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Two methods of quantifying heterogeneity between studies in meta-analysis were studied. One method quanti-

fied the proportion of the total variance of the effect estimate due to variation between studies (RI), and the other

calibrated the variance between studies to the size of the effect itself through a between-study coefficient of varia-

tion (CVB). Bootstrap and asymptotic confidence intervals for RI and CVB were derived and evaluated in an exten-

sive simulation study that covered a wide range of scenarios likely to be encountered in practice. The best

performance was given by asymptotic Wald confidence intervals developed for RI and CVB. The use of these het-

erogeneity measures together with their confidence intervals was illustrated in 5 typical meta-analyses. A new user-

friendly SAS macro (SAS Institute, Inc., Cary, North Carolina) is provided to implement these methods for routine

use and can be downloaded at the last author’s website.

confidence intervals; heterogeneity; meta-analysis; statistical methods

Abbreviations: CI, confidence interval; CVB, coefficient of variation between studies; RR, relative risk; RI, proportion of total

variance due to variation between studies.

In recent decades, meta-analysis has become an essential
tool for implementing the evidence-based approach to clini-
cal practice and other areas of medicine and public health.
After years of controversy, the debate on the usefulness of the
meta-analytic approach has abated. Meta-analysis is now the
most cited study design in the health sciences and is ranked
as providing the highest level of evidence, surpassing that of
individual randomized controlled trials (1).

A controversial aspect of meta-analysis methods has been
how best to summarize findings in the presence of hetero-
geneous between-study effects. Several solutions have been
suggested, including graphs (2), tests (3), use of the random-
effects model (4), and descriptive statistics that quantify het-
erogeneity (5, 6).

Hypothesis testing as the focus of data analysis has been crit-
icized in epidemiology, clinical research, and meta-analysis
because test results are functions of both the magnitude of the
underlying effect and the sample size (7). Although the number
of individual subjects included in a meta-analysis is gener-
ally high, the number of studies is usually low, and tests are
typically underpowered to detect heterogeneity (5). Assessing

heterogeneity through graphs has been proposed as an alter-
native to hypothesis testing, but this approach can suffer from
poor reproducibility between raters (2). Random-effects models
are not always more conservative than fixed-effects models
(8), and their indiscriminate use in computing pooled mea-
sures of effect in meta-analysis has thus not been universally
accepted as a method for addressing heterogeneity. To address
these limitations, in 1999 Takkouche et al. (5) proposed 2 quan-
tities for quantifying the magnitude of heterogeneity in the
meta-analyses: the proportion of total variance due to between-
study variation (RI) and the between-study coefficient of var-
iation (CVB).Methodswere given to estimate bothRI and CVB,
and software (9) was developed to compute these quantities.
Later, Higgins and Thompson (10) proposed a similar quan-
tity, I2, which can also be used to estimate the proportion of
the overall variance due to variation between studies.

Although R̂I and cCVB have been used inmeta-analyses (e.g.,
11, 12), until now confidence intervals have not been avail-
able, likely limiting their use. In thepresent study,wedeveloped
several asymptotic and bootstrap (13) methods for computing
confidence intervals (CIs) for RI and CVB. In an extensive
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simulation study, we evaluated the performance of these newly
proposed CIs. Finally, we made recommendations for best
practice for meta-analysis that is informed by this work and pre-
sented a SASmacro that can be used to conduct ameta-analysis,
including one with point and interval estimates of the recom-
mended heterogeneity measures.

MATERIALS ANDMETHODS

Notation and a brief review of the meta-analysis models

The 2 primary models used in meta-analyses are the fixed-
effectsmodel, β̂s ¼ βþ es, s = 1, . . ., S, and therandomeffects
model, β̂s ¼ βþ bs þ es, s = 1, . . ., S, where β is the common
effect under the fixed-effects model and an inverse-variance
weighted population average under the random-effectsmodel,
bs represents the random variation between studies, es repre-
sents the sampling error around the true effect in the fixed-
effects model and the sampling error around the study-specific
effect in the random-effects model, EðbsÞ ¼ EðesÞ ¼ 0,
var(bs) = τ

2, varðesÞ ¼ σ2s , σ
2
s ¼ varðβ̂sÞ, s = 1, . . ., S, and S

is the total number of studies included in the meta-analysis.
The fixed-effects model is used to compute the common effect
under the assumption that the effect is homogenous across all
studies. The random-effects model is often used otherwise.
Heterogeneity tests focus on the null hypothesis that there

is no heterogeneity between studies, that is, H0 : τ
2 = 0. The

standard heterogeneity test used in meta-analyses is the Q
test (14). The test statistic, Q, is formed as a weighted sum
of squared deviations of each study-specific estimate from
the common effect, that is, Q ¼PS

s¼1ðβ̂s � �βÞ2ws, where
ws ¼ 1=σ̂2s ; s ¼ 1; : : :; S and �β ¼PS

s¼1 β̂sws=
PS

s¼1 ws is
the fixed effects estimator. DerSimonian and Laird (14) pro-
posed the widely used estimator of the variance between
studies, τ2, based on Q:

τ̂2 ¼ max 0; ðQ� ðS� 1ÞÞ
��XS

s¼1

ws �
XS
s¼1

w2
s

�XS
s¼1

ws

�( )
:

ð1Þ

In meta-analyses with data from very precise studies and/or
a large number of contributing studies, the P value for the
test for heterogeneity could be small (e.g., <0.05) when the
magnitude of heterogeneity is also small and of no practical
importance. On the other hand, if the contributing studies are
small and/or there are few of them, the hypothesis of hetero-
geneity may fail to be rejected even when τ2 is large. There-
fore, measures that represent the magnitude of heterogeneity
in an intuitive form are needed to fully evaluate heterogene-
ity in meta-analyses.

