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Although there is strong evidence that short-term exposure to particulate matter is associated with health risks,

less is known about whether some subpopulations face higher risks. We identified 108 papers published after

1995 and summarized the scientific evidence regarding effect modification of associations between short-term

exposure to particulate matter and the risk of death or hospitalization. We performed a meta-analysis of estimated

mortality associations by age and sex. We found strong, consistent evidence that the elderly experience higher

risk of particular matter–associated hospitalization and death, weak evidence that women have higher risks of hos-

pitalization and death, and suggestive evidence that those with lower education, income, or employment status

have higher risk of death. Meta-analysis showed a statistically higher risk of death of 0.64% (95% confidence inter-

val (CI): 0.50, 0.78) for older populations compared with 0.34% (95% CI: 0.25, 0.42) for younger populations per

10 μg/m3 increase of particulate matter with aerodynamic diameter ≤10 μm. Women had a slightly higher risk of

death of 0.55% (95% CI: 0.41, 0.70) compared with 0.50% (95% CI: 0.34, 0.54) for men, but these 2 risks were not

statistically different. Our synthesis on modifiers for risks associated with particulate matter can aid the design of

air quality policies and suggest directions for future research. Studies of biological mechanisms could be informed

by evidence of differential risks by population, such as by sex and preexisting conditions.

age; effect modifiers; hospital admissions; mortality; particulate matter; PM10; PM2.5; socioeconomic status

Abbreviations: PM10, particulate matter with aerodynamic diameter ≤10 μm; PM2.5, particulate matter with aerodynamic diameter

≤2.5 μm; SES, socioeconomic status.

Particulatematter is estimated to causemore than 3.7million
deaths per year worldwide (1). The Environmental Protection
Agency (Washington, DC) estimated that the benefits of the
Clean Air Act were more than 30 times higher than the costs,
with many of those benefits from averted deaths from decreased
particulate matter (2). Still, more than 74 million people in
the United States live in areas with levels of particulate matter
that exceed regulations (3). Although the evidence that par-
ticulate matter affects health is strong and consistent (4–8),
the evidence regarding susceptibility, vulnerability, andmod-
ifying factors is inconclusive (9). The Environmental Protec-
tion Agency is mandated to set health-based regulations with
adequate margins of safety for sensitive individuals, and phy-
sicians need information onwhich populations aremost affected.

Furthermore, understanding vulnerable populations may pro-
vide scientific evidence related to credible pathological mech-
anisms.

The terms “susceptibility” and “vulnerability” are often used
interchangeably for populations with disproportionate health
burdens; however, “susceptibility” often refers to factors inher-
ent to physical predisposition (e.g., genetics), and “vulnerabil-
ity” often refers to external factors (e.g., occupational exposure)
(10). Here, we refer to “effect modifiers” as individual-level or
area-level factors related to susceptibility or vulnerability.

A challenge in understanding effect modification is the tre-
mendous heterogeneity among study designs and popula-
tions, with avarietyof health outcomes, pollutants, confounders,
regions, and effectmodifiers. Studies drawconclusions fromdata
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aggregated at different temporal and spatial resolution. Despite
mounting evidence, there is no consensus onwhich effect mod-
ifiers are most important. The assessment of susceptibility to
air pollutants is a priority research area for the Environmental
Protection Agency and a key focus of the agency’s Clean Air
Research Centers and Particulate Matter Centers (11, 12).
We reviewed scientific evidence and identified consisten-

cies across published epidemiologic studies regarding effect
modification of associations between short-term exposure to
particulate matter and death and hospitalization, and we per-
formed meta-analyses for select modifiers. Systematic reviews
with meta-analyses are useful for decision makers, physicians,
and researchers to synthesize large quantities of information
and to convey consistent findings (13).

