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Abstract
Superfamily 2 helicases are involved in all aspects of RNA metabolism, and many steps in DNA
metabolism. This review focuses on the basic mechanistic, structural and biological properties of
each of the families of helicases within superfamily 2. There are ten separate families of helicases
within superfamily 2, each playing specific roles in nucleic acid metabolism. The mechanisms of
action are diverse, as well as the effect on the nucleic acid. Some families translocate on single-
stranded nucleic acid and unwind duplexes, some unwind double-stranded nucleic acids without
translocation, and some translocate on double-stranded or single-stranded nucleic acids without
unwinding.
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2. INTRODUCTION
Helicases are a ubiquitous group of enzymes that use the energy of nucleoside triphosphate
(NTP) hydrolysis to catalyze the separation of double-stranded nucleic acids (dsNA). The
resulting single-stranded nucleic acids (ssNA) are substrates for numerous cellular reactions.
Consequently, helicases are involved in essentially every step in DNA and RNA
metabolism, including replication, DNA repair, recombination, transcription, translation,
chromatin rearrangement, ribosome synthesis, RNA maturation and splicing, nuclear export,
Holliday junction movement, and displacement of proteins from DNA and RNA (reviewed
in (1, 2, 3, 4). Helicases were originally identified as proteins that could separate double-
stranded nucleic acids based on 7 conserved sequence motifs (5) and were later classified
into superfamilies (SF) (6, 4). However, only a subset of these enzymes have dsNA
unwinding activity. The helicase motifs, instead, are characteristic of all nucleic acid
dependent NTPases, of which helicases are a subset (7, 1). Some helicases have been shown
to be translocases (ie: utilize the energy of NTP hydrolysis for directional translocation on
NA), including PcrA (8, 9, 10), NS3 (11, 12), NS3h (13), Rep (14), and UvrD (15).
However, not all translocases have helicase activity, including EcoR124I (16) RIG-I (17),
SWI/SNF (18), and ISW2 (19), and not all helicases have translocase activity, such as Ded1
(20, 21). Therefore, not all proteins possessing the helicase motifs and the helicase core
structure are helicases (able to unwind dsDNA or dsRNA in an ATP dependent manner);
examples are the Swi/Snf family and the type I restriction enzymes (Table 1).

Send correspondence to: Kevin Raney, Department of Biochemistry and Molecular Biology, University of Arkansas for Medical
Sciences, 4301 W. Markham St. Slot 516, Little Rock, Arkansas 72205, USA, Tel: 501-686-5244, Fax: 501-686-8169,
raneykevind@uams.edu; Alicia K. Byrd, Department of Biochemistry and Molecular Biology, University of Arkansas for Medical
Sciences, 4301 W. Markham St. Slot 516, Little Rock, Arkansas 72205, USA, Tel: 501-686-7254, Fax: 501-686-8169,
akbyrd@uams.edu.

NIH Public Access
Author Manuscript
Front Biosci (Landmark Ed). Author manuscript; available in PMC 2013 September 17.

Published in final edited form as:
Front Biosci (Landmark Ed). ; 17: 2070–2088.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Of the conserved sequence motifs, only the Walker A and B motifs are common to all
helicases (22). These are involved in NTP binding and hydrolysis. Superfamily (SF) 1 and
SF2 are the largest of the superfamilies and the conserved motifs are similar (6). The SF1
and SF2 helicases appear to function as monomers or dimers (3) for unwinding. Some
specialized activities such as Holliday junction resolution and strand annealing require larger
oligomers (23, 24). Each monomer contains two RecA-like domains (4). SF3-SF6 helicases
show little similarity to SF1 and SF2 helicases. They have fewer conserved motifs (6, 4),
contain one RecA-like domain per monomer (4), and function as hexamers or double
hexamers (4, 25). These hexameric rings encircle the DNA, resulting in a highly processive
helicase. The replicative helicases involved in chromosomal DNA replication are members
of these superfamilies (26, 4).

3. SUPERFAMILY 2 HELICASES
Superfamily 2 is the largest and most diverse of the helicase superfamilies. It has been
further divided into families including RecQ-like, RecG-like, Rad3/XPD, Ski2-like, type I
restriction enzyme, RIG-I-like, NS3/NPH-II, DEAH/RHA, DEAD-box, and Swi/Snf
families based on sequence homology (Table 1) (1, 27, 25). It also includes smaller groups,
such as type III restriction enzymes and Suv3 (1). Although they are classified as helicases,
some have not been shown to separate the strands of duplex NA or translocate on nucleic
acids (16, 17, 18, 19, 28). Some unwind DNA or RNA while translocating on the NA, some
unwind without translocation, and some translocate without unwinding. All have nucleic
acid stimulated ATPase activity (25). SF2 helicases are involved in transcription, DNA
repair, and chromatin rearrangement (29, 30, 31) and all aspects of RNA metabolism (25, 3).
Since SF2 helicases function in diverse parts of nucleic acid metabolism, defects are
associated with a variety of diseases including predisposition to cancer, premature aging,
immunodeficiency, and mental retardation (32, 33).