Estimators of the magnitude of heterogeneity

As previously noted, in meta-analyses, hypothesis tests are
often underpowered to detect heterogeneity (5). Furthermore,
the P value does not quantify the magnitude of heterogeneity.
Inwhat follows,we consider 2 quantities for assessing themag-
nitude of heterogeneity that can be used as an alternative or
supplement to hypothesis testing.

Takkouche et al. (5) proposed an estimator of the proportion
of the total variance of the pooled effect estimate of β due
to between-study heterogeneity as R̂I ¼ τ̂2=ðτ̂2þ Svarð�βÞÞ,
where varð�βÞ ¼ 1=

PS
s¼1 ws and τ̂2 is given by equation 1.

One intrinsic disadvantage of using R̂I as a measure of the
amount of heterogeneity between studies is that it tends toward
1, itsmaximumvalue, as varð�βÞ decreases. In thisway, ameta-
analysis based on large, precise studies would likely yield
a large RI even when there is little heterogeneity between
the study-specific effect estimates. To address this limitation,
Takkouche et al. proposed the between-study coefficient of
variation, CVB = τ /|β|, to provide further insight into the mag-
nitude of heterogeneity in a meta-analysis (5). The estimator
of CVB, which ranges in value from 0 to ∞, replaces τ with
τ̂ ¼

ffiffiffiffi
τ̂2

p
and β with �β. In the present article, we slightly

revised the estimator of CVB proposed by Takkouche et al.
(5) so that the denominator is �βRE, the random-effect estimator,
rather than the fixed-effect estimator, �β. Because CVB is the
between-study coefficient of variation, it is more meaningful
to estimate β as �βRE under the random-effects model when
the between-study variance is nonzero; otherwise, the CVB

is by definition 0 and no quantification of the magnitude of
heterogeneity is needed. Later, we report on an evaluation of
the empirical bias of these 2 options in an extensive simula-
tion study. Note that CVB has the intrinsic disadvantage of
increasing arbitrarily for a small β, and it is undefined when
β = 0.

CI construction

It is widely agreed that point estimates are best considered
alongside their CIs to allow for proper interpretation of results.
Here, we study several approaches for calculating confidence
intervals for RI and CVB, which are derived in Appendix 1.
First, we consider 4 different algorithms for bootstrapped CIs
for CVB and RI (13). For simplicity, we explain these algo-
rithms for the CIs for RI. When applying these methods to the
CVB, R̂I is replaced by cCVB.
The standard bootstrap uses the empirical percentiles of the

observed distribution of the resampled statistics to obtain the
standard bootstrapped CI. The range-based bootstrap approxi-
mates the sample distribution of R̂I � RI by its resampled
distribution. The bias-corrected, accelerated method for the
bootstraped CIs is also based on percentiles of the bootstrap
distribution, calculated using the normal distribution with an
adjustment for both bias and skewness. Finally, the normal
approximation method uses the normal distribution as an
approximation to the distribution of RI. Details on these algo-
rithms are given in Appendix 2.
Next, we derived 4 asymptotic methods to obtain the CIs

for RI. First, the normal method is the standard Wald-type

confidence interval,
�
R̂I ± z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffifficvar(R̂I)
p �

; where z1−α/2 is
the (1− α/2) quantile of the standard normal distribution
and varðR̂IÞ is given by equation A1. The logit method re-
expresses the CI for logit(RI),

�
logitðR̂IÞ± z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvar	logitðR̂IÞ

q �

;
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with

cvarðlogitðR̂IÞÞ ¼ cvarðR̂IÞ
R̂2
I ð1� R̂IÞ2

and uses the inverse logit transformation of the upper and
lower bounds of this CI to obtain the asymmetric 95% CIs
for RI. Note that if R̂I ¼ 0, this CI is not defined. In the Q
method, the CIs for RI are obtained asn

ðQL � Sþ 1Þ=ðQL � cCV2
1= bvarðβ̂SÞÞ ;

ðQU � Sþ 1Þ=ðQU � cCV2
1= bvarðβ̂SÞÞo; ð2Þ

where QL and QU are the lower and the upper limits of the
CI for Q, equal to

�
Q± z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðQÞp �
, and cvarðQÞ is

given in equation A2, where

cCV2
1= bvarðβ̂sÞ ¼ cvarð1=cvar(β̂s)Þ

½Êð1=cvar(β̂s))�2 ¼ S
PS

s¼1 w
2
s

ðPS
s¼1 wsÞ2

� 1:

In the gamma method, asymmetric CIs for RI can be calcu-
lated by expression 2, where the limits of CIs of Q are based
upon the percentiles of a gamma distribution (15). This gamma
distribution is a scaled χ2 distribution, in which it is assumed
that Q∼ αχ2(d), where E(Q) = αd and var(Q) = 2α2d.

In addition, we derived 4 asymptotic methods for calculat-
ing the CI for CVB. The univariate delta method takes �βRE
as fixed and considers only τ̂2 as random. This CI takes

the form

�
j�βREj�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2 ± z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðτ̂2Þpq �
, where cvar(̂τ2)

is given by equation A3. The multivariate delta method is
based on equation A4 for var(cCVB), which is then inserted

into the Wald-type expression for the CI
ncCVB ± z1�α=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðcCVBÞ

q o
. Finally, the asymmetric log-transformedunivar-

iate delta (log-univariate delta) method and log-transformed
multivariate delta (log-multivariate delta) method are log-
arithmic transformations of the univariate delta and multi-

variate delta methods, which are given by exp
n
j�βREj�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðτ̂2Þ± z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðlnðτ̂2ÞÞpq �
and exp

n
ln
	cCVB



± z1�α=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðlnðcCVBÞÞ

q �
, respectively.