MATERIALS ANDMETHODS

We searched the National Library of Medicine’s MEDLINE
database through PubMed (14) for population-based studies
of short-term exposure to particulate matter with aerodynamic
diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5) and mortality,
hospital admissions, or emergency roomvisits.We conducted
3 searches. Search A included the terms “effect modifica-
tion,” “effect modifier,” “effect modifiers,” “effect” and
“modifiers,” or “effect” and “modifying”; and “time series,”
“case crossover,” “air pollution,” “air pollutant,” “air pollut-
ants,” “PM,” “PM10,” “PM2.5,” “particles,” or “particulate mat-
ter.” Search B included the terms “modified,” “modification,”
“modify,” or “modifying”; and “effect” or “effects”; and
“PM10” or “PM2.5.” Search C included the terms “emergency
department,” “emergency visits,” “emergency room,” “hospi-
tal,” “hospitals,” “hospitalizations,” or “mortality”; and “time
series” or “case crossover”; and “short term”; and “PM,”
PM10,” “PM2.5,” “particulate matter,” or “particles.”
Tomeet the inclusion criteria, studies had to be population-

based; explore PM2.5 or PM10; consider short-term expo-
sure (i.e., same day or few days); explore deaths, hospital
admissions, and/or emergency department visits; examine
data on adults; report results on effect modification of risk
estimates; be written in English; be peer-reviewed; and be
indexed by July 26, 2012. We included both single-city and
multicity studies. In addition, 1 relevant article known to us
but not returned through searches was added.
We obtained each article’s study location, time frame, form

of particulatematter, lag structure, health outcome, study pop-
ulation, effect modifiers considered, results for effect modifi-
cation, and statistical methods to assess particulate matter health
associations (e.g., time-series, case-crossover) andeffectmod-
ification (e.g., stratification, interaction). Modifiers were cat-
egorized as individual level (e.g., a person’s age), daily (e.g.,
daily temperature), or community level (e.g., county’s unem-
ployment rate). Results on emergency roomvisitswere reported
with hospitalizations. For each study included in the meta-
analysis, we also extracted the estimated relative risk of death
(e.g., percent increase in risk), a measure of the uncertainty
associated with the estimated risk (e.g., confidence interval,
standard error of the estimated regression coefficient), and the
increment of pollution (e.g., 10 μg/m3) used in effect estimates.
We performed meta-analysis by random effects modeling

(15) for a subset of modifiers (sex and age) for which studies

used similar methods of assigning levels of the modifiers. In
cases in which modifiers were defined differently by study
(e.g., employment categorized as percent unemployed vs.
occupational categories), we could notmeaningfully combine
the estimated effects quantitatively. Meta-analyses were con-
ducted for total mortality or total nonaccidental mortality
and not cause-specific mortality. We did not perform meta-
analyses for hospital admissions, because most such studies
considered specific hospitalization causes. Meta-analyses were
considered if estimates were available from at least 5 studies
that used individual-level data.
Results reported in various forms (e.g., percent increase in

risk, relative risk) were converted to equivalent regression
coefficients and their standard errors for pooling. If studies
presented risk estimates for multiple lags, meta-analysis incor-
porated results from the key lag presented by study authors or
the single-day lag closest to the day of death (i.e., lag 0, if
available). For studies with city-specific estimates, those esti-
mates were included separately. Overall meta-analysis esti-
mateswere calculated forPM10.Studies’PM2.5 estimateswere
converted to PM10 by using a PM2.5/PM10 ratio calculated
from information in the original article when available or 0.6
otherwise; the true PM2.5/PM10 ratio varies by location and
meteorological conditions (16–18).
We calculated the uncertainty parameter (I2) representing

the percent of total variance in the observed results explained
by heterogeneity (19). Publication bias was assessed with
Egger’s test for asymmetry (20), funnel plots (21), and the
“trim and fill” method, which estimates overall risk adjusted
for potential publication bias (22).
The meta-analysis combined effect estimates from time-