4. FAMILIES
Based on recent work by the Jankowsky lab there are 10 families within SF2, in addition to
the smaller type III restriction enzyme group and helicases such as Suv3 which belong to
SF2, but not to any of the families or groups (1, 27, 25). They are collectively referred to as
DExH/D helicases. However, the structures, mechanisms, and biological functions of the
members of each of the families within this SF vary widely. This review will summarize
available information about each of the families within SF2.

4.1 DEAD-box
The DEAD-box family is the largest in SF2 and is conserved from bacteria to humans (25).
They are required for all aspects of RNA metabolism including transcription, splicing,
transport, ribosome biogenesis, translation, RNA/protein complex assembly, and
degradation (34, 25, 7). These enzymes are named for the conserved sequence of amino
acids in the Walker B motif. They function exclusively on RNA as ATP-dependent
chaperones that reconfigure the RNA. Diverse substrates are utilized by these enzymes, but
they are most efficient when the RNA binding domain, separate from the unwinding active
site, is also bound to RNA (35, 20). It can be ssRNA, dsRNA, or even structured RNA (36).
DEAD-box proteins bind to RNA in an ATP dependent manner, but they don’t translocate.
Instead, they manipulate structured RNAs and RNA protein complexes (RNPs) by
disrupting local secondary and tertiary structures and RNA-protein interactions (34). ATP-
dependent unwinding of RNA by DEAD-box proteins occurs by binding to the dsRNA and
prying the strands apart instead of by translocation on nucleic acid (21). This allows
unwinding to occur without directionality in some cases (37). It also limits the DEAD-box
helicases to unwinding short duplexes, normally less than 2 helical turns (21).
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The helicase motifs are clustered in the cleft between the two RecA-like domains (Figure 1).
They form the ATP and RNA binding sites. The Q motif (38) contacts the nucleotide base,
providing a specificity for ATP (7). The N-terminal RecA-like domain of all DEAD box
helicases contains motifs I-III. Motifs IV-VI are in the C-terminal domain (34). When ATP
and RNA are absent, the helicase is in an open conformation and the two RecA-like domains
do not interact (39). Upon binding of RNA and ATP, the helicases domains close (40). In
the structures of DEAD-box proteins bound to ssRNA, the phosphate backbone is kinked
(Figure 1) (41, 40, 42, 43). This may aid in duplex destabilization, thereby providing a
mechanism for unwinding short duplexes. Many contacts are made between the DEAD-box
proteins and the RNA backbone, but little or no interactions with the bases are observed in
the structures (40, 42, 43). Hydrogen bonding between the ribose 2′-OH and helicase motifs
Ia, Ib, and IV confers specificity for RNA (42, 43).

ATP binding, but not hydrolysis, is required for strand separation (37, 44). S. cerevisiae
DEAD-box proteins Ded1p and Mss116, and mammalian eIF4A can unwind dsRNA with
the nonhydrolyzable ATP analog ADP-BeF3, but not with  or ADPNP (37).
These results suggest that ATP hydrolysis is needed for protein recycling, not strand
separation. When bound to ATP, the helicase has a high affinity for RNA, but the ADP
bound and free enzymes have low affinity for RNA (7, 45), resulting in release of the RNA
after hydrolysis of ATP. Interestingly, although Mss116p functions differently with various
ATP analogs, the structures of Mss116p bound to AMP-PNP, ADP-BeF3, and 
are all similar (41). Comparisons of the kinetic parameters for ATPase and unwinding
reactions also suggest that ATP binding results in unwinding (44). ATP hydrolysis is not
required for unwinding, but it is possible that ATP hydrolysis occurs after the dsRNA is
melted due to ATP binding, but before the strands have completely separated. Helicase
dissociation increases after ATP hydrolysis, but unwinding is faster than helicase
dissociation, resulting in strand separation upon ATP hydrolysis. This could explain the
reduced unwinding rates with ADP-BeF3 compared to ATP (37). Local unwinding, whether
or not it is accompanied by ATP hydrolysis allows the remainder of short duplexes to
spontaneously melt. Due to this unwinding mechanism, the unwinding rate constants
decrease as duplex length and stability increase (21). With longer duplexes, the enzyme is
likely to dissociate following ATP hydrolysis before the strands are completely separated,
resulting in nonproductive ATP hydrolysis (44).

DbpA appears to be an exception. ATP and RNA bind cooperatively to most DEAD-box
proteins (45, 46, 47, 48), and this has been accepted as a characteristic of DEAD-box
proteins (34). However, kinetic studies on DbpA indicate no cooperativity in binding (49).
Also, when the equilibrium and rate constants of each step in the ATPase cycle of DbpA
were measured, it was found that the high affinity RNA binding state is ADP-bound (50), in
contrast to other DEAD-box proteins which have high affinity for RNA when bound to
ATP. Upon release of phosphate from the ADP-Pi bound state, the DbpA loses its high
affinity for RNA and returns to the low affinity state. This results in unwinding of an 8
nucleotide nucleic acid strand after ATP hydrolysis, but before phosphate release (50). This
is in contrast to Ded1p, Mss116p, and eIF4A which all unwind dsRNA before ATP
hydrolysis, as shown in Figure 2 (37).