SIMULATION STUDY

Simulation study design

The simulation study was designed to assess the perform-
ance of the proposed methods for computing the CIs for RI

and CVB. To cover the full range of heterogeneity that could
be observed in practice, we considered values of RI equal to
0.1 (low heterogeneity), 0.3, 0.5, 0.7, and 0.9 (high hetero-
geneity) and values for CVB equal to 0.1 (low heterogene-
ity), 1, and 2 (high heterogeneity). The number of studies, S,

was set equal to 10, 20, 50, and 100, and for each scenario
we generated 10,000 simulated meta-analyses.

The types of studies considered in this simulation experi-
ment are those in which a relative risk is estimated as the mea-
sure of effect and could be in the form of a rate ratio, odds
ratio, or risk ratio. The relative risk (RR = exp{β}) of the stud-
ies in the simulations was set to 1 (no effect), 1.5, 2, and 4
(high effect). Note that the cases in which RR < 1 are identi-
cal to the cases in which RR > 1 and can be easily obtained
by switching the coding of the exposure variable.

Thevariancebetweenstudieswassetatτ2 = (CVBβ)
2except

when the RR = 1. When RR = 1, β = 0. Thus, from the defi-
nition of the CVB, once β = 0, τ2 = 0 as well, and, as a result,
RI will be 0, too. Therefore, when the RR was equal to 1, we
needed an alternative way to fix τ2, and we did this by
solving for τ2 from the definition of RI ¼ τ2=ðτ2 þ Svarð�βÞÞ.
Assuming then that the possible values of the upper bounds,
UB, of the CIs for the RR were 1.1, 1.2, 1.5, and 2, for each
combination of RI and S, the variance between studies could
then be defined as τ2 = RIS(ln(UB)/1.96)

2/(1− RI).

Table 1. Percent Relative Bias in R̂I
a

No. of Studies
by RI Value

CV 1=varðβ̂s Þ ¼ 0:1 CV 1=varðβ̂s Þ ¼ 1 CV 1=varðβ̂s Þ ¼ 3

RI = 0.1

10 50 56 167

20 35 32 64

50 16 16 19

100 5 5 9

RI = 0.3

10 −14 −17 2

20 −13 −13 −13

50 −8 −8 −12

100 −4 −5 −7

RI = 0.5

10 −19 −20 −26

20 −10 −12 −20

50 −4 −5 −11

100 −2 −2 −5

RI = 0.7

10 −11 −14 −32

20 −5 −7 −15

50 −2 −3 −6

100 −1 −1 −3

RI = 0.9

10 −3 −5 −19

20 −1 −2 −6

50 0 −1 −2

100 0 0 −1

Abbreviations: CV 1=varðβ̂s Þ, the coefficient of variation of the reciprocal

values of within-study variances; RI, proportion of total variance due to

variation between studies.
a Relative risk = 2, coefficient of variation between studies = 1.
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The variation in the study-specific weights used to con-
struct the summary estimator depends upon the variation in
the within-study variances. We thus considered values of the
coefficient of variation of the reciprocal values of within-study

variances,CV1=varðβ̂sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð1=varðβ̂sÞÞ

q
=Eð1=varðβ̂sÞÞ, equal

to 0.1, 1, 2, and 3, representing a somewhat wider range than
that observed in the meta-analyses considered as examples in
this article (see the Examples of meta-analysis section below).
These quantities were generated as random variables from
the log-normal distribution with mean E

�
1=varðβ̂sÞ


 ¼ RI=

ðτ2ð1� RIÞÞ and variance defined as var
�
1=varð̂βsÞ


 ¼ ðE½1=
varðβ̂sÞ�CV1=varðβ̂sÞÞ

2.

To assess the performance of the methods described above
for calculating the 95% CIs, we summarized the proportion
of times that the CIs covered the true value of the parameter
and the mean length of the CIs. With 10,000 replications,
the CIs will fail to cover the desired nominal range when
the empirical coverage falls outside of ð0:95± 1:96ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:95ð1� 0:95Þ=10000p Þ ¼ ð0:946; 0:954Þ.

Results of the simulation study

In what follows, we present the results concerning the per-
cent relative bias of R̂I and cCVB, as well as their empirical
coverage probabilities. Because the results were similar for

Table 2. Percent Relative Bias in cCVB
a

No. of Studies
by RI Value

CV 1=varðβ̂s Þ ¼ 0:1b CV 1=varðβ̂s Þ ¼ 1c CV 1=varðβ̂s Þ ¼ 3d

CVB

0.1 1 2 0.1 1 2 0.1 1 2

RI = 0.1

10 2 554 231 4 309 560 152 127 141

20 −7 304 289 −4 126 462 7 343 687

50 −11 91 268 −10 128 212 −8 166 479

100 −12 14 451 −12 31 269 −11 49 557

RI = 0.3

10 −15 154 251 −16 326 252 14 219 624

20 −12 57 246 −14 101 321 −15 608 365

50 −7 2 134 −7 6 261 −11 16 314

100 −4 0 51 −4 1 77 −5 1 131

RI = 0.5

10 −12 209 388 −14 279 249 −7 221 159

20 −6 24 278 −8 47 489 −12 176 222

50 −2 2 58 −3 5 126 −6 5 147

100 −1 1 14 −1 2 27 −3 1 75

RI = 0.7

10 −6 34 340 −9 396 548 −17 197 226

20 −3 6 169 −4 214 539 −9 50 491

50 −1 2 38 −2 5 99 −4 3 118

100 0 1 6 −1 2 16 −2 1 15

RI = 0.9

10 −3 32 339 −5 162 415 −14 88 315

20 −2 5 142 −3 17 315 −5 7 275

50 −1 2 36 −1 5 107 −3 0 45

100 0 1 5 0 2 13 −2 0 7

Abbreviations: CVB, coefficient of variation between studies; CV1=varðβ̂s Þ, the coefficient of variation of the reciprocal values of within-study vari-

ances; RI, proportion of total variance due to variation between studies.
a Relative risk = 2.
b The mean values when the coefficients of variation between studies were 0.1, 1, and 2 (CV1=varðβ̂s Þ ¼ 0:1Þ were −5 (standard deviation, 5),

