which was 1.0 mm in length. For a full-scan, we acquired 128
equi-angular projections. Clearly, this image phantom does not satisfy the piecewise
polynomial model in the case of n=1. To improve the stability of interior SPECT, two
additional constraints were incorporated into the projection-onto-convex-sets (POCS)
framework: (1) non-negativity, which means that the radionuclide distribution should not be
negative, and we kept making negative values zero during the iterative process; (2)
compactness, which means that the radionuclide distribution should be inside the human
body, and we made the pixels outside the body-contour zero. Our results (Figure 9)
demonstrate that interior SPECT worked well, even if the piecewise polynomial model was
not exactly satisfied.
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IV.2. Interior MRI
A number of important magnetic resonance imaging (MRI) applications require high spatial
and temporal resolutions. With technological advances in MRI hardware, multiple echo data
acquisition and image reconstruction strategies, fast MRI is a hot topic. However, the
current achievable spatial and temporal resolutions are often insufficient, such as in cases of
vulnerable plaque characterization that was attempted for carotid but is not feasible yet for
coronary in vivo, imaging-guidance biopsies/intravascular procedures, study of brain
function, extraction of cancer biomarkers, and etc. It is well known that the existing
techniques for improving temporal resolution compromise spatial resolution, with image
noise being fixed over a whole field of view. However, if one targets an ROI instead of the
whole patient cross-section, both spatial and temporal resolutions can be significantly
improved. A key point is that such an interior MRI mode can be implemented with either a
global or local background magnetic field. Needless to say, a local background magnetic
field will greatly relax the engineering requirement and the system cost.

Given a locally homogeneous main field just enough to cover an ROI, to extract MR signals
for this ROI we can use a time-varying gradient method. The idea is to keep a gradient field
zero at an ROI slice and change the gradient rapidly off that level. As a result, iso-regions of
magnetic strength are incoherently excited outside the ROI, avoiding signals that complicate
the ROI imaging. This idea can be extended for volume of interest imaging. Let us take 2D
interior MRI as an example. While an ROI is selectively excited, standard linear x and y
gradient fields can be applied with slopes Gx and Gy respectively for spatial encoding to
produce the ROI signal as follows:

(4.2.1)

where ρ represents a 2D MR image to be reconstructed, γ is a constant, and t is a 1D
parameter for the measured data. Eq. (4.2.1) corresponds to one line through the origin in the
k-space. If we rotate the magnetic field over a range of 180°, all the measured data will fully
cover the whole k-space. This continuous model can be discretized and solved using a
compressive sensing method [109] (Figure 10). While interior MRI as described here is
mathematically the easiest, compressive sensing techniques can still be applied for various
well-known benefits.

IV.3. Interior Differential Phase Contrast Tomography
The propagation of x-rays in a medium is characterized by the complex index of refraction n
= 1 − δ + iβ, where n is approximately 1, δ and β quantify phase shift and attenuation
magnitude respectively [117]. The cross section of x-ray phase shift is one thousand times
larger than that of linear attenuation in the 20–100keV range. This suggests that phase-
contrast imaging has higher sensitivity for light elements than attenuation-contrast imaging
[118, 119]. The contrast-to-noise ratio of differential phase contrast CT images is superior to
the attenuation-contrast CT counterpart [120]. Therefore, phase-contrast imaging can
observe subtle but critical structures of soft biological tissues [121–126]. Moreover, the
refractive index of tissues is inversely proportional to the square of the x-ray energy while
the absorption coefficient decreases as the fourth power of the x-ray energy [117]. Hence, x-
ray phase-contrast imaging is suitable to operate at higher energies (>30keV) for lower
radiation dose than attenuation imaging [127, 128]. Higher energy x-ray imaging has an
important potential for studies on large animals or patients [129]. Recent work shows that
differential phase-contrast CT manifests a noise power spectrum (NPS) with a 1/|k| trait,
while conventional CT NPS goes with |k|. This is a significant difference in noise
granularity, favoring differential phase-contrast CT [130–132].
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Over the past year, interior differential phase-contrast tomography has been studied. It has
been proved that the unique interior reconstruction is guaranteed from truncated differential
projection data that only go through an ROI. The main theoretical results are as follows [25,
110]:

Theorem 4.3.1 [25, 110]: If a refractive index image is known on a small sub-region
inside an ROI, then the refractive index function on the ROI can be uniquely and stably
determined from the truncated differential phase shift data through the ROI.

Theorem 4.3.2 [25, 110]: If (1) a refractive index image of an object is piecewise
polynomial in an ROI, (2) another refractive index image is also piecewise polynomial
in the same ROI, and (3) both the images have the same differential phase shift data
through the ROI, then the two images are identical.