4.1.1. Destabilization mechanism—Since unwinding can occur in the absence of ATP,
a destabilization mechanism has been suggested (Figure 2) (7, 34). ADP-bound and the free
protein have low affinity for RNA for most DEAD-box proteins (37, 44). Helicase bound to
ADP and Pi (49) or bound to non-hydrolyzable ATP analogs (37) has high affinity for RNA.
The rate limiting step in unwinding is phosphate release (49). This is in agreement with
unwinding occurring in the presence of ADP-BeF3 for some DEAD-box proteins (37). The
kink in the ssRNA bound in the active site disrupts base pairing and causes separation of a

Byrd and Raney Page 3

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2013 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



few basepairs of the dsRNA substrate (step 2 in Figure 2), which has been suggested to be
the initial step in unwinding (43). Strand separation occurs before ATP hydrolysis, but ATP
hydrolysis is required for enzyme recycling (37) (step 5 in Figure 2). Since the substrates
unwound are short duplexes, destabilization of a small portion of the duplex may be
sufficient for unwinding as the remainder of the duplex may spontaneously melt.

Since AMP-PNP and  binding also produce a kink in the RNA, but not
unwinding, a rearrangement of the protein/ATP complex before hydrolysis has been
suggested (34). This is consistent with two phase nucleotide binding (49). Based on these
data, a model where the protein binds to ATP and dsRNA rearranges to a hydrolysis
competent form has been proposed (7, 34, 41). Rearrangement can occur when ADP-BeF3 is
bound, so unwinding can occur. Rearrangement does not take place when  or
AMP-PNP is bound, so no unwinding occurs. ATP hydrolysis (step 4 in Figure 2) occurs
after dissociation (unwinding) of the first RNA strand (step 3 in Figure 2) (37). The
hydrolysis of one ATP molecule either nearly or completely unwinds a short helix due to a
kink that distorts the duplex RNA. For longer duplexes, the dsRNA may not be separated by
the local distortion of the duplex, resulting in ATP hydrolysis while duplex RNA is bound to
the enzyme (no unwinding) (44). After ATP hydrolysis, the enzyme is bound to ssRNA (or
dsRNA if unwinding did not occur due to long or stable duplex), ADP, and Pi (step 4 in
Figure 2). The ADP-Pi bound helicase has high affinity for RNA, so phosphate likely
dissociates before RNA. This causes the enzyme to return to the open conformation, where
ADP and RNA are released (step 5 in Figure 2)(49, 45).

4.2. Ski2-like
Ski2 family members are RNA helicases essential for removal of polyadenylated RNA from
the cell (51, 52), and are thought to unwind secondary structure in and displace proteins
from the RNA targeted to the exosome (53). mRNA is degraded in eukaryotes in the 5′-to-3′
direction by the exonuclease XRN1 and in the 3′-to-5′ direction by the exosome, a complex
of exonuclases and the Ski complex which includes a Ski2 helicase (54, 55). Ski2 helicases
translocate on ssRNA and unwind dsRNA in the 3′-to-5′ direction (56). Eukaryotes have
nuclear and cytosolic exosomes. XRN1, the cytosolic exosome, and the Ski complex are
also a part of the nonsense-mediated decay (NMD) pathway that degrades mRNAs with
premature translation termination codons and the nonstop decay (NSD) pathway that
eliminated mRNAs without stop codons (55). The nuclear exosome interacts with the
TRAMP (Trf4-Air1-Mtr4) complex which recognizes polyadenylated RNA substrates. Trf4
is a poly(A) polymerase, Air1 is a Zn knuckle protein, and Mtr4 is a member of the Ski2-
like RNA helicase family (53).

4.3. Viral NS3/NPH-II
Viral NS3/NPH-II helicases are DExH helicases encoded by many positive strand RNA
viruses that unwind substrates with a 3′-ssNA overhang (57, 58). NPH-II requires a RNA
loading strand (59). It translocates along the loading strand through an interaction with the
sugar-phosphate backbone (60). NPH-II has been proposed to unwind DNA by strand
exclusion (wire-stripper or wedge mechanism) (60). Nicks in the displaced strand do not
affect unwinding by NPH-II or NS3, but both are halted by nicks in the loading strand (60,
61), indicating that these enzymes track along one of the strands.

A number of the Flaviviridae family of viruses encode a SF2 helicase, including hepatitis C,
dengue virus, West Nile virus, yellow fever virus, and Japanese encephalitis virus (62).
Hepatitis C virus (HCV) nonstructural protein 3 (NS3) is a dual function helicase/protease.
The C-terminal portion forms a SF2 helicase (3, 1) while the N-terminal domain forms the
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protease. The HCV nonstructural proteins replicate and package the viral genome, and NS3
is required for viral replication (58).