series or case-crossover studies. Case-crossover analysis that
uses conditional logistic regression has been shown to be
equivalent to time-series analysis (23), and comparison of
estimates for air pollution’s association with hospitalizations
and death showed comparable results when using the 2
approaches (24, 25).
The systematic search andmeta-analysis were conducted with

consideration of the Meta-Analysis of Observational Studies
in Epidemiology (MOOSE) and the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines (26, 27).
A priori, we identified the following key potential modifi-

ers: sex, age, race, and the socioeconomic status (SES) indica-
tors of education, income, employment, and poverty. For
these modifiers, we synthesized the overall evidence by using
categories loosely based on those established by Institute of
Medicine committees (28) and applied by the US Congress,
other US government entities, and researchers. The categories
are, in increasing order of certainty, no, weak, limited/sugges-
tive, and strong evidence of effect modification. The overall
state of scientific evidence for each effect modifier was assigned
to a category on the basis of our assessment of the quality
and quantity of studies providing consistent and signifi-
cant evidence compared with those of conflicting findings.
These categories are intended to provide qualitative infor-
mation based on the consistency of scientific evidence,
not definitive assessments, and provide a way to summarize
evidence for effect modifiers for which meta-analysis was
unfeasible.
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RESULTS

Search results

The searches identified 772 papers published from 1996
to 2012, including 716 unique papers, of which 109 met our
inclusion criteria. We omitted 1 peer-reviewed agency report
(29) for which relevant results were duplicated in an identi-
fied peer-reviewed paper, bringing the total number of studies
to 108. We found 63 studies for death and 48 for hospitaliza-
tion, including 3 studies examining death and hospitaliza-
tion. Web Tables 1 and 2, available at http://aje.oxfordjournals.
org/, provide information on each study’s location and time
period, the exposure considered (e.g., PM10), lag structure,
health outcome, potential effect modifiers considered, and
statistical methods used to assess particulate matter health risks
and effect modification.

Most studies focused on North America and Europe. The
United States was the most represented country (33 of 108
studies). Thirty-one studies were based in Europe (including
12 in Italy), 24 in Asia, 8 in Canada, 7 in Latin America, and
1 each in Russia and Australia. One study examined London
and Hong Kong. Two additional studies were meta-analyses
combining results frommultiple regions (mostlyNorthAmer-
ica and Europe). Although the range of confounding vari-
ables differed by study, common confounders were weather
(e.g., temperature, dew point), temporal trend and seasonal-
ity (e.g., nonlinear functions for variable representing time),
and day of the week. Common approaches used to assess
individual-level effect modifiers were interaction terms in
regression modeling and stratified analysis. For community-
level effect modifiers, second-stage analysis (e.g., Bayesian
hierarchical modeling) and meta-regression were common
approaches in the identified papers.

Appendix Table 1 summarizes evidence for selected effect
modifiers with a conclusion on the strength of evidence for
each effect modifier based on our assessment. It notes partic-
ulatematter studies that found statisticallysignificant evidence
of effect modification and in what direction the modification
was detected, as well as studies that did not find statistically
significant evidence of effect modification. Studies are cate-
gorized on the basis of whether they examined potential effect
modifiers at the individual level (e.g., a person’s age) or the
community level (e.g., percent of a city’s population above a
certain age) and by health outcome (hospital admission or
death).

Below, we summarize the state of evidence for each poten-
tial effect modifier. Meta-analyses were conducted for risk
of death for studies that used individual-level data for sex
(men, women) and age (younger populations, older popula-
tions). Evidence for the other modifiers was not summarized
by using meta-analytical methods because of the substantial
heterogeneity in how these effect modifiers were defined (see
also our inclusion criteria in the Methods).

Effect modification by sex

In general, estimated associations between short-term expo-
sures to particulate matter and death and hospitalization risks
were higher forwomen than formen, butmanyof the 36 studies

examining this issue did not find evidence of effect modifica-
tion by sex. Two of the 22 mortality studies showed sig-
nificantly higher particulate matter exposure risks in women
than in men (30, 31). Thirteen of the 14 hospitalization studies
did not find statistically significant evidence of effect modifi-
cation by sex. For the remaining study, estimates of the associ-
ation between PM10 and hospital admission were higher for
arrhythmias in men and for heart failure in women (32).