75 (standard deviation, 139), and 187 (standard deviation, 140), respectively.
c The mean values when the coefficients of variation between studies were 0.1, 1, and 2 ðCV1=varðβ̂s Þ ¼ 1Þ were −60 (standard deviation, 5),

108 (standard deviation, 130), and 268 (standard deviation, 185), respectively.
d The mean values when the coefficients of variation between studies were 0.1, 1, and 2 ðCV 1=varðβ̂s Þ ¼ 3Þ were 2 (standard deviation, 36),

114 (standard deviation, 154) and 270 (standard deviation, 205), respectively.
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Table 3. Empirical Coverage of Several 95% Confidence Intervals for RI
a

No. of Studies

by RI Value

CV 1=varðβ̂s Þ ¼ 0:1 CV 1=varðβ̂s Þ ¼ 3

Bootstrapb Asymptoticc Bootstrapd Asymptotice

Standard
Range-

based
BCα

Normal

Approximation
Normal Logit

Q
Method

Gamma

Method
Standard

Range-

based
BCα

Normal

Approximation
Normal Logit

Q
Method

Gamma

Method

RI = 0.1

10 100 35 99 97 95 81 100 100 100 13 99 91 84 65 100 100

20 100 41 98 97 96 83 99 100 100 35 99 97 97 84 99 100

50 99 50 98 97 96 86 97 99 100 49 98 98 99 90 97 100

100 99 57 98 97 97 89 97 99 100 58 98 99 99 92 97 100

RI = 0.3

10 100 47 99 98 96 94 96 100 100 18 99 99 86 86 100 100

20 100 59 98 79 96 95f 94 100 100 46 98 99 97 97 96 100

50 98 73 96 87 97 96 93 99 100 66 97 81 98 98 91 100

100 95f 84 95f 92 96 96 95f 95f 92 80 91 88 98 98 92 93

RI = 0.5

10 100 61 98 81 96 98 85 100 100 26 98 100 87 95f 99 100

20 92 75 93 89 96 97 90 92 100 58 96 78 97 99 88 100

50 94 89 95f 95f 95f 97 93 94 90 80 89 89 97 99 88 90

100 94 93 95f 96 95f 97 94 94 93 91 91 93 95 98 92 93

RI = 0.7

10 89 77 93 93 96 99 86 89 100 38 98 73 90 98 94 100

20 92 88 95f 97 96 98 90 92 87 72 86 88 96 99 84 86

50 94 93 95f 97 95f 96 93 94 92 90 91 95f 95f 99 89 92

100 95f 94 95f 96 95f 96 94 95f 94 91 91 94 95f 97 92 94

RI = 0.9

10 89 86 94 99 96 95f 86 89 85 68 86 88 93 100 80 85

20 92 90 95f 98 96 95f 90 92 89 86 91 97 96 99 84 88

50 94 92 95f 97 95f 95f 93 94 93 89 92 96 96 97 90 93

100 95f 94 95f 96 95f 95f 94 95f 94 91 92 95f 95f 97 93 95f

Abbreviations: BCα, bias-corrected, accelerated; CV1=varðβ̂s Þ, the coefficient of variation of the reciprocal values of within-study variances; RI, proportion of total variance due to variation between studies
a Relative risk = 2.
b The mean values across all scenarios for the standard, range-based, BCα, and normal approximation methods ðCV 1=varðβ̂s Þ ¼ 0:1Þ were 96 (standard deviation, 4), 74 (standard deviation, 20),

96 (standard deviation, 2), and 94 (standard deviation, 6), respectively.
c The mean values across all scenarios for the normal, logit, Q, and Gamma asymptotic methods ðCV 1=varðβ̂s Þ ¼ 0:1Þ were 96 (standard deviation, 1), 94 (standard deviation, 5), 93 (standard deviation,

4), and 96 (4), respectively.
d The mean values across all scenarios for the standard, range-based, BCα, and normal approximation methods ðCV 1=varðβ̂s Þ ¼ 3Þ were 95 (standard deviation, 5), 62 (standard deviation, 26), 94 (stan-

dard deviation, 4), and 92 (standard deviation, 8), respectively.
e The mean values across all scenarios for the normal, logit, Q, and Gamma asymptotic methods ðCV 1=varðβ̂s Þ ¼ 3Þ were 95 (standard deviation, 4), 94 (standard deviation, 8), 92 (standard deviation,

6), and 95 (standard deviation, 5), respectively.
f The empirical coverage fell within the 95% confidence interval of the variation in the P value expected under the null hypothesis.
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Table 4. Empirical Coverage of 95% Confidence Intervals for the Coefficient of Variation Between Studiesa