Several structures of the helicase domain of NS3 (NS3h) (63, 64) and full length NS3 (65)
from Hepatitis C have been solved. The structures suggest that translocation of 1 nucleotide
per ATP hydrolyzed occurs in a ratcheting or inchworm mechanism due to several
conformational changes that occur upon ATP binding and hydrolysis (64). NS3 has been
reported to have a large kinetic step size of 11–18 base pairs (66, 67, 68) composed of
smaller steps of 3 base pairs (69) and 1 base pair (63, 64, 69). The large kinetic step size has
been proposed to be due to slow dissociation of the displaced strand from an as yet
unidentified site on the enzyme (70). Using single-molecule FRET, Myong et al (69)
observed unwinding in three base pair steps, with smaller translocation steps of one
nucleotide (69). A spring-loaded inchworm mechanism was proposed based on this data in
which three translocation steps of one nucleotide each produce strain in the enzyme’s
structure. Release of the strain occurs when the trailing edge of the enzyme springs forward
to melt three basepairs. This model received support from recent crystal structures (71)
which indicated that the leading edge of NS3 could translocate one nucleotide while the
trailing edge remained bound to the same RNA bases of the 3′-end of the RNA (71). It is
possible that some form of ‘scrunching’ of RNA might also account for the single molecule
FRET data as has been reported for the SF1 helicase UvrD (15).

4.4 DEAH/RHA
The DEAH family of RNA helicases is found in eukaryotes (72) and prokaryotes (73). It is
distinct from the NS3/NPH-II (viral DExH) family of helicases (74). It is named for human
RNA helicase A (RHA) and for the conserved sequence of the Walker B box. DEAH/RHA
helicases have two conserved domains C-terminal to the two RecA-like helicase domains
(72). One is a helicase-associated domain and the other has unknown function. These
domains are required (73) and are specific to DEAH/RHA helicases; viral NS3/NPH-II
helicases do not have these conserved domains (74).

DEAH/RHA helicases are involved in ribosome biogenesis (Dhr1p and Drh2p in yeast, and
DHX32 and DHX37 in humans) and mRNA splicing (Prp2p, Prp16p, Prp22p, and Prp43p in
yeast and DHX8, DHX16, and DHX38 in humans) (72). In bacteria, DEAH/RHA helicases
are also involved in RNA processing (73). Helicases in the human RHA subfamily (DHX9,
DHX29, DHX30, DHX36, and DHX57) are involved in nuclear import and export, RNA
localization, translational regulation, splicing (75), and RHA knockout mice were not viable
(76). During splicing, DEAH/RHA helicases appear to remodel structural RNAs. Prp16p
melts the U2/U6 helix in the spliceosome after cleavage of the 5′-exon (77). Prp22p
catalyzes mRNA release from the spliceosome by translocating on the mRNA (78). Prp43p
is required for synthesis of both subunits of the ribosome (79, 80) and releases the lariat
intron from the spliceosome in an ATP dependent process (81, 82, 83, 84).

The structure of Prp43p is similar to the Ski2-like DNA helicase Hel308 (74). Like Hel308,
Prp43p has a ratchet domain. Stacking interactions with amino acids of the helix and the
nucleic acid are proposed to pull the ssNA into the active site and allow the helicase to
translocate along the NA in a processive manner (85, 74). However, unlike Hel308, C-
terminal to the RecA-like domains, Prp43p has an oligonucleotide/oligosaccharide-binding
(OB)-fold that is characteristic of DEAH/RHA proteins. The OB-fold is required for ATPase
activity, interaction with protein partners, and increases its affinity for RNA (74). The
helicase interacts with the nucleic acid through the phosphate backbone. ATP is bound in a
conformation similar to that of NS3/NPH-II helicases (86), not like it is typically bound in
DEAD-box helicases (43) or Ski2-like helicases (85). Since DEAH/RHA and Ski2-like
helicases share a similar structure, it suggests that the catalytic mechanisms are similar
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between these two families. Ski-2-like helicases translocate in the 3′-to-5′ direction along
the ssNA, with a beta-hairpin (Figure 3) causing strand separation (74).

4.5 RecQ-like
RecQ-like helicases are involved in DNA recombination, telomere maintenance, and DNA
damage signaling (87). They reduce illegitimate recombination by unwinding branched
DNA structures (88). Cells lacking RecQ proteins have increased recombination and
chromosome missegregation, in addition to defects in meiosis. There are five human RecQ-
like helicases (BLM, WRN, RecQ1, RecQ4, and RecQ5) (29). Mutations in three are
associated with predispositions to cancer and premature aging (33, 89, 87, 32). Mutations in
BLM are associated with Bloom’s syndrome (90), WRN with Werner’s syndrome (91), and
RecQ4 with Rothmund-Thomson syndrome (92). RecQ helicases interact with the
recombination and replication complexes to remove intermediates during recombination and
to stabilize replication forks, thereby aiding in maintenance of genomic integrity (29).