Separate meta-analyses for men and women based on 21
pairs of risk estimates from 18 studies found slightly higher
but not statistically different estimated effects of particulate
matter exposure on total mortality for men and women
(Figure 1). The uncertainty parameter I2 was 87.0% (95% CI:
81.5, 90.9) for women and 88.1% (95% CI: 83.2, 91.6) for
men, indicating substantial heterogeneity among the reported
estimates. Based on meta-analysis, a 10 μg/m3 increase in
exposure to PM10 was associated with a 0.55% (95% CI:
0.41, 0.70) increase in death for women and a 0.50% (95%
CI: 0.34, 0.65) increase in death for men. These risk esti-
mates are not statistically different. Egger’s test for heteroge-
neity indicated a potential publication bias (P < 0.05 for men
and women). The overall estimates adjusted for publication
bias were increases in death of 0.34% (95% CI: 0.19, 0.49)
and 0.28% (95%CI: 0.11, 0.44) per 10 μg/m3 PM10 for women
and men, respectively (Web Figure 1). We concluded that there
isweakevidence that particulatematter exposure risks are higher
for women than for men.

Effect modification by age

We examined studies that compared particulate matter
exposure estimates across age groups (e.g., <64 years vs.≥65
years) or on the basis of a subpopulation of a specific age
(e.g., the percent elderly). We clustered results on the basis
of whether higher (or lower) risks were observed for older
populations, although studies specified age differently (e.g.,
older persons defined as ≥65 years vs. ≥75 years). Thirty-
eight studies examined whether age modifies associations
between particulate matter exposure and death. For studies
that used individual-level data, 9 found statistically higher
associations between particulate matter exposure and death
for older persons (30, 33–40), whereas 22 did not find such
evidence. Among mortality studies based on community-
level age distribution, 1 study found that communities with a
higher fraction of elderly persons had statistically higher par-
ticulate matter–associated risks (5), 1 study found the oppo-
site result (statistically lower risk estimates with higher age)
(41), and 5 studies found no evidence of effect modification.

Some studies found effect modification for some causes
of death but not others. In 1 study, older populations had sta-
tistically higher particulate matter–associated risk estimates
than younger populations for total and stroke deaths but not
for respiratory or cardiovascular deaths (36). Another study
found that older populations had statistically higher particu-
late matter–associated death risk estimates than did younger
populations, but did not observe effect modification by age
for cardiovascular, respiratory, or stroke deaths (39). Of the
26 studies that investigated whether age modifies particulate
matter–associated hospitalizations, risk estimates were statisti-
cally higher for older populations than for younger populations
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in 4 studies and lower in 1 study, with no statistically signifi-
cant evidence of effect modification in the remaining 21 studies.
Figure 2 provides meta-analysis results for age from 30

pairs of estimates from 23 studies that used individual-level
data. Other studies that used individual-level data were
excluded from meta-analysis because of differences in study
designs (e.g., results for respiratory deaths only). Because
authors used different age categorizations, we considered
“older” populations as the oldest age group (e.g., ≥65, ≥66,
≥75, ≥76, ≥80, or ≥85 years). For “younger” populations,
we considered the age strata that most closely matched adult
populations where available (e.g., 20–64, 35–64, or 45–64
years) or nonelderly populations including children (e.g., 5–
64, <65, <70, or <75 years). Some studies presented esti-
mates for an older population versus all ages, in which case
we included “all ages” estimates with those of “younger”
populations.
The uncertainty parameter I2 was 62.1% (95% CI: 43.8,