Theorem 4.3.3 [25, 110]: The high order total-variation (HOT) of a piecewise
polynomial refractive index function in an ROI is smaller than that of another function,
provided that they have the same differential phase shift through the ROI.

Theorem 4.3.2 shows that the interior reconstruction of a refractive index function from
truncated differential phase shift data has a unique solution within the class of piecewise
polynomial functions. Theorem 4.3.3 confirms that if the true refractive index distribution is
indeed piecewise polynomial in an ROI, the differential phase-contrast interior
reconstruction can be performed through the HOT minimization. Because a common
diffractive index distribution can be approximated by a piecewise polynomial function, an
ROI can be accurately reconstructed in principle using HOT minimization (Figure 11)
subject to the data fidelity.

V. Omni-Tomography
Enabled by the general interior tomography principle, we recently proposed an omni-
tomographic imaging strategy, which is also referred to as omni-tomography [109] (Figure
12). The essential points of omni-tomography were highlighted in a talking point article:
http://medicalphysicsweb.org/cws/article/opinion/51026. Our team is actively working along
this direction, with potential targets including interior-CT-MRI and interior-CT-SPECT
combinations.

Multimodality imaging with targeted agents such as multimodality probes holds great
potential for early screening, accurate diagnosis, prognostic value, and interventional
guidance. PET-CT, SPECT-CT, optical-CT, and PET-MRI are well-known examples of
dual-modality successes. In 2009, Cherry with University of California–Davis asked an
inspiring question on what would be “a more general trend towards harnessing the
complementary nature of the different modalities on integrated imaging platforms” [133].

Preclinical and clinical studies critically depend on in vivo tomography of diversified
features that cannot be provided by a single modality in many cases. Software-based
registration of different types of images has been widely reported but it has major
limitations, especially when high spatial and temporal resolutions are needed for fast or
transient physiological phenomena. Hence, the seamless fusion of all needed imaging
modalities would be the Holy Grail. However, such a grand fusion has been challenged by
the physical conflicts of these scanners.

To address this grand challenge, omni-tomography lays the foundation for the integration of
multiple major tomographic scanners into a single gantry [109]. As such, each of
tomographic scanners can be made thinner or smaller, and be fused together for
comprehensive and simultaneous data acquisition from an ROI. We believe that this new
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thinking represents the next stage of multimodality fusion to optimally reveal spatiotemporal
links in physiological, pathological and pharmaceutical studies. Additionally, omni-
tomography could be cost-effective in terms of equipment space and patient throughput.

Omni-tomography has many potential clinical applications. For example, an interior-CT-
MRI system could be fabricated for cardiac and stroke imaging. An interior CT-MRI
scanner can target the fast-beating heart for registration of functions and structures, delivery
of drugs or stem cells, and guidance of complicated procedures such as heart valve
replacement. In [109], we presented a unified interior CT-MRI reconstruction method. This
has the potential to reduce radiation dose with MRI-aided interior CT reconstruction. Also,
CT-aided interior MRI reconstruction can generate fine details with little motion blurring. It
is recognized that the rotating x-ray source and detector can interfere with MRI. A solution
is to use a stationary multi-source interior CT scheme [20]. Since interior CT components
are now fixed, the electromagnetic shielding for interior MRI becomes much easier. A
comprehensive cost-performance analysis will be needed for an interior-CT-MRI prototype,
but we expect such a machine will come into reality sooner or later.

VI. Discussions and Conclusion
As mentioned earlier, interior tomography and compressive sensing can be combined for
reconstruction from an even less amount of data, leading to attractive imaging options such
as few-view CT. It is well known that few-view CT does not give a unique solution in
general, and neither would interior few-view CT. Again, the key is to utilize prior
knowledge as much as feasible and achieve a unique solution or at least minimize image
artifacts or biases. In this regard, compressive sensing techniques such as dictionary learning
could help [90, 134–136] (Figure 13).

It is appropriate to emphasize that less is not always more. While compressive sensing
inspired reconstruction algorithms produce visually pleasing images, diagnostically critical
information may be hidden or lost [100]. This potential risk is substantial with interior
tomography as well. In practice, the minimum amount of data can only be determined in a
task specific fashion, through extensive tests, and with an optimized algorithm. Whenever
the information carried by data is less than the number of degrees of freedom of the sparsest
model for an ROI, the solution will not be unique, and the promise of interior tomography
cannot be overly claimed. This pre-caution is necessary to avoid any adverse effect.