RecQ family members are 3′-to 5′ DNA helicases. In addition to duplexes, they can unwind
triplexes, quadruplexes, and 3- and 4-way junctions (29, 93). The beta-hairpin (Figure 3) is
required for unwinding, HJ resolution, dimer and tetramer formation. The oligomeric
properties may regulate some functions of these helicases. Monomers unwind DNA,
although dimers are preferred; tetramers are required for HJ resolution by RecQ1 (23) and
hexamers of WRN are needed for strand annealing (24).

4.6. Rad3/XPD
Rad3 family members in humans include: XPD, involved in nucleotide excision repair
(NER) and RNA transcription, FancJ, involved in recombinational repair, Rtel1, involved in
homologous recombination (HR) by unwinding toxic recombinational intermediates, and
ChlR1, involved in sister chromatid cohesion (94). XPD is part of the transcription factor II
H (TFIIH) complex which initiates transcription of genes regulated by RNA polymerase II
promoters. The helicase activity of XPD is required in NER but only its presence, not its
activity, is required for transcription initiation (95). Mutations in XPD affect nucleic
excision repair, resulting in photosensitivity and an increased risk of skin cancer (32). Three
distinct disorders can result, Xeroderma pigmentosum (XP), a predisposition to cancer, and
the aging disorders: trichothiodystrophy (TTD) and Cockayne Syndrome (CS), depending
on whether the helicase activity, interactions with TFIIH or both are affected (96). All have
photosensitivity, but only XP has increased risk of skin cancer. CS and TTD have
developmental disorders and premature aging. CS is more severe with patients exhibiting
mental retardation (96)

All members of the Rad3 family that have been studies are 5′-to-3′ DNA helicases involved
in DNA repair, and genome maintenance. They translocate on ssDNA and unwind dsDNA
(97). Two insertions into helicase domain 1 distinguish Rad3 family helicases from other
SF2 helicases: an Arch domain (98, 99, 100) and an iron-sulfer (FeS) cluster (101). A
mutation in the FeS domain of XPD causes TTD (102). A mutation in the FeS domain of
FancJ, causes Fanconi anemia (103) and a predisposition to early-onset breast cancer (102,
104). The FeS domain forms a secondary ssDNA binding site and couples ATP hydrolysis
to translocation on ssDNA (97, 101).

Honda et al. (97) used a single molecule approach to simultaneously monitor translocation
of the XPD helicase from Ferroplasma acidarmanus in the presence of ssDNA binding
proteins (SSB) RPA1 and RPA2. Both SSBs have similar DNA binding affinities, but had
different effects on XPD translocation. RPA1 competed with XPD for binding, and RPA2
did not interfere with XPD binding to ssDNA, but slowed down XPD translocation. RPA2
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facilitates XPD binding to DNA by bending the DNA. RPA1 and competes with XPD for
DNA binding by extending the DNA. When XPD encountered RPA1, it displaced it from
the DNA. However, RPA2 was not displaced from ssDNA during translocation. XPD
bypassed RPA2 without displacing it from DNA. Simultaneous visualization of both the
helicase and its obstacle brought them to the conclusion that XPD can translocate on the
protein-coated ssDNA without disrupting the protein-nucleic acid complex. SF2 helicases
translocate along the phosphodiester backbone of nucleic acids (4), and RPA binding to
ssDNA primarily involves the bases (105, 106). Since the helicases contacts the DNA
backbone while the SSB interacts with bases, this allows both proteins to be bound
simultaneously to the same region of ssDNA and allows the helicase to move by the SSB.
Translocation over the bound protein and displacement of the protein both provide
mechanisms for these helicases to bypass ssDNA binding proteins (97).

4.7. Swi/Snf
Swi/Snf complexes are involved in diverse processes in the cell, including replication, DNA
repair, regulation of RNA polymerase II and III, cell signaling, cell cycle progression,
metamorphosis, and tumor suppression (107, 108). Many of these processes involve their
ability to remodel chromatin. This occurs by a variety of mechanisms, including
repositioning histone octamers, unwrapping the DNA around an octamer, ejection of a
histone octamer, or dimer, or exchange of a histone dimer (108, 107).

Chromatin remodeling complexes are large, multisubunit complexes that change the
structure of nucleosomes to vary the accessibility of the DNA (109). They all contain a
member of the Swi/Snf family of helicases, but the other components of the complex vary,
and can be used to subdivide the family (31, 110). Swi/Snf helicases are subdivided into
Snf2, ISWI, CHD, INO80, CSB, RAD54, and DDM1 subfamilies of chromatin remodeling
proteins (109, 108). The INO80 subfamily is involved in DNA repair and activation of
transcription (108). It is the only member of the family which has been shown to have
helicase (unwinding) activity (31). Snf2 subfamily members disrupt nucleosomes and ISWI
subfamily members can assemble nucleosomes, resulting in repression of transcription (31).
CDH subfamily members have been implicated in chromatin remodeling and transcription
activation (108, 31). Cockayne Syndrome protein B (CSB) is involved in NER and remodels
chromatin (111). DDM1 is required for maintaining proper DNA methylation in the plant
Arabidopsis thaliana (112). Rad54, along with Rad51, is involved in HR (31, 113).
Mutations in ATRX, a Rad54 family member, result in ATR-X syndrome, characterized by
alpha-thalassaemia and mental retardation (114). The majority of the mutations that have
been linked to the disease occur in the helicase domains and the histone H3 binding domain
(115). ATRX localizes to telomeres and other repetitive DNA sequences, in particular
sequences that have the potential to form quadruplexes (116, 114).