74.5) for younger populations and 84.6% (95% CI: 79.1,
88.7) for older populations, indicating heterogeneity. Meta-
analysis results showed that a 10 μg/m3 increase in PM10 expo-
sure was associated with 0.34% (95% CI: 0.25, 0.42) and
0.64% (95% CI: 0.50, 0.78) increases in risk of death for
younger and older populations, respectively. Risks for older

populations were 0.30% (95% CI: 0.14, 0.47) higher than
for younger persons. Results remained essentially unchanged
under sensitivity analysis that removed studies that compared
“all ages” with “older” populations. The remaining 26 pairs
of estimates from 19 studies resulted in 0.29% (95% CI: 0.20,
0.38) and 0.66% (95% CI: 0.50, 0.82) increases in risk of
death per 10 μg/m3 of PM10 exposure for younger and older
populations, respectively.
Egger’s test for heterogeneity indicated potential publica-

tion bias (P < 0.05 for both younger and older populations).
Overall estimates adjusted for publication bias were increases
of 0.20% (95% CI: 0.10, 0.30) and 0.50% (95% CI: 0.34,
0.66) in risk of death for younger and older populations, respec-
tively (Web Figure 2). By using these results, we found risk
estimates to be 0.30% (95% CI: 0.11, 0.49) higher for older
populations than for younger populations. We concluded that
there is strong evidence that the risk of death associated with
short-term particulate matter exposure is higher in older pop-
ulations than in younger populations.

Effect modification by race/ethnicity

No statistically significant associations were reported in
the 9 studies that examined effect modification by race (31,
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Figure 1. Meta-analysis of the association of sex with increased risk of death by exposure to particulate matter with aerodynamic diameter
≤10 µm (PM10). Solid points represent results for women; open points represent results for men. Points reflect central estimates; horizontal lines
represent 95% confidence intervals. Boxes represent individual study results; diamonds represent results from the meta-analysis.
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33, 42–48). Thus, we concluded that these studies present no
evidence of effect modification by race; however, the inves-
tigation of race was limited. All studies were conducted in
the United States. In all cases, race was categorized simplis-
tically, such as percent African American (45) or nonwhite
(44). Individual data were assessed with dichotomous cate-
gories of black and white (31, 33, 42) or white and “other”
(46, 47). Only 1 study considered more than 2 racial/ethnic
categories, which were the percentages of a community that
were Hispanic, African American, or white (43).

Effect modification by SES indicators

The most commonly studied SES indicator was education,
which generally was based on educational attainment. Two
of the 10 mortality studies (30, 49) with individual-level
data on education and 1 of the 6 mortality studies (50) with
community-level data on education found higher particulate
matter–associated risks with lower educational level; the

remaining studies found no statistically significant evidence
of effect modification. One study examined whether the risk
of hospitalization was affected by educational level and
found no such evidence when using community-level data
(51). Overall, we found limited/suggestive evidence of higher
risk with lower educational level.

Income level was examined for particulate matter–associated
death risk estimates in 8 studies with community-level data
(e.g., median household income); 4 studies found higher risk
with lower income (30, 50, 52, 53). For the 3 studies exam-
ining community-level income data and hospitalization risk,
1 found higher risk in lower income communities (54),
whereas the remaining studies did not find evidence of effect
modification (51, 55). There exists limited/suggestive evi-
dence of higher risk with lower income, although no studies
examined individual-level income data.

Poverty was examined only as a community-level variable
in 3mortality studies (44, 56, 57) and 4 hospitalization studies
(48, 55, 58, 59). One study found lower SES to be associated
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Figure 2. Meta-analysis of the association of age with increased risk of death by exposure to particulate matter with aerodynamic diameter
≤10 µm (PM10). Solid points represent results for younger populations; open points represent results for older populations. Points reflect central
estimates; horizontal lines represent 95% confidence intervals. Boxes represent individual study results; diamonds represent results from the
meta-analysis.
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with lower particulate matter–associated hospitalization risk;
during the warm season, risk estimates were lower in com-
munities in 36 US cities with higher proportions of persons
over 65 years of age living in poverty (59). Overall, we found
no evidence of effect modification by poverty, although no
studies examined individual-level poverty data.
Effect modification for particulate matter–associated death