We run a multi-scale CT facility, which covers a six order of magnitude range in terms of
object size and image resolution (http://www.imaging.sbes.vt.edu/research/samct). An
interior imaging capability can be implemented for nano-, micro- and macro-CT to enhance
the imaging performance significantly.

In the functional space the classic CT theory assumes [15], a theoretically exact local
reconstruction does requires a global dataset in the form of integrals over hyper-planes.
However, when the functional space is restricted by an appropriate constraint, such as a
known sub-region, piece-wise constant or polynomial functions, a theoretically exact local
reconstruction can be indeed performed from a purely local dataset. Generally speaking,
types of indirect measurement can be more complicated than integrals over hyper-planes,
and associated inverse problems can be similarly posed. Targeting exact and stable interior
reconstruction would be a promising direction for research on inverse problems with new
types of indirect measurement.

In the omni-tomographic framework, there could be new imaging opportunities based on
multi-physics modeling. Photoacoustic imaging is an excellent example of a hybrid
biomedical imaging modality. In this imaging mode, laser pulses are delivered into
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biological tissues and partially absorbed to generate transient thermo-elastic expansions and
ultrasonic waves. This allows a combination of high spatial resolution of ultrasound imaging
and high contract resolution of optical imaging, revealing unique physiologic and pathologic
information. Hence, we can seek various types of imaging synergies in the omni-
tomographic framework [136](Figure 14). Many interesting questions can be asked, such as
would x-ray radiation modulate MR signals, or would RF signals change x-ray scattering?
This may lead new information otherwise impossible.

Very recently, Zeng and Gullberg pointed out that the non-negativity and piecewise-constant
constraints do not guarantee a unique solution to the interior problem if the number of views
is finite [137]. This is not surprising since inteiror tomography theory was developed
assuming continuous angular sampling coupled with the piecewise model. When the number
of views is finite, the general non-uniqueness of tomographic problems follows [15]. For
general tomographic reconstruction without data truncation, the Shannon sampling theorem
is applied for practical reconstruction. However, this logic cannot be directly applied to
interior tomography, and some additional conditioning should be needed, such as the
number of views must be large enough so that the minimal polygon constructed in [137]
becomes larger than the whole compact support of an object of interest, and can be
excluded. For a confirming and encouraging point made in [137] is that in a case of highly
truncated projections down to 5.2% only 30 views are sufficient to remove the polygonal
bias [137]. In other words, in almost all the practical applications the polygonal bias does
not affect image quality. Clearly, interior tomography theory can be further developed to
accommodate this and other constraints while maintaining the theoretical exactness aided by
appropriate knowledge.

It is underlined that interior tomography is a general approach and is extremely attractive in
numerous applications, wherever we need to handle large objects, minimize radiation dose,
suppress scattering artifacts, enhance temporal resolution, reduce system cost, and increase
scanner throughput, as summarized in Table 1. In table 1, Oto CT stands for otolaryngology-
oriented CT, NDE for non-destructive examination, OCT for optical computed tomography,
and TEM for transmission electron microscopy.

In conclusion, we have reviewed recent tomographic progress in overcoming data
truncation, being it longitudinal or transverse and with the latter as the emphasis of this
paper. By doing so, we have covered special and general versions of interior tomography.
Finally, we have proposed the grand fusion concept leading to omni-tomography. We are
excited by the bright future of interior tomography and omni-tomography, and very much
interested in theoretical investigation, computational optimization, systematic prototyping,
and biomedical applications through interdisciplinary collaboration.
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Figure 1.
Interior tomography idea for theoretical exact and stable reconstruction of a region of
interest (ROI) only from projective data associated with x-rays through the ROI. (a) Global
reconstruction from complete projections (the classic imaging geometry), (b) internal ROI
reconstruction from truncated projections (the interior problem) without a unique solution in
a constrained setting, (c) and (d) theoretically exact and stable interior reconstruction
assuming a known subregion and a sparsity model respectively.
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Figure 2.
Exact ROI reconstruction conditions in comparison. For a field of view (FOV, a dashed
ellipse) through which all line integrals are measured, exactly and stably recoverable ROIs
(in grey) allowed by different data completeness conditions are not the same. (a) A small
ROI permitted by Noo et al. [72], (b) an enlarged ROI enabled by Defrise et al. [76], (c)
with interior tomography an ROI is as large as an FOV [16].
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Figure 3.
Conjecture for interior tomography – Can an internal ROI be exactly and stably
reconstructed only from local data through the ROI assuming a known point? This
conjecture led to known-subregion-based and sparsity-model-based interior tomography
respectively.