Swi/Snf helicases have a high affinity for nucleosomes and are able to recognize histone
modifications. The translocation activity of the helicase can reposition or eject histones from
the DNA. This activity is modulated by other associated subunits of the remodeling
complexes (108, 107). Several mechanisms have been proposed for nucleosome sliding
(117). In the twist diffusion model (118), a single base pair is shifted from the linker to
wrapped around the nucleoseome core with an accompanying twist to accommodate an extra
basepair. Because a rotation of ~35° would be required for each basepair, this is not likely to
be the mechanism of histone repositioning by Swi/Snf (117). Another model is the histone
core swiveling model. It proposes that the nucleosome rotates relative to the DNA (117).
Two variations of the loop or bulge propogation model have been proposed. In one, the
remodeling protein pulls the DNA from the nucleosome entry or exit site, resulting in a
bulge. In the second, the protein binds to an internal site and pulls DNA from the linker.
They propose that the helicase binds to the DNA and upon ATP hydrolysis, the dsDNA is
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translocated, without being unwound, while the remodeling complex remains bound to the
nucleosome (108, 109). This results in formation of a loop of DNA on the surface of the
nucleosome where the histone-DNA contacts are broken (19, 119, 120, 18). This loop moves
around the nucleosome, repositioning the nucleosome. Loops are visible in single molecule
experiments, and the direction of translocation has been observed to switch (18, 121). It is
unknown whether the helicases can translocate in either direction on DNA or whether the
nucleosome rebinds in the opposite orientation. In addition to repositioning of nucleosomes,
small DNA loops can also allow replacement of dimer with a modified dimer or ejection of
dimers or nucleosomes by remodelers or localized unwrapping (108).

4.8. RIG-I-like
RIG-I-like helicases are involved in the antiviral immune response (122). Dicer has RNase
activity for dsRNA (123) and a RIG-I like helicase domain. The helicase is required for
efficient processing of pre-miRNA, and may allow Dicer to cleave structured viral RNAs
(124, 125). RIG-I serves a sensor of viral RNA to initiate an immune response that leads to
production of interferon (IFN). (126). Activation of two N-terminal caspase activation and
recruitment domains (CARDs) occurs by recognition of 5′-triphosphate (127, 128) or
dsRNA (126). 5′-triphosphates and dsRNA are present during viral replication but not
during most cellular processes (129). In the presence of viral RNA, CARD ubiquitination
results in IFN expression (130). RIG-I also has a C-terminal regulatory domain (RD) and is
a DExH box RNA helicase. The RD inhibits signaling when viral RNA is absent. The
ATPase activity of the helicase is required for signaling (126). The helicase has dsRNA
translocase activity, but does not unwind the RNA (17). The CARDS prevent translocation
of RIG-I in the absence of 5′-triphosphate recognition by the RD (17). In the presence of
viral triggers, RIG-I tranlsocates on the RNA strand in a RNA/DNA heteroduplex or on
dsRNA (17).

4.9. Type I Restriction enzymes
Type I restriction enzymes or endonucleases (T1RE) are part of the restriction-modification
system in bacteria (131, 132). They protect the bacterial genome against cleavage by
methylating target sequences and restriction of foreign DNA. They are classified into three
groups (types I-III) based on their recognition sequence, subunit composition, cleavage
position, and cofactor requirements (133, 134). T1RE are pentamers made up of three
different subunits: specificity (S), methylase (M), and restriction (R) with R2M2S
stoichiometry (135, 131). They are encoded by the Host Specificity for DNA (hsdS, hsdM,
and hsdR genes (136). A dimer of two R2M2S holoenzymes, with each bound to a target
sequence, is the active form of the enzyme for restriction of the DNA (132).

Bacterial DNA is methylated, and T1RE dissociate upon binding to fully methylated DNA
(137); therefore T1RE have no effect on host DNA. Hemi-methylated DNA is methylated at
the target sequence (137). HsdM and HsdS are sufficient for methylation (136). When the
target sequence is unmethylated, HsdR restricts the foreign DNA (132).