by employment status was analyzed in 7 mortality studies
and no hospitalization studies. Based on individual-level
data, risk estimates were higher for those with lower employ-
ment status, for unemployed persons compared with white-
collar employees (30), and for blue-collar workers or never
employed persons compared with white-collar workers (49).
Effect modification was not identified in 2 other studies that
used occupational categories (60) and an occupational “dirti-
ness score” (61). Risk estimates were higher for communi-
ties with higher unemployment rates in 2 studies (5, 40) but
not in a third community-level study (44). Evidence of higher
particulate matter–associated risks with lower employment
status was limited/suggestive.

DISCUSSION

We found that age is the most consistent effect modifier of
the association between short-term exposure to particulate mat-
ter and death and hospitalization, with older persons experienc-
ing higher risks. In addition to physiological changes that
accompany age, older persons likely have different indoor/
outdoor activity patterns, occupational exposures, and social
networks. Our analysis of age compared risks for older and
younger populations; however, the very young may also be
susceptible. Children could face higher risks because their
biological systems are under development, they breathe more
air per body weight than do adults, and they typically spend
more time outdoors. Exposures to PM2.5 and PM10 are asso-
ciated with the risk of death for infants and children in the
United States (62, 63). Future work could investigate whether
particulate matter risks are modified for infants and children.
We found weak evidence of higher particulate matter–

associated risks for women than for men, which may result
from differences in physiology, exposure patterns, and/or
activity patterns. A recent review discussed potential reasons
for effect modification by sex on respiratory outcomes asso-
ciated with exposure to PM2.5 and nitrogen dioxide. Expo-
sures related to occupation, cooking, physical activity, smoking
status, and personal care products vary by sex.Men and women
differ in dermal absorption, lung function, and absorption of
gases through the respiratory system. Hormonal changes can
affect relationships between dose and effective dose. A recent
review found that most studies of adults observed stronger air
pollution risks in women than in men and recommended more
research to identify the relevant pathways, noting that differ-
ences between sexes differ by society (64).
Health status differs by race/ethnicity, such as in higher

death rates in the US for black and American Indian infants
than for white infants (65). Exposures also differ by race/
ethnicity; non-Hispanic blacks had higher levels than whites
for 13 of 14 PM2.5 components (66). Although our analysis did
not provide evidence that race modifies particulate matter–

associated risks, the identified studies are limited. All stud-
ies used simplistic race categorizations (e.g., white and “other”).
Actual race/ethnicity is more complex, involving community
patterns, national origin, and mixed ancestries (67). Great
Britain, Canada, and the United States have revised their cen-
sus surveys to include multirace choices (68). Researchers
have noted that hypotheses on health disparities by race are
largely characterized by 3 mechanisms (69), which could be
extrapolated to differences in particulate matter–associated
health risks by race. The first is a biological mechanism of
genetic susceptibility to disease by race. Because racial groups
are based not only on genetics but also on social and commu-
nity relationships, this explanation is unlikely to fully explain
differences by race. The second mechanism is race as an
indicator of SES. Race and SES can be correlated, challeng-
ing efforts to disentangle their effects; however, this pathway
also is unlikely to fully explain health differences because
race is not a fully adequate SES surrogate. For example, in the
United States during 2007–2011, more than 9 million blacks
or African Americans (25.8%) were in poverty, as were more
than 25.5 million whites (11.6%) (70). Some have proposed
a more multifaceted third mechanism of race and class as
separate influences, with potential interactions (e.g., race affect-
ing class) (69).
Overall, the identified studies suggest that those with lower