Wang and Yu Page 24

Phys Med Biol. Author manuscript; available in PMC 2014 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Algorithmic flowchart for soft-threshold filtering based interior tomography.
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Figure 5.
Interior CT demonstration from a clinical CT scan. (a) A volumetric image reconstructed
using the filtered backprojection method, (b) a magnified interior cardiac ROI in a
transverse slice in (a), and (c) the interior ROI reconstruction corresponding to (b) using
sparsity-model-based interior tomography [78].
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Figure 6.
Less is lower – Interior tomography reduces radiation dose [85]. (a) The image
reconstructed from a global scan using a CNT-based micro-CT system at University of
North Carolina, with the white circle for a cardiac ROI, (b) the local magnification of the
ROI in (a), and (c) a sparsity-model-based interior micro-CT reconstruction from 400
projections after 60 iterations (without precise knowledge of any subregion in the ROI), (d)–
(f) images reconstructed from 200, 100 and 50 projections to reduce radiation dose to 50%,
25% and 12.5% of that for (c), respectively.
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Figure 7.
Less is larger – Interior nano-CT promises to handle a sample larger than the x-ray beam.
Current sample reduction into a fixed x-ray beam is tedious and error-prone. This is a
collaborative project between Biomedical Imaging Division at Virginia Tech and Xradia
(http://www.xradia.com).
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Figure 8.
Less is faster – Interior tomography accelerates data acquisition. Since interior tomography
allows uses a small detector, a multi-source interior tomography scheme can be used for
parallel data acquisition. In the limiting case, instantaneous tomographic imaging of a small
ROI becomes feasible [20].
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Figure 9.
Interior SPECT demonstration with a numerical cardiac phantom image. (a) An SPECT
cardiac ROI image of 128 by 128 pixels, and (b) an interior ROI reconstruction assuming
the attenuation coefficient μ0=0.15 after 40 iterations.
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Figure 10.
Interior MRI demonstration with a numerical cardiac phantom image. (a) A global image
reconstructed using the inverse fast Fourier transform (IFFT) method from randomly under-
sampled MRI data (25%) along the phase-encoding direction, (b) the counterpart of (a)
using the total variation (TV) minimization method, and (c) an interior MRI reconstruction
using the TV minimization method from interior MRI data [99].
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Figure 11.
Interior phase-contrast tomography demonstration with a numerical phantom. (a) The
original numerical phantom, (b) a truncated differential phase-contrast sinogram simulated
assuming a grating-based x-ray interferometer setup, and (c) the reconstructed image using
interior differential phase-contrast tomography.
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Figure 12.
Omni-tomography idea for grand fusion of multiple imaging modalities. (a) and (b) are
cross-sectional and volumetric views respectively, where two donut-shaped magnets are
paired to define a uniform background field covering an intended ROI, while other
modalities such as CT and SPECT can be arranged between the magnetic rings [99]. To
facilitate electromagnetic shielding, CT and and/or SPECT subsystems can be made
stationary with a multi-source and/or multi-camera interior imaging arrangement (patent
pending).
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Figure 13.
Dictionary-learning-based reconstruction outperforming TV-minimization-based
reconstruction [124]. The more knowledge we have, the less amount of data we need for
satisfactory reconstruction. Dictionary learning promises to extract prior knowledge flexibly
and effectively from training images, being more specific than a TV-based sparsifying
constraint or a generic wavelet transform.
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Figure 14.
Idea for omni-tomographic reconstruction in a unified framework. (a) an MR image
phantom, (b) a CT image phantom corresponding to (a), where six implanted calcified
regions are embedded, (c) a traditional CT reconstruction using the filtered backprojection
method from 17 projections, and (d) dual-dictionary-learning-based CT reconstruction from
the same 17 projections but aided by MRI data synthesized from (a) with 4-fold under-
sampling [126].
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Table 1

Potential of interior tomography, where “xxx” stands for necessary and/or significant important, “xx” for
important, and “x” for useful.

Larger Object Less Radiation Lower Scattering Faster Acquisition Smaller Detector Higher Throughput

Cardiac CT xx xxx xxx x x xx

Lung CT xx xxx xxx xx xx xx

Oto CT x xx x x xxx xx

Dental CT x xx x x xxx xx

O-arm CT x xxx x x x xxx

Micro CT xxx xxx xx xxx xxx xxx

Nano CT xxx xx xx xx xxx xx

NDE xxx x xx x xx xxx

MRI x NA NA xxx NA xxx

SPECT xxx NA NA xxx xx xxx

PET xxx NA NA xxx xx xxx

OCT xxx xx NA xxx xx xxx

Ultrasound xxx NA x xxx x xx

TEM xxx x xx xxx xx xx
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