All T1RE utilize S-adenosyl methionine (SAM) as the methyl donor for the methylation
reaction, catalyzed by HsdM (138). It is also required for DNA restriction for most T1RE,
EcoR124I being the exception (138, 139). The HdsS subunit recognizes and binds to a non-
methylated DNA sequence containing two 3–5 base pair domains separated by a 6–8 base
pair spacer (138). After binding, the enzyme translocates dsDNA in an ATP dependent
manner toward the enzyme while it remains bound to the recognition sequence (140),
resulting in formation of dsDNA loops (141). HsdR contains both a helicase domain, and an
endonuclease domain (138). T1RE are not known to unwind dsNA (138) but appear to
function as a dsDNA translocases (142). After translocation of 400 to 7000 basepairs (138),

Byrd and Raney Page 8

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2013 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



while remaining bound to the target sequence, the DNA is cleaved by nicking of each strand
by one HsdR subunit (143). The cleaved DNA can then be degraded by exonucleases (ie:
RecBCD).

A model describing T1RE was proposed by Szczelkun (144). The enzyme binds to the DNA
at the target sequence, upon binding of ATP. Two holoenzymes bind to non-methylated
target sequences and associate to form a dimer. ATP dependent dsDNA translocation
occurs, while remaining bound to the target sequence, resulting in formation of loops.
Eventually, translocation is impeded, possibly due to a collision with another protein, and
the DNA is cleaved, resulting in enzyme dissociation.

4.10. RecG-like
RecG-like helicases are involved in resolution of recombination intermediates through
translocation on dsDNA. In prokaryotes, Mfd removes RNA polymerase from stalled
replication forks by destabilizing its interaction with the transcription complex during
translocation (145, 146). PriA recognizes and binds to D-loops formed during recombination
and loads the replisome onto the branched DNA to allow restart of replication (147, 148).
RecG limits origin independent DNA replication (149, 150).

Until recently, RecG was believed to catalyze Holliday junction intermediate branch
migration in a pathway that overlaps functionally with the RuvABC pathway (151).
However, it now seems likely that RecG may function to limit replication at sites remote
from oriC initiated by PriA (152). RecG translocates on dsDNA and catalyzes Holliday
junction branch migration (153), in addition to unwinding various branched DNA substrates,
in vitro (154). RecG decreases replication by unwinding D (147) and R (155) loops, which
prevents PriA from loading DnaB helicase at the branch, leading to assembly of the
replisome and replication (156, 157). By resolving these loops, RecG limits replication to
oriC (152).

PriA, on the other hand, binds to and stabilizes stalled replication forks, eventually leading
to replication restart (158). PriA has a 3′-terminus binding pocket that binds specifically to
the 3′-end of the invading strand in the D loop (147) or the nascent leading strand (159) and
displaces the nascent lagging strand (160). Primasome assembly at stalled replication forks
is dependent upon PriA (148).

5. CONCLUSIONS
Superfamily 2 is a diverse group of helicases. Although some sequence motifs are conserved
among all families, there are motifs that are unique to separate families (1, 25). All SF2
helicases are capable of binding nucleic acids and have nucleic acid stimulated NTPase
activity (3). However, some families, such as type I restriction enzymes and RIG-I do not
perform the canonical helicase reaction of unwinding duplex NA (132)). DEAD-box family
members unwind RNA, but without translocation (34). In some cases, DEAD-box helicases
even unwind dsRNA without ATP hydrolysis (44).

Crystal structures of Hel308 (85), an archaeal Ski2-like helicase, and RecQ1 (23, 161), a
RecQ-like helicase, complexed with a single-strand/double-strand junction contain a beta-
hairpin loop in a position where it could separate the strands of dsNA (Figures 3 and 4).
Interestingly, HCV NS3 and S. cerevisiae Prp43p, which also unwind duplex nucleic acids
in a translocation dependent process, also contain a prominent beta-hairpin (Figure 4A).
XPD also unwinds dsNA and translocates on NA, but it contains a wedge made of two
alpha-helices instead (Figure 4B). Another way that helicases couple translocation to
unwinding is through a formal wedge domain, such as in the case of T. maritima RecG. It
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has a beta-hairpin on one side of the three-way or four-way junction and a wedge domain on
the other which separate the dsDNA on each side of the junction simultaneously (162). The
DEAD-box helicase mss116p unwinds dsRNA without translocation, and its structure
complexed with a single-strand/double-strand junction does not appear to contain a beta-
hairpin (Figure 4C). Structures of SWI2/SNF2, RIG-I-like Hef, and the type I restriction
enzyme EcoR124I also do not appear to have a beta-hairpin (Figure 4C). These enzymes are
known to translocate on nucleic acids, but not unwind dsNA. Thus, the beta-hairpin may be
a conserved feature among helicases that translocate on dsNA to unwind the duplex. Pin-like
structures have been proposed to serve the purpose of splitting the duplex in SF1 helicases
PcrA (161) and UvrD (85) and RecD2 (163). The lack of such a structure in some SF2
helicases may serve to further distinguish structure-function relationships among this large,
diverse class of enzymes.
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Abbreviations