SES face higher particulate matter–associated risks, although
we found only limited/suggestive evidence for modification by
educational level, income, and employment status. SES could
modify particulate matter–associated health risks through dif-
ferences in access to health care, baseline health status, occu-
pational exposures, and nutrition. Studies investigatingmultiple
SES indicators generally had consistent within-study results.
For example, evidence of effect modification was identified
for all of the SES indicators considered in several mortality
studies (e.g., employment, education, and income (30)) and
hospital admission studies (e.g., education and income (51)).
No associations were observed for any of the multiple indi-
cators considered in other studies (e.g., occupation and edu-
cation (60, 61)). However, this was not true in all cases (e.g.,
unemployment but not education was identified as an effect
modifier in a multicity mortality study (5)). Furthermore,
although evidence for effect modification by lower SES was
generally consistent within a given study, some studies found
such evidence, some did not, and 1 study found the opposite
result (i.e., lower risk with higher poverty) (59). Evidence
on effect modification by SES has been limited by the use of
community-level data. Health is associated with individual
characteristics, as well as the community in which a person
lives (71), although few studies have evaluated SES by
using individual-level data.
The indicators discussed here do not fully represent true

SES. Limitations stem from the reliability of each indicator’s
measurement, the inability to capture lifetime history of SES,
unmeasured assets (e.g., home ownership), and misclassifi-
cation of SES (e.g., retired persons or women who do not
work outside the home categorized as unemployed (72)).
The use of occupational data to gauge SES can affect esti-
mates differently by sex because women have less heteroge-
neity in occupations than men (73). Although SES indicators
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are generally correlated, this correlation can vary by popu-
lation, including among races within an area (74). Relationships
between SES and access to medical care differ by region (e.g.,
because of the presence or lack of universal healthcare). Some
SES indicators are more associated with overall health status
than others. There is some evidence that economic indicators
such as income have stronger associations with health than do
indicators based on occupation or education (75, 76), and that
SES is more related to health in some areas than in others (75).

The potential effect modifiers examined here are not inde-
pendent of each other or of other potential modifiers. In addi-
tion to correlations among SES indicators, sex is related to
SES, such as in higher income for men. Levels of physical
activity change with age and differ by sex and age (77, 78).
Smoking rates are often higher for men (e.g., 57% for Japa-
nese men compared with 17% for Japanese women (79)) and
can differ by income. Studies are needed on effect modification
within the complex system of multiple social, economic, and
environmental factors,whichmayvaryacross regions in terms
of the direction and level of effect modification and their rela-
tionships with each other (e.g., different degrees of income
inequality by sex).

Regarding our categories of degree of evidence, results such
as weak or no evidence of effect modification reflect the cur-
rent scientific evidence, although modification may indeed
exist. Limitations of this study include problems inherent in
the designation of results as statistically significant (80–82)
and in publication bias (83, 84), under which results (e.g., for
lag with the highest association) may be selectively reported
and published. Thus, results from studies that did not find
evidence of effect modification may be underrepresented in
the literature. In fact, the results of our meta-analyses indicate
publication bias. Further, many studies that did not find sta-
tistically significant evidence did find higher risks for some
groups than for others. Our methodology was designed to
allow the manageable review and presentation of papers; how-
ever, studies without statistically significant results should not
be interpreted as definitive evidence of the absence of effect
modification. Most studies were designed to investigate
hypotheses other than effect modification, so a study designed
to address effect modification specifically may differ from
those used (e.g., in sample size).

Althoughwe focused on selected effectmodifiers, the iden-
tified studies considered many other effect modifiers, primar-
ily addressing season, weather, location, pollution, and health
status. Effect modification was examined with respect to sea-
son and weather (e.g., temperature, synoptic classification)
on the dayof death aswell as communities’ long-termweather
(e.g., temperature, humidity). Pollutants as effect modifiers
were studied by using long-term levels of copollutants (e.g.,
PM2.5 chemical components), pollutant emissions (e.g.,
population-weighted traffic emissions), information on par-
ticulate matter sources (e.g., industry, traffic), and the pres-
ence of gas stoves in the home. Health status was evaluated
with individual-level data for comorbidities, such as causes
of previous hospitalizations or concurrent conditions, smoking
status, dietary intakes, and community-level, age-standardized
death rates. Other potential effect modifiers considered include
individual-level data on housing type (e.g., government hous-
ing for low-income families), exposure to known lung carcin-