No. of Studies
by RI Value

CVB

CV 1=varðβ̂s Þ ¼ 0:1 CV 1=varðβ̂s Þ ¼ 3

Bootstrapb Asymptoticc Bootstrapd Asymptotice

Standard Range-based BCα
Normal

Approximation
UD MD Log-UD Log-MD Standard Range-based BCα

Normal
Approximation

UD MD Log-UD Log-MD

RI = 0.1

10 0.1 100 50 83 100 100 100 83 84 100 45 83 100 100 100 67 72

1 100 46 68 99 98 100 77 100 100 40 69 100 100 100 80 100

2 99 40 59 99 85 99 83 100 100 39 68 100 97 100 90 100

20 0.1 100 52 84 99 100 98 83 84 100 51 84 100 100 100 83 84

1 100 53 76 99 99 100 77 100 100 47 72 100 99 100 78 100

2 99 46 62 99 88 100 78 100 99 41 67 100 91 100 84 100

50 0.1 99 56 85 98 100 97 86 86 100 60 86 100 100 100 90 90

1 99 61 84 97 99 100 80 100 100 57 81 98 99 100 81 100

2 99 56 72 99 90 100 78 100 99 53 73 99 89 100 80 100

100 0.1 99 64 88 98 99 97 89 89 100 65 88 99 100 99 92 92

1 99 69 88 95f 98 100 85 100 99 66 87 95f 98 100 85 100

2 98 65 81 98 90 100 79 100 98 62 79 98 89 99 79 100

RI = 0.3

10 0.1 100 64 87 92 100 100 94 95 100 49 83 100 100 100 87 88

1 98 61 81 96 91 100 84 100 100 45 71 100 99 100 82 100

2 96 54 71 98 78 97 82 100 100 39 69 100 90 100 90 100

20 0.1 100 73 90 81 100 99 95f 95f 100 63 86 99 100 100 97 97

1 97 72 89 93 89 100 85 100 98 59 80 97 92 100 85 100

2 96 65 80 98 78 96 79 100 96 51 74 98 79 98 84 100

50 0.1 97 84 93 91 93 98 95f 95f 100 80 90 87 99 100 98 98

1 95f 86 95f 93 89 100 88 100 95f 78 92 91 88 99 90 100

2 96 82 90 96 76 94 77 99 94 71 84 96 78 95f 80 100

100 0.1 95f 93 96 96 94 98 96 96 92 90 93 94 92 100 98 98

1 95f 95f 96 97 88 99 91 99 93 89 94 93 87 98 92 100

2 95f 91 95f 96 74 94 77 99 94 84 91 94 77 92 79 99

RI = 0.5

10 0.1 99 78 92 85 89 100 98 98 100 54 84 100 100 100 94 95f

1 94 74 90 91 83 98 87 100 100 50 73 99 95 100 84 100

2 94 67 81 96 73 93 78 99 98 43 70 99 82 99 88 100

20 0.1 92 88 94 93 90 99 97 97 100 73 88 81 97 100 99 99

1 93 87 95f 92 83 96 89 100 94 71 87 92 84 99 89 100

2 95f 80 88 96 73 91 73 98 93 62 80 96 73 93 82 100

50 0.1 94 97 95f 98 93 98 97 97 91 92 91 94 89 100 99 99

1 94 97 96 96 83 95f 88 99 92 90 95f 93 84 94 93 100

2 95f 88 95f 94 65 90 65 96 94 82 90 95f 76 89 76 98
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Table 4. Continued

No. of Studies

by RI Value
CVB

CV 1=varðβ̂s Þ ¼ 0:1 CV 1=varðβ̂s Þ ¼ 3

Bootstrapb Asymptoticc Bootstrapd Asymptotice

Standard Range-based BCα
Normal

Approximation
UD MD Log-UD Log-MD Standard Range-based BCα

Normal
Approximation

UD MD Log-UD Log-MD

100 0.1 94 98 95f 97 93 95f 97 97 92 98 91 97 91 96 98 98

1 94 95f 95f 95f 82 94 84 96 93 96 95f 95f 86 93 91 98

2 95f 89 96 94 65 92 64 96 94 87 95f 94 75 90 73 96

RI = 0.7

10 0.1 90 90 94 92 87 100 99 99 100 60 84 85 100 100 98 99

1 91 86 93 90 79 92 86 99 97 57 79 97 87 100 87 100

2 93 76 86 95f 70 86 67 96 95f 50 74 98 76 96 87 100

20 0.1 92 97 95f 96 90 94 98 98 87 84 89 89 84 100 99 99

1 93 93 96 93 81 92 84 98 90 81 92 90 79 94 92 100

2 95f 82 91 95f 64 87 59 94 92 73 85 95f 73 88 78 98

50 0.1 94 96 95f 95f 93 94 96 96 92 98 91 95f 89 94 99 99

1 94 92 96 94 80 93 80 96 92 91 95f 92 84 91 91 97

2 94 85 95f 94 57 90 56 94 94 83 93 94 76 88 73 95f

100 0.1 94 95f 95f 95f 94 95f 95f 95f 93 95f 91 94 92 95f 97 97

1 95f 93 96 95f 80 95f 80 96 94 91 94 93 87 93 90 96

2 95f 88 95f 94 57 92 56 95f 94 85 95f 93 76 91 74 96

RI = 0.9

10 0.1 89 94 94 91 85 90 95f 95f 86 76 87 83 81 100 100 100

1 92 87 95f 91 79 89 78 94 89 73 88 90 77 94 90 100

2 93 75 87 94 68 84 53 91 91 64 81 95f 69 88 82 99

20 0.1 92 94 95f 93 90 93 95 95f 90 93 89 90 85 91 99 99

1 93 88 95f 92 78 91 77 95f 90 85 94 88 79 88 90 96

2 95f 80 92 94 55 88 52 93 92 76 89 93 72 84 72 94

50 0.1 94 94 95f 94 93 94 95 95f 93 89 91 92 90 94 97 97

1 94 91 95f 94 77 93 76 95f 93 86 95f 91 85 92 92 97

2 94 85 96 93 52 91 51 94 93 81 95f 91 78 89 77 95f

100 0.1 94 95f 95f 94 94 94 95f 95f 94 91 92 94 93 96 97 97

1 95f 93 95f 95f 76 95f 76 95f 94 89 94 93 89 94 92 97

2 94 88 95f 94 51 92 51 95f 94 85 96 92 80 91 80 96

Abbreviations: BCα, bias-corrected, accelerated; CVB, coefficient of variation between studies; CV1=varðβ̂s Þ, the coefficient of variation of the reciprocal values of within-study variances; MD, multivariate delta; RI,

proportion of total variance due to variation between studies; UD, univariate delta.
a Relative risk = 2.
b The mean values across all scenarios for the standard, range-based, BCα, and normal approximation methods ðCV 1=varðβ̂s Þ ¼ 0:1Þ were 95 (standard deviation, 3), 79 (standard deviation, 16), 89 standard devia-

tion, (9), and 95 (standard deviation, 3), respectively.
c The mean values across all scenarios for the UD, MD, Log-UD, and Log-MD asymptotic methods ðCV 1=varðβ̂s Þ ¼ 0:1Þ were 83 (standard deviation, 13), 95 (standard deviation, 4), 81 (standard deviation, 13),