NTP nucleoside triphosphate

ss single-stranded

NA nucleic acid

ds double-stranded

SF superfamily

RNP RNA-protein complexes

Pi inorganic phosphate

HCV hepatitis C virus

DENV dengue virus

SAM S-adenosyl methionine

T1RE type I restriction enzyme

HJ Holliday junction

TFIIH transcription factor IIH

NER nucleotide excision repair

HR homologous recombination

XP Xeroderma pigmentosum

TDD trichothiodystrophy

CS Cockayne’s Syndrome
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Pi inorganic phosphate

RHA RNA helicase A

CARD caspase activation and recruitment domains

RD regulatory domain
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Figure 1.
Structure of DEAD-box helicase Mss116p. A. The crystal structure (Protein Data Bank code
3I61 (41)) of the DEAD-box helicase Mss116p bound to ssRNA and the ATP transition
state analog, ADP-BeF3

−, illustrates the bending of the nucleic acid substrate by DEAD-box
helicases. The helicase motifs are in the cleft formed between the two RecA-like domains.
B. The consensus sequence for the conserved helicase motifs (1, 34) in DEAD-box family
members is shown.
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Figure 2.
Proposed destabilization mechanism for unwinding by DEAD-box helicases (34, 37). The
helicase (yellow oval) binds to the ATP (green triangle) and dsRNA (black lines) (step 1).
Following a rearrangement (step 2) one strand of RNA can dissociate (step 3). ATP
hydrolysis occurs after unwinding (step 4), and the cycle is completed with the release of
phosphate (red triangle), ssRNA, and ADP (blue trapezoid) (step 5).
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Figure 3.
The crystal structure of the human RecQ1 (Protein Data Bank code 2WWY (23)) shows the
beta-hairpin separating the strands of duplex DNA. The two RecA-like domains are colored
in green and gray. The Zn domain is purple. The winged helix domain is cyan, and the beta-
hairpin is red.
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Figure 4.
A. Families containing helicases that unwind duplex nucleic acids using a mechanism
dependent on translocation upon the substrate contain a beta-hairpin. The Protein Data Bank
codes are RecQ1: 2WWY (23), NS3: 1A1V (63), Hel308: 2P6R (85), and Prp43p: 2XAU
(74). B. XPD (Protein Data Bank code 2VSF (100)) has translocase and helicase activity,
but does not have a beta-hairpin. Instead, the wedge appears to be formed from two alpha-
helices (100). RecG (Protein Data Bank code 1GM5 (162)) has a beta-hairpin and a wedge
domain which simultaneously separate two arms of a DNA fork. C. Families which either do
not unwind nucleic acids, or unwind without translocating, do not have the beta-hairpin. The
Protein Data Bank codes are Mss116p: 3I61 (41), SWI2/SNF2: 1Z63 (166), Hef: 1WP9
(167), and EcoR124I: 2W00 (168). In each of the structures, the N-terminal RecA-like
domain is navy and the C-terminal RecA-like domain is green. Accessory domains are gray,
except the beta-hairpin, which is red and wedge domains are purple. Nucleic acid is yellow
and nucleotide is green.
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Table 1

Members and enzymatic activities of superfamily 2 helicase families.

Family Family members discussed in this review Activities

DEAD-box Mammalian eIF4A(37)
S. cerevisiae Mss116p (41, 164, 37)
S. cerevisiae Ded1p (37)
E. coli DbpA (50, 49)
E. coli DbpA (50, 49)
Neurospora crassa CYP-19 (44)

dsRNA unwinding

DEAH/RHA S. cerevisiae Prp16p(77)
S. cerevisiae Prp22p(78)
S. cerevisiae Prp43p (74, 79, 81)

ssRNA translocase
dsRNA unwinding

RecQ-like human BLM (90)
human WRN (91, 24)
human RecQ1 (23, 161, 165)
human RecQ4 (92)

ssDNA translocase
dsDNA unwinding

Rad3/XPD archaeal XPD (97)
human XPD (100, 95)

ssDNA translocase
dsDNA unwinding

Swi/Snf human CSB (111)
human ATRX (116, 114)
S. cerevisiae INO80(108)
S. cerevisiae ISWI (19)
S. cerevisiae Rad54(113)
S. solfataricus SWI2/SNF2 (166)

dsDNA translocase

RIG-I-like archaeal Hef (167)
human Dicer (123, 124)
human RIG-I(17, 126)

dsRNA translocase

Type I Restriction Enzyme E. coli EcoR124I(168, 132) dsDNA translocase

Ski2-like S. cerevisiae Ski2p (52)
S. cerevisiae Mtr4 (56)
archaeal Hel308 (85)

ssRNA translocase
dsRNA unwinding

RecG-like E. coli RecG (152, 147, 155)
T. maritima RecG (162)
E. coli PriA (158, 147, 160)

dsDNA translocase
branched DNA unwinding

NS3/NPH-II Dengue Virus NS3(86, 62)
Vaccinia Virus NPH-II(59, 60)
Hepatitis C Virus NS3 (63, 71, 69, 58)

ssRNA translocase
dsRNA unwinding
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