ogens, and location of death (in the hospital vs. out of the
hospital), and community-level information on percent of adults
with non-English language, degree of urbanization (e.g., popu-
lation density), prevalence of air conditioning, and the number
and density of air pollution monitors. Although we summa-
rized evidence for several key modifiers, a multitude of other
individual and environmental factors may modify particulate
matter–associated health risks.

A better understanding of vulnerability and susceptibility
and, more generally, of effect modification, can provide evi-
dence on which to base the targeting of local air quality
efforts to specific populations. It can also inform our under-
standing of biological mechanisms (e.g., differences by sex)
and can help design regulations that protect sensitive popula-
tions with an adequate margin of safety. Future efforts are
needed to further investigate effect modification and the sug-
gestive evidence summarized here. To the degree feasible,
researchers should address factors that may modify air pollu-
tion estimates and incorporate them into analyses.
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Appendix Table 1. Summary of Scientific Evidence for Effect Modifiers of Particulate Matter–Associated Death and Hospitalization

Effect Modifier Statistically Significant Evidence
Lack of Statistically Significant

Evidence
Summary of Evidence

Sexa Weak evidence of higher risk for
women than for men

Mortality Higher risk in women: 2 studies (30, 31) 20 Studies (34–36, 42, 53, 60, 61,
85–97)

Hospitalization Higher risk in women: 1 study (32);
higher risk in men: 1 study (32)

13 studies (46, 47, 54, 98–107)

Age Strong evidence of higher risk for
older persons

Mortality

Individual Higher risk with higher age: 9 studies
(30, 33–40)

22 Studies (5, 42, 53, 60, 85–89,
91–97, 108–113)

Community Higher risk with higher age: 1 study (5);
lower risk with higher age: 1 study
(41)

5 Studies (50, 56, 114–116)

Hospitalization

Individual Higher risk with higher age: 4 studies
(32, 58, 117, 118); lower risk with
higher age: 1 study (119)

21 Studies (46, 47, 54, 98–103,
105–107, 113, 120–127)

Race No evidence of effect modification
by race

Mortality

Individual No studies 4 Studies (31, 33, 42, 43)

Community No studies 2 Studies (44, 45)

Hospitalization

Individual No studies 2 Studies (46, 47)

Community No studies 2 Studies (45, 48)

Education Limited/suggestive evidence of
higher risk with lower education

Mortality

Individual Lower risk with higher education: 1
study (30); lower risk for those with
primary education compared with
those with no education: 1 study (49)

8 Studies (31, 33, 43, 60, 61, 92, 94, 97)

Community Lower risk with higher education: 1
study (50)

5 Studies (5, 44, 45, 57, 87)

Hospitalization

Individual No studies No studies

Community No studies 1 Study (51)

Income Limited/suggestive evidence of
higher risk with lower income

Mortality

Individual No studies No studies

Community Higher risk with lower income: 4 studies
(30, 50, 52, 53)

4 Studies (45, 86, 128, 129)

Hospitalization

Individual No studies No studies

Community Higher risk with lower income: 1 study
(54)

2 Studies (51, 55)

Povertyb No evidence of effect modification
by poverty status

Mortality No studies 3 Studies (44, 56, 57)

Hospitalization Lower risk with higher poverty: 1 study
(59)

4 Studies (48, 55, 58, 59)

Employment Limited/suggestive evidence of
higher risk at lower employment
statusMortality

Individual Higher risk with lower employment: 2
studies (30, 49)

2 Studies (60, 61)

Community Higher risk with lower employment: 2
studies (5, 40)

1 Study (44)

a Individual-level effect modifier.
b Community-level effect modifier.
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