96 (standard deviation, 4), respectively.
d The mean values across all scenarios for the standard, range-based, BCα, and normal approximation methods ðCV 1=varðβ̂s Þ ¼ 3Þ were 95 (standard deviation, 4), 73 (standard deviation, 17), 86 (standard deviation, 8),

and 94 (standard deviation, 4), respectively.
e The mean values across all scenarios for the UD, MD, Log-UD, and Log-MD asymptotic methods ðCV 1=varðβ̂s Þ ¼ 3Þ were 87 (standard deviation, 9), 96 (standard deviation, 4), 88 (standard deviation, 8), and

98 (standard deviation, 3), respectively.
f The empirical coverage fell within the 95% confidence interval of the variation in the P value expected under the null hypothesis.
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all values of the RR considered up to the third decimal place,
we present the results for bias and coverage for RR = 2 only.
Table 1 presents the percent relative bias of R̂I. As expected,

the empirical bias decreased as the number of studies in the
meta-analysis increased. For small values of RI, R̂I overesti-
mated RI, and when the values of RI were bigger than 0.3, RI
was modestly underestimated. The empirical bias in R̂I was low
over a wide range of values for the coefficient of variation of
the reciprocal within-study variances, although some increase in
bias was observed when a large amount of variation in within-
studyvarianceswasconsidered.When thenumberof studieswas
very large, for example, S = 100, the estimator had little bias.
The percent relative bias of the between-study coefficient

of variation is presented in Table 2. When CVB was small,
the bias was very small. When CVB was large (>1) but the
value of RI was small, for example, RI = 0.1, cCVB did not
performwell. However, this is an unrealistic scenario because
a largeCVBreflects a largevalueof τ

2 comparedwith the effect
size, and therefore it would be expected that RI would not be
small. As the value ofRI increased, the bias of cCVB decreased.
The bias of cCVB decreased when the number of studies in
the meta-analysis increased. In addition, we found that when
RI was greater than 0.5, in most cases considered, the cCVB
using the fixed-effects estimator of β had more bias than did
the one with the random-effects estimator, �βRE, and in many
cases, substantially so (data not shown). Because these esti-
mators of the magnitude of heterogeneity between studies are
relevant only when heterogeneity between studies is evident,
it follows that the estimator of β typically used when hetero-
geneity between studies is evident, the random-effects esti-
mator, should be used for estimating the CVB.
The empirical coverage probabilities for the CIs for RI are

given in Table 3. When the number of studies in the meta-
analysis was small, all bootstrap CIs had coverage far from
the desired 95%, but when the number of studies increased,
the coverage probability substantially improved. All boot-
strap CIs performed poorly when heterogeneity was low. The
most successful bootstrap method was the bias-corrected accel-
erated method, the nominal coverage of which probability
improved beginning with a relatively small number of studies.
The range-based bootstrap method had the worst coverage.
Overall, the empirical coverage probabilities for the CIs

were closer to 95%whenCV1=varðβ̂sÞ was small. In addition, the
asymptotic CIs had much better coverage than the bootstrap
CIs.Given a small numberof studies, themost accurate empir-
ical coverage was obtained using the normal approximation
method. When the number of studies was small, the asymp-
totic Q and gamma methods provided insufficient coverage
that worsened as heterogeneity increased. As expected, when
the number of studies increased, the coverage of all asymp-
totic CIs improved.
The empirical coverage probabilities of the CIs for CVB are

given in Table 4. No method yielded uniformly good results
across all values of CVB and RI that were considered, and all
methods performed poorly when CVBwas small or the number
of studies was small. When the number of studies was small,
as long as CVB was not too small, the standard and normal
approximation bootstrap method and the bias-corrected, accel-
erated bootstrapmethod gave reasonable coverage. As expected,
when the number of studies increased, the coverage prob- T
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abilities for all CIs improved. The multivariate delta method
was the best among the asymptotic methods considered. As
in the case of CIs for RI, the empirical coverage probabilities
for the CIs were closer to 95% when CV1=varðβ̂sÞ was small.

Examples of meta-analysis

To illustrate the use of these estimators of heterogeneity and
their CIs, we considered 4 recently published meta-analyses
that have been frequently cited (from 87 to 327 times as of
June 2012) and one yet unpublished meta-analysis with a
wide range of apparent heterogeneity (Table 5).

Etminan et al. (11) investigated the risk of ischemic stroke
among people with a history of migraines, with special empha-
sis on oral contraceptive users. Hernán et al. (12) looked at the
associations of Parkinson’s disease with ever smoking and with
coffee consumption. Saulyte et al. focused on the relation
between active smoking among children and allergic rhinitis
(J. Saulyte, University of Santiago de Compostela, unpublished
data, 2013). Jefferson et al. (16) conducted a meta-analysis of
randomized clinical trials of amantadine and rimantadine for
the prevention and treatment of influenza, restricted here to the
analysis of amantadine versus placebo for the prophylaxis of
influenza. Finally, Millett et al. (17) examined circumcision
status in relation to infection with human immunodeficiency
virus and other sexually transmitted infections among men
who have sex with men.

Two of the meta-analyses provided fixed-effects estimates
after confirming the absence of heterogeneity with heteroge-
neity test P values of 0.55 and 0.35, whereas the remainder
provided random-effects estimates.Themagnitude of the effect,
when it existed, varied considerably from a strong protective
effect (11) to a large harmful effect (16). Finally, heteroge-
neity as measured through R̂I and cCVB varied between total
absence in the migraine study (11) to a considerable presence
in the smoking study (J. Saulyte, unpublished data, 2013).

For each study, we estimated the 2 heterogeneity measures
considered in this article, RI and CVB, and calculated their
CIs. For comparison purposes, we also provided I2 values and
their 95% CIs. When heterogeneity was small, as in the study
by Hernán et al. (12), these measures were close to zero and
their CIs also indicated little heterogeneity. Two studies (16; J.
Saulyte, unpublished data, 2013) had a large amount of hetero-
geneity,asgivenby R̂I anditsCI.Thethirdstudy(17)hadavery
large value of CVB, which was probably high because the
pooled �β was close to zero, exemplifying the drawback of
this measure. However, because cCVB and R̂I were both large
and the P value for the test for heterogeneity was 0.001, it is
reasonable to conclude that there was substantial heterogeneity
between studies in that meta-analysis.

DISCUSSION

We developed several asymptotic methods for calculating
CIs for RI and CVB. An extensive simulation study demon-
strated that when the number of studies in the meta-analysis is
small, the asymptotic CIs for RI performed much better than
the bootstrap methods. Because the number of studies in meta-
analyses is usuallymoderate, we recommend the normal approx-
imation method given here for calculating the asymptotic CIs

for RI and the multivariate delta method for the CIs for CVB.
Thesemethods are easy to calculate and have reasonably accurate
coverage probability over a wide range of potential circum-
stances inwhichtheymaybeused.Bootstrapmethodsaremore
computationallyintensiveandwereusefulonlywhenthenumber
of studies in the meta-analysis was very large (≥50), in which
case they were no better than their asymptotic counterparts.
It has been previously been reported that bootstrap methods
can be unreliable in small sample size settings, which is often
the case in meta-analyses (18–22).

We demonstrated that R̂I performs well as an estimator of
the proportion of the total variation in the overall effect esti-
mate that is due to heterogeneity, successfully quantifying high
heterogeneity even in meta-analyses with a small number of
participating studies. When the heterogeneity is low and the
number of studies is small, R̂I underestimates the proportion
of the total variation, but because little or no heterogeneity is
present, this underestimation would not likely influence the
interpretation of the findings.

The results of the simulation study demonstrated that there
is limited information to quantify the magnitude of heteroge-
neity between studies in meta-analyses based upon a small
number of studies, but this is mitigated when S is 20 or larger.
For a snapshot of the number of studies of meta-analyses pub-
lished recently, we reviewed all meta-analyses printed in 2011
in the Journal of the American Medical Association and the
American Journal of Epidemiology. During this time, the Jour-
nal of the American Medical Association published 19 meta-
analyses with a median number of studies equal to 25 (range,
5–609), and the American Journal of Epidemiology published
13 meta-analyses with a median number of studies equal to 23
(range, 10–95), which suggests that inmanymeta-analyses pub-
lished in high-quality journals today, the measures of hetero-
geneity developed in this article will perform well.

As a proportion, RI has an intuitive interpretation, but regard-
lessof theunderlyingheterogeneityof the studies, it tends toward
1asthestudiesparticipating in themeta-analysisbecomeincreas-
ingly more precise. CVB does not have this disadvantage, but
it increases rapidly to infinity as the underlying relative risk
approaches the null value of one.

We saw in Table 5 that in meta-analyses (16, 17; J. Saulyte,
unpublished data, 2013), there appeared to have been sub-
stantial heterogeneity. In Millett et al., the pooled effect esti-
matewas near the null but substantial heterogeneitywas evident,
with 75% of overall variability in study-specific effect esti-
mates coming from this heterogeneity (95%CI: 44, 100). The
number of studies contributing to this meta-analysis was small,
and the confidence limits of the heterogeneity measures were
wide but consistent with considerable heterogeneity across
the range of values of RI contained within the CI. Reporting
a pooled effect estimate in this setting is of questionable value
given the substantial heterogeneity of effects observed, as
indicated by both the point and interval estimates. In the anal-
yses by Jefferson et al. (16) and Saulyte et al. (unpublished
data, 2013) the numbers of studies were somewhat greater and
the estimated effects were away from the null, particularly in
the study by Jefferson et al. In that analysis, 81% (95% CI:
58, 100) of the variation of the overall estimatewas due to het-
erogeneity between studies, suggesting with reasonable con-
fidence that substantial heterogeneity was present. However,
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the cCVB was 72% (95%CI: 7, 137), which indicated that with
this small number of studies, on the scale of the effect size,
the heterogeneity is consistent with a relatively small amount
of variation between studies (7%), as well as with a large
amount (137%). In contrast, 45 studies contributed to the arti-
cle by Hernán et al. (12), and the effect estimate was away
from the null. With a variation between studies that was only
13% (95% CI: 0, 54) of the effect estimate and only 7%
(95%CI: 0, 46) of the overall variance of the estimated effect,
we can be confident that the findings of that meta-analysis can
be generalized more widely.
An alternative estimator of the magnitude of heterogeneity

between studies that is in wide use, I2, is defined as I2 =
Q− S + 1/Q (10). Future research shouldclarify the theoretical
relationship between I2 andRI; are these parameters both con-
sistent estimates of the proportion of variance of the pooled
estimate due tovariation between studies, and if so, underwhat
assumptions? In addition, the finite sample properties of the
estimators of these quantities need to be compared, in terms
of both bias and coverage probability, to provide guidance to
analysts regarding which approach is best to use under what
circumstances. A variance estimator of I2 was proposed by
Higgins and Thompson (10), and it is of interest to compare
its large sample and finite sample properties with that of RI.
As can be seen in Table 5, there are some instances (e.g.,
Millett et al.) in which the results from the 2 are appreciably
different.
In conclusion, along with the results from the test for het-

erogeneity, point and interval estimates of RI and CVB will
provide the information needed to properly interpret the evi-
dence in a meta-analysis about the extent of heterogeneity.
Wewish to caution that when the number of studies in a meta-
analysis is small, both the test for heterogeneity (5) and point
and interval estimates of the magnitude of heterogeneity may
be unreliable. A publicly available SAS macro, which can be
downloaded at the last author’s website (http://www.hsph.
harvard.edu/faculty/donna-spiegelman/software/metaanal/),
performs all standard calculations for meta-analysis, including
point and interval estimates of RI and CVB, so that heteroge-
neity can be comprehensively assessed (Appendix 3).
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Appendix 1: Derivation ofdvarðR̂IÞ anddvar(dCVB)

The estimator of the asymptotic varðR̂IÞwas obtained using
the delta method with the reciprocal relationship between R̂I
and Q, as follows

cvarðR̂IÞ ≈

�
S� 1� cCV2

1= bvarðβ̂sÞ
�2

�
Q� cCV2

1= bvarðβ̂sÞ
�4 cvarðQÞ; ðA1Þ

where the estimator for var(Q) was given by Biggerstaff and
Tweedie (15) as:

cvarðQÞ ¼ 2ðS� 1Þ þ 4 S1 � S2
S1

� �
τ2

þ 2 S2 � 2S3
S1

þ S22
S21

� �
τ4; ðA2Þ

where Sj ¼
PS

s¼1 w
j
s ( j = 1, . . ., 3) and

varðτ̂2Þ ≈ varðQÞ
� XS

s¼1

ws �
XS
s¼1

w2
s

�XS
s¼1

ws

 !2
ðA3Þ

To derive varðcCVBÞ, we assumed that �βRE > 0, with proba-
bility close to 1 if βRE > 0, and that τ̂2 and �βRE were uncorre-
lated as would follow asymptotically using standard normality
assumptions.Noting that varð�βREÞ ¼ 1=

PS
s¼1ðτ2 þ σ2s Þ�1 and

that varðj�βREjÞ ¼ varð�βREÞ, from the multivariate delta method
(17), we get

cvarðcCVBÞ ≈ cvarð�βREÞ
�β
4
RE

τ̂2 þ cvarðτ̂2Þ
4�β

2
REτ̂

2
: ðA4Þ

Appendix 2: Formulas for Bootstrap Confidence Intervals

In this appendix, we present the formulas for bootstrapped
confidence intervals (CIs) for a given significance level α
that were used in this paper.

The standard CI has the form ½R̂�½Bα=2�
I ; R̂�½Bð1�α=2Þ�

I �, where
R�½k�
I is the kth estimator of RI from B bootstrap-ordered esti-

mators and B is the number of bootstrap samples.
The range-based CI is ½2R̂I � R̂�½Bð1�α=2Þ�

I ; 2R̂I � R̂�½Bðα=2Þ�
I �.

Note that a disadvantage of this method is that a degenerate
CI of (0, 0) is obtained when R̂I ¼ 0.

The bias-corrected, accelerated (BCα) CI can be calculated

as ½R̂�½Bα1�
I ; R̂�½Bα2�

I �, where α1ð2Þ ¼ Φ�1ða1ð2ÞÞ and a1ð2Þ ¼

ẑ0 þ ð̂z0 ± zðαÞÞ=ð1� α̂ð̂z0 ± zðαÞÞÞ. The detailed description
of this method can be found in the article by Efron and
Tibshirani (13).

The normal approximation CI has the following form:�
R̂I ± Z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðR̂IÞ
q �

, where cvarðR̂IÞ is the sample vari-

ance of R̂�½1�
I ; : : :; R̂�½B�

I .

Appendix 3: The SASmacro %METAANAL

The SAS macro %METAANAL can be downloaded from
http://www.hsph.harvard.edu/faculty/donna-spiegelman/
software/metaanal/, along with detailed user-friendly docu-
mentation. We use the data from the smoking study (12) to
illustrate the use of the macro.

%metaanal(
beta=beta, /* Input betas REQUIRED */
se or var=v,/* the standard error (s) or

the variances (v) of the
coefficients */

var=var, /* Input variances */
se=se, /* Input standard errors */
data= , /* Input data set REQUIRED */
studylab = studylab, /* labels for each

study REQUIRED */
name= , /* Name of variable of interest */
explabel= , /* descriptive title of

exposure REQUIRED */
outcomelabel= , /* descriptive title of

outcome REQUIRED */
wt=1, /* increment to scale the RR by */
outdat= , /* Output data set */
pooltype=random,
notes=nonotes,
printcoeff=F,
loglinear=t, /* whether the underlying

analysis is log-linear logistic,
phreg, log-binomial, poisson or not */

noprint=F);

Here is part of the input data:

obs beta std study
1 -0.82098 0.26524 ne
2 -0.44629 0.15075 ke
3 -0.30111 0.15363 ma

. . . . . . . . . . .
44 -0.52763 0.16169 will
45 -0.71335 0.17464 her
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This is the main part of the output of the macro:

Statistic Value (95% CI) P Hypothesis being tested

OR/RR (F) 0.59 (0.54, 0.63) <.0001 Is OR/RR different from 1? (Fixed
effects model)

OR/RR (R) 0.58 (0.54, 0.63) <.0001 Is OR/RR different from 1? (Random
effects model)

Q 47.06 (27.37, 66.75) 0.3482 Is there heterogeneity among the studies?
tau2 0.0047 .
r(i) ( %) 6.6 (0.0, 46.1) .
CVB 0.127 (0.000, 0.536) .

1004 Takkouche et al.

Am J Epidemiol. 2013;178(6):993–1004



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


